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ABSTRACT

If many people access a Web server at one time, the server
might not able to respond within an acceptable time or even
provide the service. Therefore, enough servers should be as-
signed to a service to guarantee quality of service. But re-
serving a lot of resources for peak access is not cost effective,
because these resources are idle most of the time.

In order to solve this problem, technologies called utility
computing or autonomic computing have been proposed and
are under development. However, these technologies utilize
resources only within one organization.

In this paper, we present an autonomic system architecture
that use distributed resources leveraged by Grid technology.
In our architecture, computing resources are rented from
different organizations. Our architecture supports the J2EE
system; hence, existing Web applications can be used with-
out any modification. In addition, our architecture considers
the location of the resources when redirecting a request to a
server and allocating a new server, thereby leading to better
performance. We adopted WS-Agreement as an interface
for negotiating service level agreements.

We have implemented and evaluated this system and con-
firmed the effectiveness of this architecture.

1. INTRODUCTION

The reliability of Web servers is important. If many people
access a server at one time, the server might not able to re-
spond to the client within an acceptable time or even provide
the service. Therefore, enough servers should be assigned to
a service to guarantee quality of service. But reserving a
lot of resources for peak access is not cost effective, because
these resources are idle most of the time.

In order to solve this problem, technologies called utility
computing or autonomic computing have been proposed and
are under development [8, 10]. With these technologies,

servers are automatically added or removed from a service
according to the load of the service. Since the resources can
be shared between services, these technologies can make the
utility rate of the servers higher.

However, these technologies are not enough to reduce the
cost of servers because they share resources only within one
organization. Thus, many resources might be left idle if
there is not enough work.

In this paper, we present an autonomic system architecture
that use distributed resources leveraged by Grid technology;
computing resources are rented from different organizations.
In addition, the accesses from clients are redirected to a
server based on the distance between them. This strategy
improves the performance of Web accesses.

The contribution of this paper is a novel architecture of dis-
tributed autonomic computing that includes following char-
acteristics:

Support Our architecture supports J2EE system, which
means that not only simple static Web pages but also
complex Web systems such as a shopping site can be
supported by our system.

Security Security is the most important issue when utiliz-
ing distributed resources; this issue does not arise in
the current utility or autonomic computing technol-
ogy. Our architecture uses GSI [7] for authentication
and dynamically creates VPN for secure communica-
tion.

Interface We use a standard interface for our architecture.
Specifically, the latest draft of WS-Agreement [2] is
used for an interface for negotiating service level agree-
ments. and resource reservations. We believe this is
one of the early attempts to use the WS-Agreement
specification.

Location Awareness Accesses from clients are redirected
to one of the distributed server based on the location.
In addition, when a new server is added, the location of
the server is based on the history of access. We believe
location awareness is the key feature of distributed au-
tonomic computing system.

We envision that our system will produce new business op-
portunities: a resource provider as a resource seller, and an



autonomic Web server manager as a kind of a value-added
resource reseller.

The rest of this paper is structured as follows. Section 2
explains the background and requirements of the system.
Section 3 shows the architecture and its implementation.
Section 4 presents a preliminary evaluation on the system.
Section 5 discusses related work. Section 6 briefly outlines
future work.

2. BACKGROUND AND REQUIREMENTS

In this section, we describe the technology of the Web system
as the background and requirements to our system.

2.1 Background

As we mentioned, we target not only simple static WWW
sites, but also dynamic sites like shopping sites. Such dy-
namic sites are usually composed of multiple tiers.
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Figure 1: Three tiered architecture

Figure 1 shows a three tiered architecture of a Web system.
comprising a Web tier, an AP tier, and a database (DB)
tier. The Web tier is used mainly for creating HTML docu-
ments. The AP tier is responsible for business logic, which
is independent of the presentation layer (the Web tier). The
DB tier stores information that is used by the AP tier, such
as stock information for a shopping site. It is possible to
merge or subdivide some of the tiers, but basically a Web
system can be understood by this model.

J2EE (Java 2 Platform, Enterprise Edition) supports this
kind of Web system. In J2EE, the Web tier is implemented
as a Web container running servlet, and the AP tier is imple-
mented as an EJB container running EJBs (Enterprise Java
Beans). Please refer to [3] for further information about
J2EE.

2.2 Requirements

Several requirements guided our design of an autonomic sys-
tem architecture. Most important, our system should be
able to support the three tier model, especially the J2EE
system. Because a lot of Web systems are already written
using J2EE, it is desirable that existing Web applications
can be used without modification.

The system should make it possible to add or remove dis-

tributed resources in order to keep quality of service. And,

as we mentioned before, location of resources should be

taken into account when redirecting user’s request and adding
a new resource.

Furthermore, communication between distributed resources
should be secure, since it may contain secret information
like credit card number.

