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Abstract

The complex-step derivative approximation technique is a highly accurate and con-
venient method for computing directional derivatives within simulation codes. The
method is similar to finite-difference approximations and automatic differentiation
techniques in terms of ease of implementation and accuracy, respectively. We ex-
amine the performance and accuracy of finite-difference, automatic differentiation,
and complex-step techniques in analyzing the solutions to physical systems modeled
as initial-value problems in ordinary differential equations (ODEs). In particular,
we investigate the use of these derivative techniques in computing the sensitivity
of the ODE solutions with respect to various model parameters. In doing so, we
identify the strengths and weaknesses of the derivative techniques and find that
the derivify implementation of automatic differentiation can be a simple, accurate,
and cost-effective means of computing directional derivatives for forward sensitivity
analysis.
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1 Introduction

Large-scale scientific simulations often model complex physical systems by formulating and
solving them as initial-value problems in ordinary differential equations (ODEs) or differential-
algebraic equations. Furthermore, these mathematical models usually contain scalar parame-
ters related to important features of the simulation, such as chemical reaction rates, material
opacities, and problem coefficients. The ability to compute the sensitivity of the simulation
results with respect to the model parameters is valuable for several reasons. For example, sen-
sitivity information can be used to rank the model parameters from most to least influential,
design improved experiments, and quantify uncertainty in the simulation results [1]. Other
applications include parameter estimation, optimization, and process sensitivity studies [2].

In this paper, we carry out sensitivity analysis experiments on partial differential equation
(PDE) model problems that have been discretized in space using finite differences and solved
using the code CVODES [3]. This ODE solver uses linear multistep methods for the time
integration of the model equations and, if specified, also integrates the sensitivity equations
that can be formally derived by differentiating the model problem with respect to selected
parameters. For large or complicated ODE systems, a formal derivation of the latter equations
can be problematic. The differentiation of a large system of equations can be a tedious and
error-prone process, even with the possible assistance of symbolic differentiation software.
Another option is the use of automatic differentiation software [4,5], a technique for obtaining
exact derivatives to within rounding error. By default and mainly for user convenience,
CVODES and similar sensitivity-capable codes [6-11] approximate the sensitivity equations
internally using finite difference methods.

Recently, the complex-step derivative (CSD) approximation method [12] has been demon-
strated to be effective for sensitivity analysis in computational fluid dynamics [13] and
aerospace engineering applications [14-16], and in computing directional derivatives in simu-
lations using pseudospectral methods [17]. This method has the accuracy of the analytic and
automatic differentiation techniques yet also provides ease of implementation comparable to
finite differences. The most direct implementation of CSD involves the use of complex num-
bers and complex-valued function evaluations in which perturbations are made to the imagi-
nary components of the problem variables. In the aerospace studies, CSD was used to obtain
derivatives of the entire simulation code with respect to a few aerodynamic parameters. For
our purposes, we need only apply CSD techniques to obtain the sensitivity equations needed
for use within the ODE solver. The adverse effects (if any) of using low-order finite-difference
approximations for the sensitivity equations can be difficult to assess. To investigate this is-
sue, we focus our comparison on the various derivative techniques and their relative accuracy
and performance in computing sensitivities for time-dependent PDE problems.



2 Sensitivity Analysis for ODEs

In computing sensitivities for ODE initial-value problem (IVPs), let

9= fty,p), ylte,p)=w(p), yeRY, peR™, (1)

where the solution vector y depends on time ¢ and a vector of N, scalar parameters in p.
The sensitivities are then given as

oy(t, p)
api

si(t,p) = , 1=1...N,,

which is the (time-dependent) first-order sensitivity of the solution with respect to each
parameter. The ODE-IVP that describes the time-dependent behavior of the sensitivities is
obtained by differentiating the original problem ¢ = f(¢, y, p) with respect to each parameter

of N Yo(p)
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where J = g—g is the Jacobian matrix for the original ODE system (1) and we note that the
sensitivity ODEs are linear in s;. By combining the solution, sensitivities, and ODEs, we get
an augmented ODE system Y = F(¢,Y, p) where

y(t) f

. $(t Jsi + 2L

Y(t) = 1_() and F(t,Y,p) = o | (3)
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The augmented Y is larger than y by a factor of (1 + NV,) so, for large-scale systems, we
typically consider computing sensitivities with respect to only a few (usually Ny, < N,)
parameters. The right-hand side F' involves the use of the system Jacobian matrix and
partial derivatives and can be problematic to derive by hand. However, it can be readily
estimated by finite differences or computed exactly by more advanced methods. In the next
section, we focus on the use of finite differences, automatic differentation, and complex-step
derivative approximation techniques for evaluating F' and assess their respective accuracy
and performance in solving model problems by using CVODES.

