
Fault Tolerance in MPI Programs!

William Gropp and Ewing Lusk

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA
{gropp,lusk}@mcs.anl.gov

Abstract. This paper examines the topic of writing fault-tolerant MPI
applications. We discuss the meaning of fault tolerance in general and
what the MPI Standard has to say about it. We survey several approaches
to this problem, namely checkpointing, restructuring a class of standard
MPI programs, modifying MPI semantics, and extending the MPI spec-
ification. We conclude that within certain constraints, MPI can provide
a useful context for writing application programs that exhibit significant
degrees of fault tolerance.

1 Introduction

As modern supercomputers scale to hundreds or even thousands of individual
nodes, the Message Passing Interface (MPI) remains a straightforward and ef-
fective way to program them. At the same time the larger number of individual
hardware components means that hardware faults are more likely to occur dur-
ing long-running jobs. Users naturally want their programs to adapt to hardware
faults and continue running. This ideal is clearly unattainable in general (e.g. if
all nodes fail) but users still can achieve a significant degree of fault tolerance for
their MPI programs. This paper explores several approaches that are possible
within the context of MPI.

In Section 2, we briefly survey some related work and some current systems
that provide degrees of fault tolerance in various ways. In Section 3, we clarify
the relationship between fault tolerance and the MPI Standard, MPI implemen-
tations, and parallel algorithms. We claim that fault tolerance is a property
of a program, not of an API specification or an implementation. In Section 4,
we detail what the MPI Standard says that is related to fault tolerance issues.
In Section 5, we describe several approaches to achieving fault tolerance in MPI
programs, namely, checkpointing, using MPI intercommunicators to write a class
of fault-tolerant MPI programs, modifying the semantics of existing MPI func-
tions to provide more fault-tolerant behavior, and defining extensions to the
MPI specification that support the writing of fault-tolerant MPI programs. We
summarize our conclusions in Section 6.
! This work was supported by the Mathematical, Information, and Computational Sci-

ences Division subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

2 Related Work

Researchers have explored a number of different approaches to providing fault
tolerance in MPI programs. One of the earliest, explored even before the MPI-2
Forum had taken up the general area of dynamic process management, appeared
in [9]. In fact, the original long version of that paper [10] included specific MPI
process-management functions that were removed from the final version since the
MPI Forum had by then made its decisions on dynamic process management (see
Section 3.2 of [9]).

One of the most recent implemented systems, MPICH-V [2], is also one of
the most complete. It provides complete checkpointing and message logging to
enable replacement of aborted processes; the checkpoints avoid reconstructing
computations from the beginning through the message logs. It also provides
scalability but requires a reliable subsystem for the checkpoints and message
logs, as well as for the “dispatcher” process. A similar approach is taken in
the LAM-based MPI-FT [14]. MPICH-V demonstrates the cost (approximately
doubling of communication times) of providing full recovery in all situations.

Egida [17] is another MPICH-based system using logs for transparent re-
covery. It incorporates its own language to allow the user to express various
responses to faults. A complete but less scalable approach is taken in MPI/FT
(TM) [1].

FT-MPI [4–6] explores the approach of modifying some of the standard MPI
semantics. We discuss this approach further in Section 5.3.

For a discussion of some algorithmic approaches to fault tolerance, see [7].
A large body of knowledge known as transaction processing is concerned with

fault tolerance and the various solutions to the problem of reliable computing
in the presence of failures (see, e.g., [8]). Methods for fault-tolerant transaction
processing often rely on maintaining redundant or duplicated state between two
parties (often processes); if one of these processes fails, the other can continue
the computation because no information has been lost.

Most approaches to fault tolerance have a similar set of requirements:

– Failure can be detected
– Information (state) needed to continue the computation is available
– The computation can be restarted.

In this paper, we discuss each of these requirements in the context of MPI.

3 What Does “Fault Tolerance” Mean?

Misunderstanding about the relationship between MPI and fault tolerance is ev-
ident in assertions like “MPI is not fault tolerant.” This statement is not actually
well formed and so is neither true nor false. Let us examine what motivates such
assertions and what can be stated with more precision.

