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ABSTRACT  
Moti;-tion< Automated annotation of genome sequences is one of the earliest and indispensable steps 
toward a comprehensive understanding of the dynamic behavior of living organisms. It is, however, often 
an error-prone procedure because of the underlying algorithms in current analysis systems, which rely 
mainly on simple similarity analysis and lack guidance from biological rules. We present here a 
knowledge-based protein annotation algorithm. Our objectives are to reduce annotation errors, improve and 
categorize confidences, and explicitly associate them with the annotations.  
=esults< This algorithm consists of two major components: a knowledge-system, called “RuleMiner,” and 
a voting procedure. The knowledge-system, which includes biological rules and functional profiles for each 
function, provides guidance for function annotation. The voting procedure relies on the knowledge-system 
and is designed to make unbiased judgments in functional assignments among complicated and sometimes 
conflicting information. We have applied this algorithm on ten prokaryotic genomes and observed a 
significant improvement in annotation confidences. Current limitations of the algorithm and the potential 
for future improvement are also discussed. 
!;-il->ility< The results can be found by querying the WIT3 database at http://compbio.mcs.anl.gov/wit3.  
 
.ey words: protein function prediction, knowledge system, protein function groups, rules, voting 

procedure, alternative functional assignments  
 

@AT=CDEFT@CA 
The number of whole sequenced genomes has dramatically increased during the past several years, and this 
trend is likely to continue at an accelerated pace. Currently, the Genomes OnLine Database (GOLD) lists 
over 211 completely sequenced genomes [1]. An additional 522 prokaryotic genomes and 436 eukaryotic 
genomes are listed as ongoing sequence projects. .nowledge about protein components, functional 
capacities, and overall metabolic potentials of these genomes will dramatically accelerate progress toward a 
comprehensive understanding of the genetic mechanisms involved in diverse biochemical processes 
pertinent to medicine, biotechnology, environmental management, and agriculture [2]. The challenge is that 
the experiments needed to systematically determine functionalities for all predicted proteins in the 
sequenced genomes are extremely labor-intensive and prohibitively expensive.  

In an effort to complement such experiments, several computational approaches have been developed 
to automate the annotation processes [3-6]. Automated annotation, however, is often an error-prone 
procedure because of underlying algorithms in the analysis systems [7]. These algorithms rely mainly on 
Blast or FastA-based sequence similarity analysis, although a variety of other approaches may be included 
in the systems. In contrast, the diversity of functions in which proteins are involved in various cellular 
processes has created complicated, sometimes unpredictable, sequence-function relationships [8]. 
Evolutionary processes may add complexity to the annotation process [9, 10]. Similarity analysis thus 
cannot always recognize and differentiate between relevant function relationships [7, 11]. Hence, results 
are often difficult to interpret and error-prone, and the annotation confidences are hard to evaluate [12]. 
Integration of multiple sequence analysis tools (e.g., Blast for similarity-analysis [13], Pfam for 
biologically important domains [14], and Blocks for highly conserved motifs [15]) and introduction of 
biological rules to provide relevant guidance will be essential to achieve an enhanced computational 
capacity for recognizing and differentiating cellular functions in the function annotations. 

Integration is critical because each of the sequence analysis tools addresses different sequence analysis 
problems and has its unique features and capability [16]. All these tools, however, have been independently 
developed and have resulted in incompatible nomenclatures [16]. Hence, the integration can be enormously 
difficult and can severely compromise the efficacy of these tools for annotating protein function. A lack of 
clear principles or rules in protein functional analysis presents another challenge [7, 11, 17], especially 
where multiple sequence analysis algorithms and heterogeneous biological datasets have to be integrated 
[9, 10].  

