
MPISH: A Parallel Shell for MPI Programs

Narayan Desai, Andrew Lusk, Rick Bradshaw, Ewing Lusk
Argonne National Laboratory, Argonne, Illinois 60439

Abstract

While previous work has shown MPI to provide ca-
pabilities for system software, actual adoption has
not widely occurred. We discuss process manage-
ment shortcomings in MPI implementations and
their impact on MPI usability for system soft-
ware and managment tasks. We introduce MPISH,
a parallel shell designed to address these issues.
Keywords: MPI, System Software, System Manage-
ment, Scalability

1. Introduction

In this paper, we use “system software” or “system
tools” to describe the software used to operate par-
allel machines, including resource managers, system
management tools, and monitoring tools. This cate-
gory also includes tools used for the diagnosis and re-
pair of system problems. This paper does not discuss
per-node software such as compilers or the node ker-
nel. Rather, the tools described in this paper are used
to manage and operate parallel machines. While much
system software consists of long-running software com-
ponents, a large set of ad hoc tools are also needed
to operate, diagnose, and repair parallel systems. Im-
proved scalability in system software is vital; system
scalability is increasing far more quickly than human
groups can effectively grow.

System software is currently the least scalable soft-
ware commonly used on parallel systems. Toolsets con-
sist mainly of serial tools; although some tools do im-
plement a form of suboptimal ad hoc parallelism, par-
allelism usually is added by calling serial tools from in-
side parallelized loops. All common management ser-
vices are fundamentally serial; scalability is provided
through the addition of macroscopic parallelism, typ-
ically implemented by using backgrounded rsh loops
or other looping constructs. This mixed mode of us-
ing serial programs in parallel is not well constructed;
for example, no good mechanism exists for propagat-

ing errors among peer tool invocations in a single par-
allel task.

MPI is almost universally available on parallel ma-
chines, and work has already shown many benefits for
MPI use among several classes of system software [6].
This work has, however, also revealed serious barri-
ers to MPI adoption among system software develop-
ers and administrators.

To address these barriers, we have developed MPISH,
a parallel shell capable of running MPI programs. To
set the stage, in Section 2, we describe the UNIX in-
teractive execution environment, highlighting features
useful in system management tasks. In Section 3, we
present shortcomings in current MPI process manage-
ment systems that prevent MPI programs from being
as usable to system administrators as their serial ana-
logues. We then turn to MPISH: in Section 4 we describe
its implementation and present examples of its use, and
in Section 5 we discuss our experiences with MPISH, as-
sess its success and limitations, and describe future di-
rections for improvement.

2. Background

System administrators use machines differently from
application users; users are expected to use machines
only when they are properly functioning, while ad-
ministrators are expected to fix machines when they
break. This single distinction creates a large difference
in selection criteria. Systems software and tools must
be chosen for their ability to function properly in the
face of system failures. We will describe the problems
faced by system administrators and techniques used to
address them. These techniques motivate features in-
cluded in MPISH.

2.1. System Administration

System administration involves the maintenance of
machines from initial construction through normal op-
erations. Many acceptable solutions for initial system
configuration exist [7, 5, 1] and hence are not the focus



of this paper. The majority of work done by system ad-
ministrators, and similarly of system software, involves
daily operations of machines. System software handles
normal system tasks, such as job execution and system
monitoring. System administrators get involved when
things don’t work properly.

Systems software must be able to aid in system di-
agnosis and repair in the face of a system fault. While
failure is not a desirable outcome, it is sometimes un-
avoidable. Thus, reliable, quick, and predictable fail-
ure is a desirable feature. That is, if a program is to
fail, it should do so quickly and reliably. This design
goal is quite different from others in the parallel ap-
plication community; hence, a different way of running
parallel programs is needed.

System administrators tend to be tool users, not de-
velopers. Hence, the APIs used by system administra-
tors are macroscopic, on the scale of whole programs,
as opposed to the microscopic APIs used by applica-
tions programmers.