A common misconception about MPI is that the MPI Standard itself man-
dates that if any MPI process dies, then all the MPI processes in the job must

die as well. This is not true. The basis for this misconception is easily under-
standable. The standard says (in Section 7.2 of [16] or Section 7.5.1 of [18]) that
the default error handler on the communicator MPI COMM WORLD is the built-in
one called MPI ERRORS ARE FATAL. (See Section 4.2 for a discussion of error han-
dlers attached to communicators.) Thus, if one takes no particular action with
respect to error handling, when a process exits before calling MPI Finalize, the
others are indeed required to detect this condition and exit as well. The MPI
Forum decided that this would probably be the most useful default behavior,
particularly for new users. (And when the MPI Forum was deliberating, all users
were new.)

Fault tolerance is a property; what is it a property of ? It is not a property
of MPI itself, since MPI is a specification of an API (application programmer
interface). The MPI Standard describes how to write a correct parallel program.
It tends, for the most part, to assume that this program will execute on reliable
hardware. Considerable latitude is granted the implementation on how hardware
faults will be handled; we discuss this in Section 4.

Is fault tolerance thus a property of an MPI implementation? No, since no
implementation can ensure that any program is immune from all faults.

We claim that fault tolerance is a property of an MPI program coupled with
an MPI implementation. For simplicity we include as part of the MPI imple-
mentation the hardware and software environment the program is running in.
Thus, a particular MPI implementation (no more or less standard-conforming
than any other) may still extend (or restrict) the class of MPI programs that
will exhibit various degrees of fault tolerance when linked with a particular MPI
implementation and executed.

By fault tolerance, most people mean that a fault-tolerant program, linked
to a matching implementation, can “survive” (in some sense we discuss shortly)
a failure of the hardware infrastructure, such as a network failure or a machine
crash. As we mentioned, this ideal is not completely attainable in general, but
many useful partial achievements in this direction are attainable.

“Survival” is a broad term encompassing various levels of action. The highest
level of survival is that the MPI implementation automatically recovers from
some set of faults and the MPI program, regardless of its structure, continues
without significant change to its behavior. A second level of survival is that
the program is notified of the problem and is prepared to take corrective action.
(This approach is described in Section 5.2.) A third level of survival is that certain
MPI operations, although not all, become invalid. (This approach is described
in Sections 5.3 and 5.4.) In each of these three cases, the program arranges for
the nonfailing processes to retain enough of the program state held by the failed
process for the overall computation to proceed. A fourth level of survival is that
a program can abort and be restarted from a checkpoint (Section 5.1). Here the
states of all processes are saved outside the processes themselves, typically on
disk. Finally, combinations of these approaches may be used.

4 The MPI Standard and Fault Tolerance

What does the MPI Standard say that is relevant to fault tolerance? One might
think that it says nothing, since as an API specification it describes the behavior
of correct MPI programs running on reliable hardware; it is not a specification for
a complete execution environment and does not specify the behavior of incorrect
programs. Nonetheless, the MPI Standard does make a number of precise state-
ments in this area and also provides considerable flexibility in the handling of
errors. Both of these are important for understanding how to write fault-tolerant
MPI programs.

4.1 Reliable Communication

The MPI Standard specifies reliable communication (see Section 1.1 of [15]).
That is, if an MPI implementation allows a message to be delivered in a corrupted
state (i.e., the contents of the received message are not identical to the contents
of the message sent), then it is a nonconforming implementation. Thus, the
MPI implementation is responsible for detecting and handling network faults.
“Handling” means either recovering from the error through retransmission of the
message or else informing the application that an error has occurred, allowing
the application to take its own corrective action. Under no circumstances should
an MPI application or library need to verify integrity of data received.

4.2 Error Handlers

Section 7.5 of [18] describes the association of error handlers to communica-
tors. Error handlers can be either built in or user defined. The built-in er-
ror handlers are MPI ERRORS ARE FATAL, which specifies that if an MPI func-
tion returns unsuccessfully then all the processes in the communicator will
abort, and MPI ERRORS RETURN, which specifies that MPI functions will at-
tempt (whether this attempt is successful may be implementation dependent)
to return an error code (a return code not equal to MPI SUCCESS). In C++,
MPI::ERRORS THROW EXCEPTIONS is also defined. 1 The MPI Standard does state
that MPI ERRORS ARE FATAL is the default error handler on MPI COMM WORLD and
that new communicators inherit the error handler of the parent communicator,
thus leading to the common misconception that the standard requires this “all
fall down” behavior.