The time integration of the augmented solution-sensitivity ODE system in Eq. (3) can be
accomplished by using either the Adams-Moulton or backward differentiation formula (BDF)
as implemented in CVODES. Both formulas allow their step size and method order to vary



based on the behavior of the computed solutions. For brevity we restrict our discussion to
BDFs and consider the use of the first-order backward Euler method

Yn - Yn—l

h = F(tn,Yn,p), (4)

where h,, = t, —t,,_1 is the current step size. In order to obtain the solution and sensitivities
at time ¢,, the nonlinear system

0 = G(Yn) = Yn - hnF(tn, Ynap) - Ynfl (5)

must be solved for Y. In using a so-called staggered corrector method, a Newton iteration is
used to solve first for y and then for the sensitivities s;, s9, and so on. The Newton iteration
matrix I — h,J is the same for each linear system that is solved in updating the solution and
the sensitivities at ¢,,. Note that since the Newton matrix remains the same within each time
step, the preconditioner or linear system solver can be reused also. For higher-order BDFs,
the Newton iteration matrix has the form I — h,ByJ, where 3, is a scalar that depends on
the order of the BDF method.

In order to assess convergence of iterative methods and monitor error estimates within
CVODES, a weighted root-mean-square (WRMS) norm is used for all error-like quanti-
ties. The weights W, ; are based on the current solution Y;, and the relative and absolute
error tolerances, RTOL and ATOL, specified by the user so that

W,; = RTOL - |V, ;| + ATOL; (6)

fori=1,...,(1+ Ns)N. Unless indicated otherwise, all norms in our discussions are WRMS
norms. For complete details on CVODES, see [3,18].

3 Derivative Techniques

Diverse techniques are available for computing the directional derivatives required by CVODES
in performing sensitivity analysis. The main criteria for comparison are their respective ac-
curacy, cost, and ease of implementation, and we survey those aspects below.



3.1 Finite Differences

Finite-difference methods vary in their cost and accuracy in estimating sensitivity derivatives.
One of the approximations provided by CVODES is

of L Of  f{t,y+0sip+ope:) = f(t.y = Isi,p = dpei) 7)
oy "' Op; 26 ’

in which a centered difference and two function evaluations are used to achieve estimates with
O(6?%) accuracy. Although the method is easy to implement, developing a robust heuristic for
the proper selection of § can be difficult. This difficulty is the main weakness of the technique.
The current heuristic takes into account several problem-related features: the relative ODE
error tolerance RTOL, the machine unit roundoff error €y,chine, and the norm of s;.

3.2  Automatic Differentiation

Automatic differentiation (AD) is a technique for augmenting computer subroutines with
instructions for the computation of derivatives [19,20]. This technique combines rules for an-
alytically differentiating the finite number of elemental functions in a programming language
with the chain rule for differential calculus. The two principal approaches to implementing
AD are operator overloading and compiler-based source transformation, each with its re-
spective advantages and disadvantages. The two basic modes of AD are the forward mode
and the reverse mode. The latter is preferable when the number of dependent variables is
much smaller that the number of independent variables or when a vector is multiplied by
the transpose of a Jacobian. We consider two implementations of automatic differentiation,
derivify [21] and ADIC [4]. The derivify library is a simple, operator-overloading-based im-
plementation of the forward mode that computes a single directional derivative at a time.
ADIC is a source transformation tool that uses the forward mode to generate code that
computes multiple directional derivatives simultaneously. The derivify library is easier to
use than ADIC but does not perform as well for most problems.