When system administrators do undertake software
development, a problem often arises. While such ad-
ministrators understand what is needed in good sys-
tem software, they often are unfamiliar with sound pro-
gramming techniques and lack knowledge about scal-
able algorithms – skills required to implement sound
system software. (This topic is discussed extensively
in [6].) Even when tools are well implemented, usabil-
ity concerns may prevent tool adoption. The scalable
UNIX tools[12], a set of MPI programs that imple-
ment parallel analogues to common UNIX tools, were
soundly implemented and provided useful functions,
but they were unwieldy in practice because of MPI ex-
ecution issues.

2.2. Debugging Methodologies

Most system administration activities center on
finding and resolving system faults. Administra-
tors use interactive shells and commands to locate
the sources of system faults. These tools are usu-
ally serial and help to locate faults in a single
node. Tools that collectively find and correct prob-
lems are far less common. Use of MPI in this area
provides the most promise for scalable system debug-
gers.

Current techniques use interactive logins or, in some
cases, tools such as pdsh[14] that encapsulate the use
of serial shells on multiple nodes. System administra-
tors frequently compose multiple simple tools to pro-
vide complicated fuctionality. A common goal of this
process is to filter data based on node conditions. The
use of serial programs to collect this data has one se-

vere limitation: collective interpretation of the data is
left to the user. The introduction of MPI in these tools
would allow for parallel debugging tools to automati-
cally locate collective problems.

2.3. UNIX Process Semantics

Shells are the most ubiquitous tool in UNIX envi-
ronments. Users are familiar with such shells and use
them even for task automation. Serially, users are able
to start a login session, run programs interactively, and
compose these tools to automatically postprocess tool
output or initiate other operations.

Shells are able to fulfill this important role through
use of the UNIX process management model. Parent
processes, or the initiator of a new process, occupy a
special role in the execution of the child. Parents are
able to set initial conditions for execution, including
environment variable and open file handles for stdin,
stdout, and stderr. The ability to set up file han-
dles can be used to construct command pipelines. Par-
ents are able to easily and reliably signal their children.
Parents are also signaled upon child termination. The
parent process is the only process from which exit sta-
tus can be determined. These features are all needed
to build the interactive UNIX environments with which
users are familiar. Because of the particular tasks ad-
ministrators perform, these capabilities are extremely
useful on a daily basis.

3. Process Management and MPI

A number of process managers (e.g. YOD[2],
PBS[13], LSF[15], POE[16]) are in use for starting par-
allel programs. MPICH is not such a process man-
ager, and in fact needs a process manager to run
it. Rather, it provides a rich environment for run-
ning a parallel program, incorporating g those fea-
tures that enhance the implementation of system
management programs in MPI. While these pro-
cess management systems are able to start up MPI
programs, they aren’t able to provide the same capa-
bilities for composition and automation as their serial
counterparts.

When considering the usage of MPI in systems soft-
ware and tools, issues of process management present
themselves as the most serious obstacle to widespread
adoption. We will describe the function of MPI pro-
cess managers, and the features lacked for system ad-
ministration tasks.



3.1. MPI Process Management

All MPI implementations include different systems
for process management. The purpose of these systems
is to start processes that can be integrated into a single
parallel process. Unfortunately, the MPI specification
does not speak in detail about startup mechanisms;
mpiexec is discussed, but uniform command-line se-
mantics do not lead to uniformity of internal function-
ality. This bootstrapping function includes remote ex-
ecution functionality and some manner of coordination
mechanism so that instances of the parallel process can
locate one another and synchronize properly for initial-
ization.

MPI implementation bootstrapping is a well-
understood issue; nearly every implementation uses a
different mechanism. PMI (Process Management In-
terface) has been developed by the MPICH2 [11]
team to provide a uniform startup mechanism for all
MPICH2-based jobs. The LAM[3] MPI implemen-
tation includes an analogous interface that starts
LAM-based MPI processes. We focus in this pa-
per on PMI.