Our previous efforts [11] in this direction have focused on developing a knowledge system, named 
“RuleMiner,” for high-throughput genome sequence analysis. The knowledge system consists of three 
components: protein function groups (PFGs), PFG profiles, and rules. The PFGs, established from an 
integrated analysis of current knowledge of protein functions from the Swiss-Prot database [18] and protein 
family-based sequence classifications, cover all possible cellular functions available in the database. The 
PFG profiles illustrate detailed protein features for each PFG as in sequence conservations (Blast and 
Blocks), the occurrences of sequence-based motifs (Blocks), domains (Pfam), and species distributions.  

http://compbio.mcs.anl.gov/wit3


The rules, extracted from the PFG profiles, describe the clear relationships between these PFGs and all 
possible features. As a result, the knowledge system provides an enhanced capability for protein function 
analysis. For example, results from sequence analysis tools for given proteins can be comparatively 
analyzed. Also, much-needed guidance is readily available for such analysis. If the rules describe unique 
relationships between the protein features and the PFGs—for example, one to one and many to one (one or 
many features to one unique PFG)—then these features can be used as unique functional identifiers, and 
cellular functions of unknown proteins can be reliably determined. Otherwise, additional information has to 
be provided.  

In this paper, we present an algorithm for high-throughput protein annotations. Our goal is to develop 
an analysis system with a seamless integration of multiple sequence analysis tools, biological rules, and 
PFG profiles in order to reduce annotation errors, improve confidences, and relate the annotations with 
confidence categories. Our algorithm consists of two major components: the knowledge system 
“RuleMiner” and a voting procedure. The knowledge system provides guidance for function annotation; the 
voting procedure, which relies on rules and the functional profiles in the knowledge system, is designed to 
make (possibly) unbiased judgments in functional assignments among complicated and sometimes 
conflicting information from the sequence analysis tools.  

The judgments are based on the answers to the following questions: Does the knowledge system have 
any PFGs corresponding to the target proteins? Are the domains or motifs identified for the proteins unique 
to these PFGs (rules)? Are the features of the target proteins consistent with the profiles of the PFG 
candidates? Depending on the answers, we categorize the annotations into different confidence categories, 
in which annotations that satisfy all these questions are categorized as having the highest confidence. 

We have applied this algorithm on ten prokaryotic bacterial genomes and observed significantly 
improved annotation confidences. We believe this algorithm will be of a great help to those interested in 
using the annotation data. For example, researchers will be able to decide to what degree the annotation 
data can be trusted and can design their experiments accordingly. The genome annotation data and the 
annotation programs are available on request. 

 
M!TG=@!HI 

In this section, we first describe genome sequence data and the procedure for primary genome analysis. We 
then define three new terms—digit scoring system! annotation confidence category, and protein version—
before we illustrate the annotation procedure of the rule-based algorithm. In addition, we give an example 
to illustrate the procedure. 
 
D-t- Prep-r-tion 
We downloaded ten completely sequenced genomes (Table 1) from the National Center for Biotechnology 
Information (NCBI) (ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/). These genomes cover a variety of 
organisms (2 prokaryote life domains, 6 classes and 10 orders), ranging from genomes that are well studied 
(e.g., E$%&'()%&)* %+,) K12 and B*%),,1$ $123),)$4 to those that are barely examined (e.g., H*,+2*%3'()16 $7. 
and A'(+7:(16 7'(;)<. Thus, this genome data can be used for evaluating the performance of our 
algorithm. 
 
Keno4e IeLuence D-t- Processing 
To provide computational capability to process the high-throughput genomes sequence data, we developed 
a parallel process for Blast, Blocks, and Pfam to run on a 512-node Linux cluster at Argonne National 
Laboratory. Building such a parallel process is essential to provide computational power because of the 
exceptionally large sequence data and computational time needed for each of the tools. The output of the 
tools is processed and stored in an Oracle database. The database design is an important issue in the 
management of biological data because of its complexity and the exponential growth of related data.  Here, 
however, we do not describe the details of database design and managements, which are beyond the scope 
of this paper. 
 