3.8 Complex-Step Derivative Approxrimations

The use of complex variables for derivative approximation was originally devised by Lyness
and Moler [22,23]. Recent work by Squire and Trapp [24] demonstrated its application for
obtaining simple expressions for first-order derivatives that are highly accurate, robust, easy
to implement, and achieved at a reasonable cost.



Table 1
Derivative techniques and relative merits

Technique Accuracy Features

Finite Differences Approximate Easy to implement

Step-size dependence

Automatic Differentiation—operator overloading  Exact Easy to use

Programming-language dependent

Automatic Differentiation—source transformation Exact Harder to use

Complex-step Derivatives Nearly Exact FEasy to implement

Programming-language dependent

The basic formula is

of
oy

of _ Im[f(t,y+ jdsi,p+ jope;)]

where j = /—1 and the step size parameter ¢ is used to perturb the imaginary components of
the solution y and the parameters p. Unlike finite-difference approximations, the perturbation
d can be made arbitrarily small (until underflow occurs) without roundoff error. Thus, the
truncation error of the complex-step method can be reduced to almost zero.

The complex-step method is simple to implement in languages with an intrinsic complex
data type, such as Fortran or C99. It can also be implemented in languages that support
operator overloading through a complex class library. We consider one such class library,
complexify [21], whose implementation and use closely resembles that of derivify. There
are strong connections between the complex-step method and automatic differentiation, as
observed by Martins et al. [25] and Griewank [26]. Lesk proposed implementing automatic
differentiation directly by “overloading” the intrinsic functions for the complex data types
in Fortran [27].

3.4  Summary

The tradeoffs of using the various derivative techniques are given in Table 1. The suitability
of each technique depends greatly on the accuracy requirements of the application and on
the programming language in which the simulation code is implemented.



4 Model Problems

To compare the various differentiation techniques for forward sensitivity analysis, we tested
them on two PDEs—each with two parameters. The first test problem is a simplified version
of a thermal wave problem [28]. The problem has been modified so that the parameters are
physically meaningful: one parameter controls the speed of the wave, and the other controls
the width of the wave front. The second problem is a two-dimensional chemical diurnal
kinetics problem. It describes a simplified model of the transport, production, and loss of
the oxygen singlet and ozone in the upper atmosphere.

4.1 1D Thermal Wave

The first example is a one-dimensional time-dependent nonlinear reaction-diffusion problem
that is derived from [28,29]. The problem has a smooth analytic solution and models a
steady-propagating wave front. The PDE can be written as

ow ¢§ (Pw 8

e _ 2z, 2 1—

at 2 (ax2 Ty w))’ (©)
where the boundary conditions are w(z = —o0,t) = 1 and w(x = 400,t) = 0. The speed

and width of the wave front are specified by ¢ and ¢, respectively, and the analytic solution
is

w(z,t) = % (1 — tanh (a: ?5 Ct)) . (10)

From differentiation, the analytic solution for the sensitivities are

ow(z,t) 1 o (T —ct
) g
ow(z,t)  (z —ct) o (T —ct

%5 o sech ( 5 ) (12)

A system of N ODEs is obtained by discretizing the z-axis with N + 2 grid points and
replacing the second-order spatial derivative with a central difference approximation. Since
the value of w is constant at the two endpoints, the semi-discrete equations for those points
can be eliminated. The resulting system of ODEs can now be written with w; as the approx-
imation to w(t, z;), x; = i(Az), and Az = 1/(N + 1):

O w1 —2w; +wis1 | 8

! = —_— N
B (¥ E

(1 — wy). (13)



The above equation holds for : = 1,2,..., N with wy = 1.0 and wy,; = 0.

The thermal wave problem is solved over the spatial domain —20 < z < 20 and integrated
over the time interval 0 < ¢ < 0.75. The initial values are obtained by evaluating Eqgs. (10)—
(12) at time ¢t = 0. The initial sensitivity values are strictly zero for (11) since ¢t = 0, and
a nonzero function of x for (12). The wavefront speed and width parameters are ¢ = 20
and 6 = 0.5, respectively.