3.2. PMI

PMI is an API defined to separate process man-
ager implementation from MPI library implementation
while providing certain services that may be needed by
an MPI implementation. An example of such a service
is the publication of “contact information,” so that one
MPI process can dynamically connect to another when
it first sends a message to the other process. Such in-
formation is known by the process manager, since it
was the entity that started the other process. There-
fore, some interaction with the process manager may
be necessary. The point is that any MPI implementa-
tion (or other parallel program, for that matter) using
PMI can be run under any process manager that im-
plements it. In PMI, contact information is exchanged
by a general put/get/fence mechanism, which permits
a variety of scalable implementations.

PMI also includes other functions needed by paral-
lel programs and is not peculiar to MPI. One exam-
ple is the dynamic, remote creation of new processes,
as needed by MPI Spawn. The PMI interface and one
implementation by the MPD process manager is de-
scribed in [4].

3.3. Issues

While PMI is suitable for correctly bootstrapping
MPI processes at high speed, MPD—the PMI imple-
mentation included with MPICH2—does not integrate

well into interactive, UNIX-style environments. Many
of the familiar functions provided by UNIX shells for se-
rial programs are missing from parallel execution. Also,
complexity is an issue. Users need to specify parallel
processes in a different way from serial processes. The
execution path taken by this process is more compli-
cated than the serial analogue.

Serial UNIX programs have a rich set of functional-
ity to allow the composition of programs and noninter-
active automation of complicated tasks. The mpiexec
execution model isolates the user from the processes
started, thus removing the capabilities users depend
on during interactive sessions. Incorporating MPI pro-
grams into command pipelines and deriving exit sta-
tus for individual ranks are not possible in a standard-
compliant way. Hence, parallel programs are less use-
ful as components of a toolset. And since this is the
main mode in which programs are used by system ad-
ministrators, MPI tools are essentially unusable.

4. MPISH

System administrators live in an imperative, “com-
mand line” world. They prefer simple tools[9] that can
be composed to perform complicated tasks. Monolithic
applications are routinely ignored,: they may perform
particular tasks well, but their applicability to a large
range of problems is limited. This usage model leads to
the need to implement whole tools using MPI, as op-
posed to publishing libraries. The goal must be to make
running parallel programs as simple as running serial
programs.

MPISH has been designed as a parallel analogue to
a serial shell, such as the Bourne shell. In the interac-
tive serial world, shells provide a user with a foothold
on the system for running programs. This model has
proved quite useful; shells are the workhorse of any se-
rious UNIX user. Shells provide several important func-
tions: an interactive mechanism to run programs, pipes,
signaling, and conditional execution. With these func-
tions, users can easily run programs, compose tools to
achieve complex goals, and write programs that nonin-
teractively use these tools in complex ways.

In the following subsections, we describe the imple-
mentation of MPISH and then give concrete examples of
scaling management tasks by using MPISH.

4.1. Implementation

MPISH is implemented as a C program written us-
ing the MPICH2 MPI implementation. It implements the
PMI interface used by MPICH2 for application boot-
strapping. This enables MPISH to start MPI applica-



tions without depending on an external process man-
ager once it is initialized. The result is faster client
program execution and more resiliency in the face
of transient problems. Also, because the UNIX par-
ent/child relationship is maintained, MPISH can detect
when client programs exit and can uniformly signal
children. Once MPISH has been started, it processes
commands either interactively or from a script file.
Each line is interpreted in two parts: a location speci-
fication and a command, for example:

global:echo ‘‘Running on ‘‘ ‘hostname‘
0,2,4:mpisync /source /target

The location specification can be either “global” or a
set of ranks where the command should run. The com-
mand is interpreted as a Bourne shell command. The
environment for this execution is similar to that pro-
vided by serial shells, pdsh [14], or the C3 [8] tools,
with the addition of a PMI instance. This addition al-
lows parallel commands to bootstrap and execute prop-
erly. Hence, commands embedded in MPISH scripts can
be either parallel or serial commands and can be used
interchangeably.