! Digit Icoring Iyste4 for Bl-st Hits 
 In the voting algorithm, the E-value is one of the most important criteria for evaluating the sequence 
similarity in the computational sequence analysis tools. Biological function domains, motifs, and Blast hits 
with a lower E-value are more likely the right function assignments; an E-value of zero represents the 
highest level of confidence in functional relevance [13]. Comparing results from Pfam [14] and Blocks [15] 

ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/


is straightforward because each can give unique assignments of functional domains or motifs with certain 
E-values. Compare the Blast hits is difficult, however, because Blast analysis can give multiple hits with 
the same functional annotations, each of which associates with a particular E-value. To represent protein 
functions of the Blast hits, we developed a novel scoring system  (Table 2). In this system, eight confidence 
levels of scores are defined by extending the scoring scheme of GeneQuiz [3]. Each confidence level is 
represented by two digits so that maximum number of Blast hits can be accumulated up to 99 without 
blending adjacent levels of confidences. We call this a “digit score” in order to differentiate it from the 
score that is built into the Blast search. The scheme can be easily extended as needed to increase the 
capacity of the scoring system.   
 
!nnot-tion Fonfidence F-tegories 
The confidence category indicates how much we can trust the annotation for given target proteins. We 
established three groups of annotation confidences based on possible combinations between tool-derived 
protein features and their potential entries in the knowledge system (Table 3). Annotations in Groups I and 
III have strong support from the knowledge system. A combinatory analysis of the protein features, rules, 
and PFG profiles can lead to highly confident functional assignments. The difference between the two 
groups of annotations is that proteins in Group I have unique functional assignments, whereas those in 
Group III have alternative or multiple functional assignments. Group II annotations, in contrast, do not 
have such support, resulting in low confidence. We further classified the annotations of each group into 
four categories, depending on the E-values and their associated confidences [3]. Annotations with an E-
value of 1e-70 or less are considered to be highly confident (especially in Groups I and III), whereas those 
with an E-value of 1e-4 or greater are considered as tentative or hypothetic (especially in Group II). 
 
Protein /ersions 
The protein versions represent unique positions that the target proteins occupy in the evolutionary 
process—in this paper, the species categories. These categories are defined as in Swiss-Prot database: A: 
Archaea, B: Bacteria, E: Eukaryote, Plasm: Plasmid, Chl: Chloroplast, Mit Mitochondrion, m: mirus, and 
Cyan: Cyanelle (http://www.expasy.ch/sprot/sprot-top.html). The protein versions can be determined based 
on comparative analysis of the Blocks patterns of the target proteins and the Blocks pattern-species 
associations in their corresponding PFG profiles of the knowledge system [11]N  

The Blocks pattern is expressed as strings of uppercase letters (e.g., ABCDEF), each representing a 
conserved sequence motif for given Blocks families. One of the features defined in the knowledge system 
is the specific associations between these Blocks patterns and the species categories. The associations can 
be complex: some patterns are universal to all species categories, whereas others are unique to certain 
species categories (Table 4). Nonetheless, most of the associations are well defined for each protein family. 
Consequently, the protein version of the target proteins can be clearly determined by comparing the Blocks 
patterns of the proteins with their corresponding PFG profiles. 
 
Procedure of #no&ledge-B-sed !nnot-tion !lgorith4 
Figure 1 illustrates the procedure of our annotation algorithm. Briefly, the procedure comprises three 
steps—data analysis, data processing, and voting—described as follows.  

ON D-t- -n-lysisN Analyze the genome sequence data (predicted proteins) with Blast, Blocks, and 
Pfam in a high-throughput manner (note that they are the same sets of sequence analysis tools 
used in the knowledge system development). 

PN D-t- processingN Process the tool-derived outputs from step I for every protein in the genomes. 
For Blast, the results include all homologous proteins and their corresponding E-values. 
Additional information included in the Blast results is detailed functional descriptions and their 
derived knowledge-based protein function categories (.PFCs) of these homologous proteins (the 
same procedure developed in the RuleMiner is used to extract .PFCs). For Blocks, results include 
the best-hit Blocks families: the sequence-based protein function categories (SPFCs), Blocks 
motifs, and E-values. For Pfam, results include Pfam domains, their locations on the proteins and 
E-values. The Pfam results are further processed to form unique Pfam domain patterns in which 
domains are arranged on the proteins in the way that there are no overlaps.  