4.2 2D Diurnal Kinetics

The second example is a two-species diurnal kinetics advection-diffusion system in two spatial
dimensions. The PDEs can be written as
8Ci 82@ 8c,~ 0 8ci

—+ Ri(Cl, Cg,t) (Z = 1, 2), (14)

where the subscripts ¢ identify the chemical species, K,(y) = Kyexp(y/5), and the reaction
terms are

Ri(c1,¢2,1) = —qucics — qacica + 2q3(t)cs + qu(t)co (15)
Ry(cy,c0,t) = qieics — gacica — qa(t)co. (16)

The scalar constants for this problem vary by many orders of magnitude: ¢; = 1.63 x 10716
go =4.66 x 1071%, Ky =108, K, =4.0x 107%, V = 1072, and c3 = 3.7 x 10'%. The diurnal
rate constants are

¢i(t) =exp [—a;/sin(wt)] for sin(wt) > 0, (17)
q:(t)=0 for sin(wt) <0, (18)

with ¢ = 3 or 4, w = 7/(4.32 x 10%), a3 = 22.62, ay = 7.601. Homogeneous Neumann
boundary conditions are imposed, and the initial conditions are

ci(x,2,0)=10%(2)B(y), cao(z, 2,0) = 102a(x)B(y) (19)
a(z)=1—(0.1z — 1)* + (0.1z — 1)*/2 (20)
Bly)=1— (0.1y — 4)* + (0.1y — 4)*/2. (21)

The initial values for the sensitivities are strictly zero because the initial values in (19) are
independent of the problem parameters.

The PDE system is discretized in space with central differencing to obtain an ODE system
9y = f(t,y,p) representing (14). The spatial domain is 0 < z < 20, 30 < y < 50. The time
interval of integration is [0,4.32 x 10%], which represents 12 hours as measured in seconds.
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Fig. 1. Reference solutions for thermal wave problem.

5 Experimental Results

In this section we investigate the use of different derivative techniques as applied to the
model problems in Section 4. Our first example is a simple but realistic problem in which the
parameters values are physically meaningful and an analytic solution is available for accuracy
comparisons. The second example is more challenging because it is a multicomponent PDE
and the solutions, sensitivities, and parameters differ by many orders of magnitude. Both
examples were compiled using g++ -0 -float-store and executed on a 1.4GHz Pentium
ITI with 1 gigabyte of memory. For our investigation, we focus on the accuracy and cost of
computing the solution and sensitivities.

5.1 1D Thermal Wave Problem

Figure 1 shows some reference solutions for the thermal wave problem. Figures 2a and 2b
give the reference solutions for the sensitivity with respect to wave speed and wavefront
width, respectively. When applying the different derivative techniques, the solver statistics
and accuracy are nearly identical. The most notable variation is in the run time. Of the
methods, we see that the complex-step technique is the most costly, derivify and ADIC are
roughly equal, and finite differences are typically cheapest. The various solver statistics are
presented in Table 2 with respect to tighter relative and absolute ODE error tolerances.
Several factors may be responsible for the increased cost in the use of complex arithmetic,
including the choice of C++ compiler. In contrast, the operator overloading of derivify and
the source code transformation approach of ADIC yield faster calculation of exact derivatives.
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Fig. 2. Scaled sensitivities for thermal wave problem. (a) Scaled sensitivity with respect to speed.
(b) Scaled sensitivity with respect to width.

Table 2
Thermal Wave Problem. Solver Statistics: Solution and Sensitivities.

ATOL =1le—4, RTOL =1e -4 ATOL = 1e — 8, RTOL = 1le — 8
FD CSD  derivify ADIC FD CSD  derivify ADIC
Time (sec) 0.9 9.8 1.41 1.06 2.82 38.34 5.42 4.03

RelErr w 1.03e-3 1.03e-3 1.03e-3 1.03e-3 6.43e-4 6.43e-4 6.43e-4  6.43e-4
RelErr cw, 9.19e-3  9.19e¢-3  9.19e-3  9.19e-3 6.6le-3 6.6le-3 6.6le-3 6.61le-3
RelErr dws 5.03e-2  5.03e-2  5.03e-2  5.03e-2 2.78e-2 2.78e-2 2.78e-2 2.78e-2