Since the PMI implementation included with MPISH
is written using MPI, it is portable to any MPI im-
plementation. Unfortunately, the MPI specification[10]
does not specify job startup mechanisms, so this ap-
proach is useful only for starting MPI processes that
use PMI as a bootstrapping mechanism. Basically, PMI
is a distributed database with synchronization opera-
tions, so its implementation in MPI is straightforward.
This approach yields a shell that can be linked with
any MPI implementation that can natively execute any
PMI-based MPI program.

Control structure has been implemented by passing
this task to the underlying shell. Commands can be
complex shell expressions including conditionals and
loops. This approach is the source of one shortcoming
in the current implementation. Shell logic is confined to
a single command invocation; that is, each command is
implemented as a single shell invocation. The approach
is good enough for many applications, such as nonin-
teractive job scripts; however, it leaves something to be
desired in more complex cases. We avoided including
a domain-specific command/scripting language during
MPISH’s initial implementation, outside of the location
directive. We took this approach because of a lack of fa-
miliarity with the problem space.

Interactive use is implemented by means of a con-
sole, which runs on the user’s tty. The console con-
nects to the rank 0 of MPISH, which distributes stdin to
all ranks and collects stdout from all ranks. Thus, it by-

passes the nonspecified stdin/out handling in the MPI
implemetation.

File staging support is included in MPISH to meet
specific requirements on a local system without a global
filesystem. This support consists of an implicit call to
the MPI program stagein, which passes through a
command line argument. This feature was implemented
so that interactive invocations would always have the
correct filesystem data for execution. Use of this fea-
ture is optional, so MPISH can be used on systems with
global filesystems.

4.2. Examples of Use

MPISH is useful whenever a set of parallel tasks is ex-
ecuted. MPISH is started on a set of nodes established as
a parallel execution context. All command locations are
interpreted in that context, thereby allowing the user
to focus on the task at hand and ignore the mechanics
of specifying all details about a parallel process. We de-
scribe here three common instances of MPISH usage: in
batch scheduled jobs, in a parallel build script, and in
interactive debugging of system problems. (Other ex-
amples have been published in [6].)

Each of the examples demonstrates the benefits of
making parallel applications easily accessible to sys-
tem administrators. This approach enables new lev-
els of scalability and conciseness in systems software.
Moreover, because MPISH is similar to traditional shells,
the process of composing a series of MPI and serial ap-
plications into a single, interactive result becomes in-
tuitive. This approach allows users to continue using a
well-established and familiar paradigm.

4.2.1. Batch Job Scripts The most common use of
MPISH is during parallel jobs run though a batch sched-
uler. The user specifies a job script and a set of in-
put and output directories. Once the job is scheduled,
MPISH is executed on the nodes, and filesystem data is
staged in. The user script is then executed on nodes,
and once all commands have completed, output data
is staged out.

This is certainly a simple example, but it provides
several benefits over the serial job script traditionally
used. Users can run serial and parallel tasks inter-
changeably. Administrators can easily integrate par-
allel tasks into the job prologue and epilogue. Also,
from the perspective of a system software implemen-
tor, a user job of this form is easier to manage. Se-
rial user jobs consist of a serial script executed on a
single node, which initiates the execution of the serial
and parallel mechanisms. After startup, the connection
between the user job script and the remote user pro-
cesses is fairly tenuous. The startup mechanism pro-



vided by MPISH preserves the traditional UNIX pro-
cess group mode. Hence, running processes can be reli-
ably signaled and killed from a single point of control,
thereby allowing user jobs to be treated as coherent en-
tities.

Another benefit is the use of the “global” location
specification for parallel execution. This allows users
to write scripts that run without modification regard-
less of execution scale. When serial scripts are used, the
size of the parallel program is embedded, so scripts in-
clude size details about the running job. Users typically
keep multiple copies of the same job script for differ-
ent job sizes; with MPISH this practice is no longer re-
quired.