3. ARCHITECTURE AND IMPLEMENTA-
TION

In this section, we describe the architecture and implemen-
tation of the system designed to meet the requirements de-
scribed in the previous section.

3.1 Overall Structure

Figure 2 shows the overall structure of the system.
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The Web application provider provides Web applications
like “ear file” (if the system is using J2EE). It also negoti-
ates service level agreements with the autonomic Web server
manager. This interface uses WS-Agreement.

The autonomic Web server manager manages the addition
and removal of resources and redirects access from end users.

The resource provider provides computational resources. This
interface is also using WS-Agreement, and the resource can
be reserved for certain period.

The origin server is one of the computational resources pro-
vided by a resource provider, but it contains database; it
is not removed even when the load is low. Other computa-
tional resources provide a Web tier and/or AP tier.

The access from the end user is redirected to one of the
resources, considering the distance to the resource, load of
it, and so on.

We note that all the entities can belong to different organi-
zations: the Web application provider, the autonomic Web
server manager, resource providers, and end users. Resource
providers lease their resources to other organizations. The
autonomic Web server manager rents these resources to pro-
vide an abstract Web server that guarantees quality of ser-
vice. The Web application provider rents the abstract Web
server from the autonomic Web server manager.

3.2 Detailed Structure

Figure 3 shows the detailed structure of the system. We
explains below each of the services and modules.
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3.2.1 Resource Provider

Our architecture uses Globus Toolkit 3.2 (GT3.2) [15]; there-
fore, all services are written as Grid services. GSI [7] is used
for authentication.

In order to reserve a computational resource, the reservation
service is called. It manages the table of reservation states.
After the resource is reserved, GRAM can be used to submit
a job. In order to enforce reservation, the system should
ensure that GRAM is used by an entity that is not reserving
the resource. Not to do this, the reservation service modifies
grid-mapfile; if the resource is reserved by an entity, the
reservation service changes the grid-mapfile to include only
the entity. After the reservation period, the grid-mapfile
reverts to the original form. After the reservation, currently
running jobs are canceled by the reservation service.

If GRAM is set up to use a batch job system that supports
advance reservation, the reservation service can utilize that.
For example, MAUI [5] has a command setres that allows
users to reserve the system. In this case, the reservation
service need not modify the grid-mapfile. Submitted jobs
just remain in a queue if the resource is reserved by another
entity.

We decided to use GRAM directly instead of creating a spe-
cial service such as Web server service. Our reason was that
we wanted to make the burden of resource providers smaller;
in our architecture, resource providers need to install only
GT3.2 and the reservation service. In addition, the compu-
tational resource can execute any kind of job other than the
AP server. It is important to increase the utility rate of the
computational resource.

For the interface, the reservation service uses the document
format specified in the current draft WS-Agreement. How-
ever, it was not possible to comply with the protocol de-
scribed in the specification, because it depends on WS-RF,
which is not supported by GT3.2.

The document format of the WS-Agreement specification
specifies only the container of domainspecific agreement in-
formation. Therefore, the domainspecific part of the agree-
ment document must be specified. To this end, we extended
SeviceDescriptionTermType to include reservation infor-

mation like reservation period and number of nodes to re-
serve.

Renegotiation is not supported by the current implemen-
tation. We will implement it in the future because it is
important for usability.

3.2.2  Startup Script

An AP server is invoked from a startup script executed by
GRAM. The Web application program is transferred in the
startup script using GSI-SCP and is then deployed to the
AP server. (GSI-SSH and GSI-SCP are extensions of SSH
and SCP that can use GSI for authentication.)

In addition, a VPN connection to the origin server is created
in the startup script. This ensures that the communication
between the origin server and the allocated resource is se-
cure and transparent. To create VPN, one can choose from
several methods including VTun, OpenVPN, and PPP over
SSH. We used PPP over GSI-SSH in order to use GSI in the
current implementation.

Admittedly, security can be preserved without using VPN.
For example, GT3.2 has a functionality to wrap an EJB as
a Grid service whose access can be made secure. However,
it requires modification of the Web application, which is
not desirable considering the requirements discussed in the
previous section.

In the evaluation system, we used Jboss 3.2.3 [11] for the AP
server. Jboss is a free implementation of J2EE specification.
We used PostgreSQL 7.4.2 for the database.

For the Web application, we used Java Petstore 1.1.2 [14],
which is an example J2EE application developed by Sun
Microsystems.

3.2.3 Origin Server

As we noted, the origin server contains a database in our
architecture. But how much functionality the origin server
covers other than the database depends on the case.
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Figure 4: Functionality of the origin server

Figure 4 shows three cases. In this figure, we assume a
J2EE system. In J2EE, the AP tier is implemented as an



EJB container, and there are three kinds of EJB: stateless
session bean, stateful session bean, and entity bean. State-
ful/stateless session beans are used to implement business
logic, and entity beans are used to abstract database access;
basically, one entity bean corresponds to a row of a database
table.