QN   /otingN Use the results from Step 2 (protein features, e.g., .PFCs, SPFCs, and Pfam domains) to 
query the knowledge system. PFGs have two components: .PFCs and SPFCs, which, together 
with other features in the PFG profiles, are stored in separate columns in the knowledge system. 

http://www.expasy.ch/sprot/sprot-top.html


Therefore, querying the knowledge system with any of these features will result in the assignments 
of possible PFG(s) and the extraction of their related PFG profiles.  Then, apply a voting 
procedure to determine the proper function annotations for target proteins and associates each of 
the annotations with confidence categories. The annotation confidence will depend on the answers 
to the following questions: First, does the knowledge system have any PFGs corresponding to the 
target proteins? Are the identified domains or motifs unique to these PFGs (rules)? Then, are the 
features of the target proteins consistent with the PFGs profiles of the candidate PFGs? 
Annotations that satisfy all these questions are considered as having the highest confidence.  

 
The voting procedure is complicated because there are many possible combinations of the sequence 
analysis tool-derived features and their potential entries (PFGs) in the knowledge system (Table 3). For 
simplicity, roughly three cases can be established, which correspond to three annotation groups. In Case I, 
protein features such as Blocks motifs, Pfam domains, or their combinations are function-specific (e.g., 
one/many-to-one relationships between these features), and their corresponding PFGs in the knowledge 
system or PFG profiles can be used to recognize unique functions. The voting procedure thus leads to 
specific functions. In this case, proteins will be annotated as high confident annotations (Group I). In Case 
II protein features have no corresponding entries in the knowledge system. In this case, the annotations will 
have low confidences (Group II), especially when the E-value is large (function relevance with an E-value 
of zero is considered significant and that with an E-value of 0.1 or greater is considered unrelated). In Case 
III, all protein features and their related information in the knowledge system lead to multiple PFGs if the 
rule indicates one/many to many, a non-unique feature-PFG relationship. In this case, there will be no 
decisions in choosing a specific function among these (Group III).   
 
E)*+,-. /0 12. V/1456 P8/9.:;8.< The following example demonstrates how the knowledge system 
facilitates the voting procedure when multiple sequence analysis tools and knowledge system are 
incorporated. The example, gin1788071, is one of over 4,200 open reading frames (ORFs) in the genome of 
E$%&'()%&)* %+,) .-12 MG1655. Because of the analytic process (Figure 2), two different functional 
assignments are given to the protein. One of the annotations is ribokinase with protein function group of 
PFG (EC 2.7.1.15, IPB002173), and the other is 2-dehydro-3-deoxygluconokinase (3-deoxy-2-O&O-D-
gluconate kinase) (.DG kinase), which belongs to PFG (EC 2.7.1.45, IPB002173). In this example, no 
unique function-specific protein features (rules and PFG profiles) can be identified in the knowledge 
system. 
 

=GIEHTI 
One of the key features of our annotation algorithm is that we can obtain unique and highly confident 
functional annotations. Furthermore, each of the annotations is associated with confidence categories (e.g., 
category I.3 and I.4). In the E$%&'()%&)* %+,) genome! over 51o of the proteins have such functional 
annotations (Figure 3A). About 24o of the protein annotations in A(%&*'+@,+21$ A1,@)B1$ genome belong 
to these categories (Figure 3B). The principal reason that the knowledge-based annotation algorithm can 
achieve such a high confidence is that rules in the knowledge system can define a unique relationship 
between protein features and their corresponding cellular functions (PFGs). Among a total of 3,832 feature-
PFG relationships examined [11], 1,821 are defined as unique by Blocks analysis alone. Our analysis, 
which incorporates information from Blast, Blocks and Pfam, would certainly add strength to the 
differentiation and recognition of relevant function relationships and hence increase the accuracy in 
computation-oriented function annotation.       