Error handlers are set on communicators with MPI Comm set errhandler.
Not only can the default be changed from MPI ERRORS ARE FATAL to
MPI ERRORS RETURN, but users can define their own error handlers and attach
them to communicators. This ability to define one’s own application-specific
error handler is important for the approach to fault tolerance we describe in
1 In C and C++, return codes are the return values of the MPI functions. In versions

of Fortran, return codes are the value of the ierr parameter passed to the Fortran
subroutines.

Section 5.2. The ability to attach error handlers on a communicator basis is
important for MPI’s modularity: a library may want to operate with its own
communicator (see [11]) and deal with errors itself in order to present them to
the user in a library-specific way, while the user application program still uses
MPI ERRORS ARE FATAL.

4.3 Errors

When MPI ERRORS RETURN is the active error handler, a set of errors is prede-
fined, and implementations are allowed to extend this set. This feature is useful
if an implementation wants to define certain types of error specific to fault toler-
ance. Indeed, the standard allows implementations considerable latitude in the
handling of errors. It may not be possible for an implementation to recover from
some types of errors even enough to return an error code, and such an imple-
mentation is conforming. Some conforming implementations may return errors in
situations where other conforming implementations abort. If an error is returned,
the standard does not require that subsequent operations succeed, or that they
fail. Thus the standard allows implementations to take various approaches to the
fault tolerance issue and to trade performance against fault tolerance to meet
user needs. Different levels of tradeoff are exemplified in the specific implemen-
tations we described in Section 2, as well as implied in the approaches that we
describe in more general terms in Section 5.

5 Approaches to Fault Tolerance in MPI Programs

In this section we describe several approaches to writing fault-tolerant programs,
to be used with MPI implementations that choose not to provide “transparent”
fault tolerance because of the performance cost. We cover checkpointing, using
intercommunicators to restructure certain algorithms, modifying MPI semantics,
and extending MPI.

5.1 Checkpointing

Checkpointing is a common technique that periodically saves the state of a
computation, allowing the computation to be restarted from that point in the
event of a failure. Checkpointing is easy to implement but is often considered
expensive. After all, saving a checkpoint takes time that could otherwise be
devoted to additional computation. The cost of checkpointing need not be large,
however.

To estimate the cost (in running time of an application), we define the fol-
lowing:

k0 = Cost to create and write checkpoint
k1 = Cost to read and restore checkpoint
α = Probability of failure

t0 = Time between checkpoints
T = Total time to run, without checkpoints

We assume that the probability of failure is independent of time and has
an exponential probability density function. For small α, the expected running
time between checkpoints, assuming at most one failure between checkpoints,
can thus be approximated by

E = (1− αt0)(k0 + t0) +

αt0

(
k0 + t0 + k1 +

1
2
t0

)

E = k0 + t0 + α

(
k1t0 +

1
2
t20

)
.

Thus, the total run time (to time T) is

ET =
T

t0

(
k0 + t0 + α

(
k1t0 +

1
2
t20

))
.

We can find the optimal time between checkpoints by differentiating with respect
to t0 and setting the result to zero. This leads to

dET

dt0
= T

(
−k0

t20
+

1
2
α

)

0 = −k0

t20
+

1
2
α

k0

t20
=

1
2
α

t0 =
√

2k0

α
.

With this value of t0, we can compute the expected time for a computation that
would take time T with no checkpoints and no failures. That time is

ET = T

(
1 +

k0

t0
+ α

(
k1 +

1
2
t0

))

= T
(
1 + αk1 +

√
2αk0

)
.

For small probability of failure α and relatively small costs of creating (k0) and
restoring (k1) a checkpoint, the added cost of using checkpoints is quite modest.
This result, combined with the modularity of checkpoint solutions (i.e., they
do not require changes to the solution algorithm and can be implemented as
separate modules in the the program source), helps explain the popularity of
checkpoints.