In the top of the figure, the origin server runs only the
database. In the middle of the figure, the origin server runs
entity beans and the database. In the bottom of the figure,
the origin server runs all entity beans and the database.

Each case has its pros and cons. In the first case, more work
is done by distributed resources in parallel, which leads to
better performance. However, directly communicating with
database through the Internet may cause a performance bot-
tleneck because the communication may contain transac-
tions; transactions through a highlatency network may cause
performance reduction because the transaction may lock a
table of the database, and the duration of lock is prolonged
by the network latency.

On the other hand, less work is done by distributed resources
in the last case. However, transaction is managed by the AP
server.

Therefore, which case should be used depends on the Web
application especially the balance of computation and com-
munication of the application.

In our architecture, we allow the application to decide which
case to use. In the evaluation system, we distributed only
the Web tier shown in the bottom of Figure 4.

3.2.4  Autonomic Web Server Manager
The autonomic Web server manager accepts a Web applica-
tion and its service level agreement as a request.

The interface is similar to the reservation service; it uses the
document format of WS-Agreement. We extended Service
DescriptionTermType to include a Web application, and
we extended GuaranteeTermType to include the required re-
sponse time of the server and the URL path.

The autonomic Web server manager periodically measures
the response time of the specified URL of each distributed
resource. If the response time exceeds a certain percentage
of the required response time (e.g., 80%), the autonomic
Web server manager adds a new resource. If all response
times are below a certain value (e.g., 500 ms), the autonomic
Web server manager removes a resource. The policy used for
resource addition and removal is described in Section 3.3.

If distributed resources are added or removed, the autonomic
Web server manager changes the configuration of the redi-
rector.

When a server is removed, it should be guaranteed that
no end user is using the resource. Therefore, the system
first stops redirection, and then, after a specified period,
the server is actually removed. The Web application should
ensure that after the specified period the session is invali-
dated.

3.2.5 Redirector

The purpose of the redirector is to redirect the access from
an end user to an appropriate distributed resource. This
technology is studied as distributed load balancing. One of
the products related to this technology is found in [6].

This technology needs two different mechanisms: one to
redirect the request transparently, and another to select the
target of redirection.

To redirect the request transparently, DNS lookup or http
redirection is used. When DNS lookup is used, the returning
IP address of DNS lookup is set to that of the target host.
When http redirection is used, the server returns “moved
temporarily” status when an end user accesses a URL. The
end user then connects to the target host, which is given in
the response automatically. Using http redirection is easier
than using DNS lookup, but it supports only http, and the
redirection is visible from an end user.

To select a target host, metrics such as distance from the end
user to the server and the load of the server are used. There
are several methods to measure the distance. One method is
simply to use a ping program. ICMP echo is used in the pro-
gram, and the roundtrip time can be measured. However,
this method takes at least the roundtrip time to measure
the distance, and ICMP echo might be ignored because of a
security reason. Another method is to use routing informa-
tion stored in routers. The implementation is described in
[9]. To implement this method requires access privileges to
the router where each server is located.

In our current system, we use http redirection with ping
because of the ease of implementation. We used a servlet to
implement this method, and it is also executed by JBoss on
the origin server.

To measure the latency from the resources to the end user,
the redirector uses GSI-SSH to let the resources call ping
to the end user. The SSH connections between the redirec-
tor and the resources are kept alive, instead of establishing
connections every time. This approach reduces redirection
time. The evaluated latency is cached; end users in a same
network are treated to have the same latency (network size
is configurable).

3.3 Management Policy

The management policy used when redirecting a user re-
quest and adding or removing resources is very important
because it directly affects the resource usage. Here, we dis-
cuss what kind of management policy would be optimal for
this architecture.

Figure 5 shows an example of connections between the end
users, distributed resources, and the origin server.

The response time observed by the end user can be described
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Figure 5: Example of connections

as follows:

Latency(EndU ser, Resource)
+ TransferTime(EndUser, Resource)

ResponseTime =

+ Latency(Resource, Orign)

+ TransferTime(Resource, Origin)

Here, Latency(A,B) is network latency between A and B,
and TransferTime(A,B) is contents transfer time from B to
A. TransferTime depends not only on network bandwidth,
but also on current speed of server B, which is a function of
the original speed of B and current load of B.

The redirector should select a resource to minimize the Response-

Time.

When adding a new resource, a resource that reduces the
average ResponseTime the most should be selected. To cal-
culate the future average ResponseTime, one can use access
history. This assumes that the future access tendency of the
network locations of the end users will be the same as the
previous access history. This applies when the contents are
drawing interests from special locations (e.g., if the contents
are written in Japanese, it is probable that most of the ac-
cesses come from Japan) or when a certain organization has
a lot of end users (e.g., a large ISP).