Ribulose bisphosphate carboxylase (EC 4.1.1.39) (RuBisCO) is an example of such an annotation. 
RuBisCO catalyzes the initial step in Calvin's reductive pentose phosphate cycle in plants as well as cyano-, 
purple, and green bacteria [19]. It consists of a large catalytic unit and a small subunit of undetermined 
function. Information in the knowledge system indicates that Blocks protein families and Pfam domains for 
both subunits are unique to their functions. The properties enable our annotation algorithm to discover two 
subunits in the genome of S:;'%&+%:$3)$ sp. and assign unique functions to these subunits. We also found 
one or two copies of RuBisCO large subunits in nonphotosynthetic bacteria such as B*%),,1$ $123),)$, as 
well as Archaea including A(%&*'+@,+21$ A1,@)B1$ and M'3&*;+%+%%1$ E*;;*$%&)). As was shown by Finn 
and Tabita [20], recombinant forms of the Archaeal enzymes catalyze a bona fide RuBP-dependent CO2 
fixation reaction, and it was recently shown that M'3&*;+%+%%1$ E*;;*$%&)) and other anaerobic Archaea 



synthesize catalytically active RubisCO in vivo. In our study, all the functional assignments of ribulose 
bisphosphate carboxylase for the proteins in these genomes are classified as Category I.4.  

Another unique feature of our annotation algorithm is that alternative annotations are given to some 
proteins (Category III). For example, 5o of E$%&'()%&)* %+,) proteins and 9o of A(%&*'+@,+21$ A1,@)B1$ 
proteins are annotated as such (Figure 3). The reason is that proteins having such assignments are often 
highly homologous but have different subfunctions (e.g., enzymes with different substrate/ligand binding 
specificity); furthermore, no function-unique features can be defined for these proteins. For example, the 
Blocks protein family zinc-dependent dehydrogenase covers 17 different subfunctions. All of these 
subfunctional enzymes share similar catalytic mechanisms [21, 22]. An additional 134 homologous protein 
groups (organized by protein superfamilies) can be visualized in http://www-wit.mcs.anl.gov/svmmer/.  

Examples of such alternative functional assignments are shown in Table 5 for six genes in the AF1)A'< 
*'+,)%1$ genome. They cover a variety of cellular functions, including phosphatase, ATP-binding 
transporter, cytochrome oxidase, and transcriptional repressor and regulatory functions. In these families, 
Blocks patterns for all functions are essentially undifferentiable among the subfunctions. In addition, they 
possess identical Pfam domains. In the knowledge system, the features and PFGs for these functions are 
represented as one/many-to-many relationships. Obviously, a lack of unique protein feature identifiers for 
those highly homologous functions prevents our annotation algorithm from making final decisions about 
their functions. This situation is contrast to the existing annotation systems, in which a brute-force approach 
is often used: functions are assigned mostly by whatever appears as the top hit of Blast search.  
 
Fo4p-rison of Multiple Keno4e !nnot-tions 
Annotation distributions in multiple genomes are compared in Figure 3. The genomes are arranged in a 
doughnut figure (see Table 1 for the detailed description of the species). The first five genomes are 
Eubacteria, and the rest are Archaea. In general, Archaea genomes are far less informative than those of 
Eubacteria as to functional inferences. If the genomes are ordered by their ratios of hypothetical protein to 
the total number of ORFs in these genomes, then five Archaea genomes will be located at the top 5, with 
A'(+7:(16 7'(;)< in first place. Almost 60o (1,584) of the 2,694 proteins in the genome end without any 
functional clues. P:(+%+%%1$ &+()G+$&)) ranks second; about 46o of the 2,064 ORFs in the genome are 
hypothetical. The Eubacterial genomes generally have much lower ratios of hypothetic proteins. 
E$%&'()%&)* %+,) .12 has the lowest ratio of all, in which only 6o of its 4,248 ORFs are hypothetical. Four 
other genomes have around 20o hypothetical annotations. If these genomes are ordered by the ratio of 
proteins with Category I.4 annotations over the total ORFs in these genomes, their ranks are approximately 
opposite, with E$%&'()%&)* %+,) at the top and A'(+7:(16 7'(;)< at the bottom. So far, A(%&*'+@,+21$ 
A1,@)B1$ has been shown to be the best-studied genome (11o) among the five Archaea genomes. 
 