Of course, the cost of saving and restoring a checkpoint must be relatively
small. Since checkpoints must be saved to persistent storage that is not affected

by a failure of one of the computing elements, the checkpoint data is typically
saved to a (parallel) file system. Thus, the practicality of checkpointing is re-
lated to the performance of parallel I/O. MPI provides excellent facilities for
performing I/O, including support for output that is in a canonical form and
can be used to restart the computation on a different number of processors. The
cost of restarting a computation (k1) also need not be large, though in some
implementations of MPI, startup time is nonnegligible. This part of the problem
is best addressed through improved techniques such as those described in [3].

So far, we have ignored the issue of who is responsible for creating the check-
point. Two major choices exist: user-directed and system-directed checkpointing.
In user-directed checkpointing, the application programmer forms the check-
point, writing out any data that will be needed to restart the application. This
task is often relatively easy, particularly with well-structured applications. It
has two drawbacks, however. First, the user is responsible for ensuring that all
data is saved. Second, the checkpoints must be taken at particular points in the
program, typically when no messages are in transit between processes. Doing
so can be difficult for a program that does not have a simple iterative struc-
ture or that wishes to create a checkpoint only when necessary, such as when
a failing component is detected. Unfortunately, system-directed checkpointing
is much harder to implement because so much of a process’s state is scattered
throughout a parallel computer. This state can include messages that are in
flight between processes and data in kernel memory buffers. Some work in this
area was done for earlier message-passing systems [12, 13]. CoCheck[19] was one
of first MPI systems to handle message-flushing of in-flight messages. Because
of the difficulty in extracting all of the necessary state, however, we recommend
using user-directed checkpointing.

For user-directed checkpointing, source code transformation tools based on
compiler technology can help identify both what data to checkpoint and what
data need not be saved in a particular checkpoint (because that data was saved
in a previous checkpoint and has not changed). In addition, such tools can ensure
that all of the relevant data is saved and that the data is properly restored.

5.2 Using Intercommunicators

A fundamental concept in MPI is the communicator, a distributed object that
supports both collective and point-to-point communication. Because of collective
operations, the failure of any one process in a communicator affects all processes
in the communicator, even those that are not in direct communication with
the failed process. This factor contributes to the fragility of programs that use
MPI COMM WORLD as their only communicator.

In contrast, in non-MPI client-server programs, the failure of a client has no
significant effect on the server, which can continue to service other clients. What
makes this structure robust is that all communication takes place in a two-party
context, in which one party can easily recognize that the other party has failed
and cease communicating with it. Moreover, each party can easily keep track of
the state held by the other party.

How can we structure MPI programs so that they have this same type of
survivability? The answer is to use the MPI structure that corresponds to two
parties: the intercommunicator. Intercommunicators contain two groups of pro-
cesses, and all communication occurs between processes in one group and pro-
cesses in the other group.

Let us consider how we might use intercommunicators to make a common
type of MPI application fault tolerant. Manager/worker algorithms are used in
a wide variety of areas, from DNA sequence matching to graphics rendering to
searching for extraterrestrial intelligence. In these algorithms, a manager process
keeps track of a pool of tasks and dispatches them to working processes for
completion. Workers return results to the manager, simultaneously requesting
a new task. This arrangement is suitable for a fault-tolerant structure for two
reasons:

– The worker processes hold a very small amount of state at a time, consisting
of only the current task specification and the work that has been done on
the task. The manager can keep a copy of the task specification and simply
assign it to another worker if necessary.

– The communication structure is all two-party, between a worker and the
manager. No collective communication is needed, and the workers do not
communicate with one another.

A sample manager/worker example can be found in [11]. Figure 1 shows how to
set up an MPI manager/worker program for fault tolerance, while the worker
part of the algorithm is shown in Figure 2. We show here only the relevant MPI
calls involved in setting up the intercommunicator structure and replacing the
error handlers. A variety of data structures can be used for managing the task
pool. We envision that for fault tolerance purposes, a task that has been sent
to a worker is retained by the manager in an “in-progress” list, to keep the
essential state of the worker that is working on it. In this way the manager can
easily restart a task if the associated worker fails. If a process fails, as indicated
by a non-success return code from a communication operation on one of the
intercommunicators, the manager marks the communicator as invalid and does
not use it again.