If the response time from the user is below a certain thresh-
old, one of the resources should be removed to reduce the
number of rented resources. To select the resource to re-
move, one can apply the same method: a resource that in-
creases the average ResponseTime the least should be se-
lected.

Thus far we have discussed an ideal policy, and of course it
is not possible to calculate above equation exactly. Approx-
imation is needed. In our implementation, we assumed that
TransferTime depends mainly on the current speed of the
resource.

For redirection, the redirector uses the following equation:

ResponseTime = a* Latency(EndU ser, Resource)
RedirectionCount
RelativeSpeed

+ ¢ Latency(Resource, Orign)

+ bx

Here, RedirectionCount is number of redirected accesses to
the resource within a certain period, and RelativeSpeed is
relative speed of the resource; a, b, and c are constants
that are configurable. Transfer Time(Resource,Origin) is re-
moved from the equation, because it should be the same if
it is approximated to be the function of the speed of the ori-
gin. RelativeSpeed/RedirectionCount represents the cur-
rent speed of the resource, and b represents average amount
of work; therefore, TransferTime is represented as b * Re-
directionCount/RelativeSpeed.

For adding a resource, the above equation is also used. In
this case, RedirectionCount is set to 1. To evaluate latency
from the future end users to the resource, we use the history
of the accesses as described before; all candidate resources
are made to ping to recently accessed end users. The average
is used as the Latency.

Currently the management policy is hard-coded in the pro-
gram. Separating it to another module is a future task.

4. PRELIMINARY EVALUATION

We conducted a preliminary evaluation of the system per-
formance using one computer.

The server used for the evaluation had two Pentium Xeon
2.2 GHz processors and 2 GB memory, and it ran Red Hat
Linux 7.3.

First, we evaluated the performance of redirection. This is
an important metric because it directly affects the response
time experienced by the end user.

Table 1: Redirection Time
w/ GSI-SSH Call | Reuse Connection | On Cache

427 ms 9 ms 1 ms

Table 1 shows the time of redirection. As we described be-
fore, the redirector lets distributed resources ping to the end
user. In order to call ping, a GSI-SSH connection is estab-
lished between the redirector and the resources. The first
column of the table shows the redirection time including the
time of establishing the connection. This only occurs at first
redirection. The second column shows the redirection time
when the connection is reused. The last column shows the
redirection time when the ping value is on the cache. In this
evaluation, we accessed from the local server and redirected
to the same server (the above redirection time is evaluated
at the server side). Since the time actually spent in calling
ping is small (0.03 ms), it is negligible in this evaluation.

The evaluation shows that the cost of redirection is small
enough. In particular, it shows that reusing the connection
significantly reduces the cost of redirection. In an actual
situation, the time of ping call is added to the redirection



time, but it can be controlled by using a timeout of ping
command.

Next, we evaluated the cost of adding a new server.

Table 2: Server addition time
Total Time || Ping Time | JBoss Start Time | Rest

50.8 s 8.8's 32.7 s 9.3 s

Table 2 shows the time of adding a server. The column of
ping time shows the time which is used to call ping. It in-
cludes resource reservation time and GRAM job execution
time for calling ping, and time of calling a callback program
which tells the ping value to the system. The second col-
umn shows that more than half of the total time is spent for
starting up JBoss. Rest of the time is used for miscellaneous
things including calling a callback program which tells the
system that JBoss has started up, and modifying the con-
figuration of redirector. We believe that this is acceptable
time for adding Web servers.

We also evaluated the cost of removing a server. The result,
20.1 seconds, is acceptable because removing a server is less
time critical.

5. RELATED WORK

Several projects and products attempt to share resources
between services. UDC (Utility Data Center) of HP [8], au-
tonomic computing of IBM [10], Oracle 10g, Japanese Busi-
ness Grid project [12] are examples. However, since their
resource sharing is limited within a data center, they do not
address the problems regarding distributed resources.

Polimatica [13] is a similar kind of system, but it empha-
sizes policy based management. It supports physically dis-
tributed resources but does not support resources owned by
different organizations.

EdgeComputing [1] of Akamai has a similar structure to
ours. It supports a J2EE system and utilizes distributed
resources. However, it does not support resources adminis-
tered by other organizations. Moreover, it does not support
dynamic addition and removing resources.

JOSH [4] is a higherlevel job scheduler for Globus Toolkit
3. It has a functionality that uses ping to select a resource
according to location.

6. CONCLUSION

We have presented a novel autonomic architecture for Web
system. Leveraged by Grid technology, the architecture uses
distributed resources. We described the detailed architec-
ture, the current implementation, and the preliminary eval-
uation.

Future work includes evaluating the system in more detail
and enhancing the system so that it can be used for a prac-
tical, largescale WWW system.
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