NST 452 452 452 452 1,028 1,373 1,373 1373
NFE 907 907 907 907 2,062 2,750 2750 2,750
NFES 1,904 1,904 1,904 1,904 4230 2,824 2824 2824
NNI 452 452 452 452 1,031 1374 1374 1,374
NNIS 946 946 946 946 2,109 2818 2818 2818
NLI 2,127 2,127 2,127 2,127 3,108 4,197 4,197 4,197

5.2 2D Diurnal Kinetics Problem

Figures 3, 4, and 5 compare the results obtained when computing solutions and sensitivities
as an augmented system, using finite differences for computing sensitivity derivatives. The
reference solution for the comparison, at the given spatial resolution, is obtained by using

10
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Fig. 3. Solution values computed at the center of the two-dimensional grid for species ¢; and species
Co.

very tight tolerances for RTOL and ATOL and an exact technique for computing sensitivity
derivatives (i.e., automatic differentiation). Figures 3a and 3b compare the values for the two
species ¢; and ¢y as computed at the center of the two-dimensional grid. The solution values
are in good agreement in this case; however, Figures 4 and 5 show a large disparity in the
results from the sensitivity computations. The discrepancy is apparent primarily in the c;
component of the sensitivity vectors; see Figures 4a and 5a. From Figure 4, we especially
note that the ¢; component remains negative despite the late rise above zero for the reference
solution. From Figure 5, the ¢; components also fails to track the reference solution as the
latter moves away from zero. The ¢, component of the sensitivities also suffers from accuracy
problems, yet evidently maintains the correct qualitative behavior. The interesting features
of this example are the improved accuracy in certain components of the sensitivity vectors
and the fact that the solution y is in such close agreement with the reference solution. Table 3
presents the accuracy and run times of the various methods on this problem.

5.3  Summary

For the thermal wave problem, the solver statistics of CVODES roughly agree independent
of which derivative technique is used. In this case, the main considerations are ease of im-
plementation and run time. The complex-step method is relatively simple to implement but
suffers from the slowness of the arithmetic with complex numbers. For the diurnal kinetics
problem, the finite-difference method is easiest to implement and gives the fastest run times,
but the sensitivities are found to be completely incorrect halfway through the simulation.

11
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6 Conclusions

We compared three methods for computing (approximate) derivatives for use in the for-
ward sensitivity analysis of time-dependent problems. These techniques all have tradeoffs
in terms of their accuracy, ease of implementation, and performance cost. One conclusion
is that the default finite-difference techniques can give misleading sensitivity results despite
the accuracy to which their original solution variables are computed. This was demonstrated
in the diurnal kinetics example. The failure of finite differences in this role can be difficult to
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Table 3
Diurnal Kinetics Problem. Solver Statistics: Solution and Sensitivities.

ATOL =1e+2, RTOL =1e -5 ATOL =1.0, RTOL =1e -7
FD CSD derivify ADIC FD CSD  derivify ADIC

Time (sec) 9.5  91.9 38.1 16.8 failed  387.9 124.5 68.9
NST 985 1,203 1,520 1,080 n/a 5,045 4,989 4,646
NFE 2,018 2,629 3,264 2,358 n/a 11,495 11,308 10,532
NFES 4,198 2,891 3,576 2,596 n/a 13,383 13,113 12,248
NNI 1,020 1,337 1,652 1,201 n/a 5,785 5,689 5,294
NNIS 2,093 2,885 3,570 2,590 n/a 13,381 13,111 12,246
NLI 3,306 2,998 3,792 2,852 n/a 11,176 10,999 10,262

detect, especially since our intuition about the behavior of solution sensitivities is not well
developed. A second finding, and recommended safeguard, is to pursue convenient methods
for computing (nearly) exact sensitivity derivatives. The derivify implementation of auto-
matic differentiation is ideal as a simplified and inexpensive method for obtaining derivatives
via an analytic method. Third, we note that the current implementations of complex-step
techniques and automatic differentiations can be improved to reduce the overhead in using
them. With advances in this area, and tools for automating their use, sensitivity analysis for
scientific simulations will be made more reliable and perhaps more widely used.
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