The program shown in Figures 1 and 2 may not work on every implementation
of MPI. The MPI implementation must be able to return a non-success return
code in the case of a communication failure such as an aborted process or failed
network link. Although many implementations of MPI currently don’t do this,
we are not concerned in this section about implementation choices, but rather
about how fault tolerance can be achieved without modifying the MPI standard.
One aspect of this approach involves improving support for fault tolerance within
MPI implementations. One such improvement would be to increase the number
of functions that return error codes when MPI ERRORS RETURN is set to be the
active error handler (see Section 4.2).

Note that in this example, we use only a single MPI process for the manager
and for each worker, mimicking the non-MPI client-server structure. MPI in-
tercommunicators can, however, contain arbitrary numbers of processes in both

#include "mpi.h"
#define MAX_WORKERS 1000
#define IC_CREATE_TAG 100

int main(int argc, char *argv[])
{

int i, myrank, origsize, currsize;
MPI_Comm worker_comm[MAX_WORKERS];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_size(MPI_COMM_WORLD, &origsize);
currsize = origsize;

/* create intercommunicators and set error handlers */
for (i = 1; i < currsize; i++) {

MPI_Intercomm_create(MPI_COMM_SELF, 0,
MPI_COMM_WORLD, i,
IC_CREATE_TAG, &worker_comm[i-1]);

MPI_Comm_set_errhandler(worker_comm[i-1], MPI_ERRORS_RETURN);
}

/* set up three lists of task descriptors:
* not done
* in progress
* done */

/* manager part of manager worker algorithm:
* when send or receive fails, mark intercommunicator as dead,
* keep task in in-progress list, send to next free worker */

/* work until both not done and in progress lists are empty */

for (i = 1; i < currsize; i++)
MPI_Comm_free(&worker_comm[i-1]);

MPI_Finalize();
exit(0);

}

Fig. 1. Manager part of fault-tolerant manager worker program

#include "mpi.h"
#define IC_CREATE_TAG 100

int main(int argc, char *argv[])
{

int i, myrank, size;
MPI_Comm manager_comm;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

/* create intercommunicators for communication with manager
* only */

MPI_Intercomm_create(MPI_COMM_SELF, 0,
MPI_COMM_WORLD, 0,
IC_CREATE_TAG, &manager_comm);

MPI_Comm_set_errhandler(manager_comm, MPI_ERRORS_RETURN);

/* worker part of manager worker algorithm
* when send or receive fails, mark intercommunicator as dead
* and exit, since contact with manager is lost */

MPI_Comm_free(&manager_comm);
MPI_Finalize();
exit(0);

}

Fig. 2. Worker part of fault-tolerant manager worker program

groups, so both the manager and the workers can be parallel programs in their
own right; we can still use the same structure as described above, although
setting up the intercommunicators will be a little more complicated.

We also note that our example is an MPI-1 program. If our implementation
of MPI supports the dynamic process management part of MPI-2, then two
changes can be considered:

– We can start the manager process by itself and use MPI Comm spawn to create
the workers. MPI Comm spawn returns an intercommunicator, which can be
used exactly as in the example above. In the parallel worker case, this will
be a simpler way to form the intercommunicators, since one MPI Comm spawn
can create multiple workers, all in the remote group of a single intercommu-
nicator.

– When a worker dies, we can use MPI Comm spawn to replace it and continue
processing with no fewer workers than before.

The parallel workers can be optimized. The processes of a parallel worker may
communicate with one another using an ordinary intracommunicator and utilize
collective operations. The fault tolerance in this situation resides in the overall
manager/worker structure. Thus, MPI’s ability to attach different error handlers
to different communicators allows us to provide different levels of fault tolerance
to different parts of the program’s structure.

One might note here that even though intercommunicators are not used much
in current MPI applications, there is no inherent reason to avoid the use of
intercommunicators for performance reasons. Quality implementation will have
the same level of performance for both types of communicators; there are even
reasons why an implementation may be able to exploit intercommunicators,
especially two-process ones, in increase performance.