 

D@IFEII@CA 
We present an algorithm for high-throughput protein annotations so that multiple sequence analysis tools, 
biological rules, and functional (PFG) profiles can be seamlessly integrated. The objective is to reduce 
annotation errors, improve confidences, and relate the annotations with confidence categories. For the first 
time, a knowledge system has been established and incorporated into the protein annotation process. 
Results from the integrated sequence analysis tools for given proteins can be comparatively analyzed. In 
addition, much-needed guidance is made available to enhance such analysis for an accurate function 
assignment.   

One of the unique features of the algorithm for high-throughput sequence analysis is that protein 
annotations are clearly categorized based on confidence levels. Annotations with strong support from the 
knowledge system are categorized at the highest level of confidence because of PFGs, well-defined PFG 
profiles! and clear-cut feature-function relationships; annotations without such support are considered as 
tentative. The confidence information will be critical to researchers in deciding to what extent the 
annotation data can be trusted and will enable them to design experiments that are more reliable. 

Alternative functional assignments represent another unique feature in our annotation system. With our 
algorithm, no conclusion is forced if the evidence is not strong enough. Our analysis revealed that about 7o 
of the proteins in the analyzed genomes (from 5o to 9o) have such assignments (Figure 4). This figure 
strongly contrasts with the results from other current annotation systems, which often have inconsistencies 
because of their reliance on a brute-force approach [3, 4, 6] that selects the best-scoring proteins regardless 
of the sequence databases used in the analysis [11].  

http://www-wit.mcs.anl.gov/svmmer/


Comparison of different genome annotation systems is difficult because of the lack of a standard 
system for function representations. Although we have not attempted to compare our rule-based annotation 
system with others, the alternative functional assignment presents one of the real improvements in the field. 
This feature helps accurately reflect the complexity of the biological functions in which the proteins are 
involved [8-10] and prevent the spread of mistaken annotations [7, 11]. 

Alternative function assignments also open an opportunity to fill gaps in the metabolic pathway for 
certain organisms, in which some enzymes are mysteriously missed in current annotation data. For 
example, EC 5.3.1.8 (mannose-6-phosphate isomerase) is listed as a missing function from S:;'%&+%:$3)$ 
PCC6803 and other cyan-bacteria genomes (http://www.genome.jp/kegg/). In our analysis, however, 
alternative functions are assigned for single proteins in these genomes, including a mono-functional 
enzyme of EC 2.7.7.22 (Mannose-1-phosphate guanylyltransferase) and a bi-functional enzyme of EC 
2.7.7.22 5.3.1.8 (Figure 5). These alternatives provide scientific evidence to generate working hypotheses 
for researchers to design experiments to fill such metabolic and regulatory pathway gaps [23]. 
 Analysis of the distribution of annotation confidences among multiple genomes indicates a strong 
discrepancy in the representation of current knowledge. E$%&'()%&)* %+,) has the highest ratio of proteins 
(over 50o of 4,289) that have annotations of the highest confidence (Categories I.3 and I.4). In contrast, 
A'(+7:(16 7'(;)<, a crenarchaeota genome, represents one of the most poorly studied genomes.  Only 5o 
of its 2,694 predicted ORFs have the annotations classified as such. The majority (59o) of ORFs have no 
functional clues at all. On the one hand, the poorly annotated genomes in general and Archaea genomes in 
particular reflect the current limitations of computational tools in function determinations. On the other 
hand, they present an opportunity to find new functions if efforts are committed to systematically studying 
these genomes and their corresponding organisms. 

As indicated above, the sequence-based functional annotations, while useful in certain cases, are 
limited in their coverage of protein functional space. Function references based on protein networks present 
another layer of genome analysis methods complementary to sequence-based analysis. We believe that 
proteins often form structured interaction network modules to accomplish specific functions, such as 
transcriptional regulatory, metabolic synthesis, and signal transductions. Therefore, hypothetic proteins that 
have highly confident links with these network modules are likely to have similar functions [23]. To test 
this hypothesis, we plan to develop an integrated network construction system and incorporate network 
information into our annotation algorithm to expand functional coverage and increase annotation accuracy.  
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