5.3 Modifying MPI Semantics

Another approach to fault tolerance in MPI programs is to modify the seman-
tics of certain MPI objects and functions in order to make it possible to write
fault-tolerant programs for a wider set of algorithms than those considered in
the preceding section, using existing MPI objects that contain more state and
MPI functions that have a slightly different semantics from that defined in the
MPI Standard. For example, in the approach taken in FT-MPI [4, 6], a com-
municator can enter a state in which some ranks are defined and not others;
moreover, a process’s rank in a communicator may change, which cannot hap-
pen in a standard-conforming MPI implementation. The behavior of collective
operations on a communicator in a non-standard state changes from the stan-
dard, although considerable care is taken in FT-MPI to ensure that only those
collective operations that continue to make sense in a modified communicator
return without error.

We believe that this approach, while intriguing as a way to experiment with
fault-recovery algorithms, sacrifices too much in the area of time-tested semantics

of MPI objects and functions to be realistic for writing production applications.
For example, MPI objects have properties that the object model normally guar-
antees to be constant, such as the number of processes in a communicator and a
process’s rank in it. These properties may be used by the program in nontrivial
ways: data may be decomposed according to a communicator’s size, and the
assignment of part of the data to a given process may be calculated by using
its rank. In addition, libraries typically rely both on communicators other than
MPI COMM WORLD and on the standard semantics of MPI objects and functions.

In the next section we propose an approach that is in some ways more limited
but is more consistent with existing MPI programming style.

5.4 Extending MPI

One of the reasons for considering a change to the semantics of MPI is to ad-
dress some of the real or perceived difficulties of using MPI communicators when
processes may fail. Consider the case shown in Figure 3. In MPI, it is difficult
(but not impossible) to construct the communicator consisting of the two indi-
cated processes. If the manager group has suffered the failure of a process, it is
even more difficult to construct the new communicator, because of the collective
semantics of communicator construction in MPI.

Workers B

Workers AWorkers C

Intercommunicator

Master Processes

Fig. 3. Example manager-worker application with three intercommunicators connnect-
ing separate groups of worker processes with a manager group. Consider constructing
the communicator indicated by the arrow-headed line consisting of one process in group
A and group C.

Rather than modifying existing semantics, one can envision defining exten-
sions to MPI that have semantics that support the writing of fault-tolerant
programs but are consistent with all existing MPI semantics.

The key idea here is to encapsulate the capabilities we used in Section 5.2,
where instead of using MPI COMM WORLD we based our communication on a local
array of two-party connections. If this were incorporated into MPI, what might
it look like? We will use the MPE prefix (“E” for “extension”) to indicate that
these are not MPI objects or functions. They could be added to an existing
implementation and co-exist with standard MPI functions.

The central new object in this approach is the MPE Process array object,
which behaves somewhat like the array of intercommunicators in the example of
Section 5.2. A process array plays the role of communicator in communication
operations but diffs in several ways. The properties of a process array include
the following:

– Each element of the process array specifies a particular MPI process.
– A process array may grow or shrink in length (the number of members), but

once an element is defined, it is fixed. In other words, the ith element of a
process array always specifies the same process.

– If a process fails, the corresponding entry becomes null.
– Arrays will have associated contexts, like a communicator.
– No collective operations will be defined for process arrays.
– Arrays can have attached error handlers.
– Separate, new MPE send and receive operations will be defined.

Process arrays can be implemented on some systems by using MPI Join.
Process arrays provide a mechanism that does not, however, require a separate
socket between the processes.

This mechanism is reminiscent of the BLANK option for the modified commu-
nicators of FT-MPI. It can be used to develop programs that are fault tolerant,
as in the manager/worker example, but have a more complex structure, for ex-
ample one in which the workers communicate with one another, as in Figure 3.

The approach of FT-MPI is to modify the semantics of existing MPI objects
and functions to endow a message-passing library with some of the same capa-
bilities that we propose be added with new objects and functions. As discussed
in Section 5.3, we believe that a safer approach is to preserve existing standard
semantics. Thus to add new capabilities for expressing fault- tolerant constructs
in an MPI context we propose additional objects like the MPE Process array.
Since the objects are new, their methods must also be new; hence MPE Send
and MPE Recv functions appear, although their semantics are similar to those of
MPI Send and MPI Recv.

6 Summary

In this paper we have discussed the meaning of fault tolerance as a program
property that ensures survival of sufficient state for continuing the program. We

have surveyed what the MPI Standard provides in the way of support for writing
fault-tolerant programs. We have considered several approaches to doing so, and
we have demonstrated how one can write fault-tolerant MPI programs.

References

1. R. Batchu, J. Neelamegam, Z. Dui, M. Beddhua, A. Skjellum, Y. Dandass, and
M. Apte. MPI/FT (TM): Architecture and taxonomies for fault-tolerant, message-
passing middleware for performance-portable parallel computing. In Proceedings
of the 1st IEEE International Symposium of Cluster Computing and the Grid,
Melbourne, 2001.

2. George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak,
Cedile Germain, Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic
Magniette, Vencent Neri, and Anton Selikhov. MPICH-V: Toward a scalable fault
tolerant MPI for volatile nodes. In Proceedings of SC 2002. IEEE, 2002.

3. R. Butler, W. Gropp, and E. Lusk. Components and interfaces of a process man-
agement system for parallel programs. Parallel Computing, 27:1417–1429, 2001.

4. G. E. Fagg, A. Bukovsky, and J. J. Dongarra. HARNESS and fault tolerant MPI.
Parallel Computing, 27(11):1479–1495, October 2001.

5. Graham Fagg and Jack Dongarra. Fault-tolerant MPI: Supporting dynamic ap-
plications in a dynamic world. In Jack Dongarra, Peter Kacsuk, and Norbert
Podhorszki, editors, Recent Advances in Parallel Virutal Machine and Message
Passing Interface, number 1908 in Springer Lecture Notes in Computer Science,
pages 346–353, 2000. 7th European PVM/MPI Users’ Group Meeting.

6. Graham E. Fagg and Jack J Dongarra. Building and using a fault tolerant MPI
implementation. (to appear in the International Journal of High Performance
Computer Applications and Supercomputing).

7. Al Geist and Christian Engelmann. Development of naturally fault tolerant algo-
rithms for computing on 100,000 processors, 2002.

8. J. Gray and A. Reuter. Transaction Processing. Morgan Kaufmann Publishers,
San Mateo (CA), USA, 1993.

9. W. Gropp and E. Lusk. Dynamic process management in an MPI setting. In
Proceedings / Seventh IEEE Symposium on Parallel and Distributed Processing,
October 25–28, 1995, San Antonio, Texas, pages 530–534, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1995. IEEE Computer Society Press.
IEEE catalog number 95TB8131.

10. William Gropp and Ewing Lusk. Dynamic process management in an MPI setting.
http://www.mcs.anl.gov/~gropp/bib/papers/.

11. William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Par-
allel Programming with the Message Passing Interface, 2nd edition. MIT Press,
Cambridge, MA, 1999.

12. Kai Li, Jeffrey F. Naughton, and James S. Plank. An Efficient Checkpointing
Method for Multicomputers with Wormhole Routing. International Journal of
Parallel Processing, 20(3):150–180, June 1992.

13. Kai Li, Jeffrey F. Naughton, and James S. Plank. Low-latency, concurrent check-
pointing for parallel programs. IEEE Transactions on Parallel and Distributed
Systems, 5(8):874–879, August 1994.

14. Soulla Louca, Neophytos Neophytou, Arianos Lachanas, and Paraskevas Evrepi-
dou. MPI-FT: Portable fault tolerance scheme for MPI. Parallel Processing Letters,
10(4):371–382, 2000.

15. Message Passing Interface Forum. MPI: A Message-Passing Interface standard.
International Journal of Supercomputer Applications, 8(3/4):165–414, 1994.

16. Message Passing Interface Forum. The MPI message-passing interface standard.
http://www.mpi-forum.org, May 1995.

17. Sririam Rao, Lorenzo Alvisi, and Harrick M. Vin. Egida: an extensible tookit for
low-overhead fault-tolerance. In Symposium on Fault-Tolerant Computing, pages
48–55, 1999.

18. Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack
Dongarra. MPI—The Complete Reference: Volume 1, The MPI Core, 2nd edition.
MIT Press, Cambridge, MA, 1998.

19. G. Stellner. CoCheck: checkpointing and process migration for MPI. In IEEE,
editor, Proceedings of IPPS ’96. The 10th International Parallel Processing Sym-
posium: Honolulu, HI, USA, 15–19 April 1996, pages 526–531, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1996. IEEE Computer Society Press.