4.2.2. Parallel Build Environment Another good
example of MPISH use is a system build script. An ini-
tial node software installation can be performed from
a canonical installation. This system building process,
known as imaging, typically is implemented serially;
however, substantial performance improvements can be
gained through the use of mpisync[6], a parallel version
of rsync. Throughout the imaging process, this step is
the only one that benefits from using parallel tools, so
the rest of the process still occurs serially; however,
the serial tasks are executed simultaneously. This op-
eration can be run on any number of nodes and even
performs well on single nodes, since the performance
of mpisync scales with the performance of MPI Bcast.
As this operation is well optimized in all MPI imple-
mentations, an administrator can be confident in the
function and performance of system imaging, regard-
less of the quantity of nodes requiring imaging.

4.2.3. Interactive System Debugging MPISH can
be used for interactive system debugging. Upon ini-
tialization, one MPISH rank is started on each node re-
quiring debugging. A local console is connected, allow-
ing the user to dynamically specify parallel diagnosis
commands and iteratively focus on subgroups as the
problem is traced. This approach allows the introduc-
tion of parallel diagnosis techniques. Most system diag-
nosis tools are serial and are usually cobbled together
through ad hoc mechanisms to analyze multinode prob-
lems. The use of MPI to automate analysis of multin-
ode problems is an obvious improvement. Several of
these parallel debugging programs have been imple-
mented and have proved quite useful. The most ad-
vanced of these is a program that monitors the health
of a network from the perspective of a set of nodes.
That is, the program checks the status of a subset of
the network for a given set of nodes and the routes be-
tween them.

5. Summary and Plans

This paper introduces MPISH, a parallel shell capa-
ble of natively starting MPI processes. Over the past
18 months of regular use, MPISH has proven its utility
in numerous situations, some of which have been dis-
cussed above. MPISH provides an environment similar to
the standard UNIX interactive environment, while al-
lowing the seamless integration of scalable system tools
implemented with MPI. This approach enables the use
of MPI in even the most low-level cases, where man-
ual techniques traditionally have been used.

While MPISH has enabled a variety of interesting
ways to expand the use of MPI in system software,
there remain a number of areas where MPISH could be
improved. The most severe limitation is the underlying
parsing of commands by the Bourne shell. Since each
of these commands is run in a separate subshell, persis-
tent changes to the user environment cannot be made.
We plan to reimplement the command parser to to-
kenize the entire command, as opposed to just strip-
ping out the location specification. This approach will
also allow the addition of built-in commands, as nor-
mal shells have. An example that would be quite use-
ful is a timing routine, which would aid in simplifying
benchmarking scripts.

Location specifications could use augmentation as
well. The “global” specification is useful in that it pro-
vides the same result regardless of the execution scale.
This capability proves exceptionally useful when au-
tomating tasks. We feel that the abstract aspect of
this directive is the beneficial part. To this end, more
abstract location specifications could easily be added.
Adding fractional specifications (half of nodes) and se-
ries of sizes (powers of two) would make certain tasks
much easier.

Our current PMI implementation supports only one
MPI command per command pipeline. The reason is
that MPISH does not parse command structures. Once
MPISH implements shell constructs, looping, and con-
ditional execution, it will be able to provide a PMI in-
stance per forked command.

Moreover, unlike traditional UNIX shells, MPISH has
no notion of job control. Since job control is a fre-
quently used feature, such a mechanism would be use-
ful. Supporting this will be easy once MPISH handles all
command parsing internally.

In spite of these limitations, MPISH provides a
unique capability: the ability to run parallel and se-
rial programs through a uniform interface. This in-
terface makes MPI much more accessible to system
administrators for task automation and system debug-
ging.



Acknowledgments

This work was supported by the Mathematical, In-
formation, and Computational Sciences Division sub-
program of the Office of Advanced Scientific Comput-
ing Research, Office of Science, U.S. Department of En-
ergy, under Contract W-31-109-ENG-38.

References

[1] Paul Anderson and Alastair Scobie. Large scale Linux
configuration with LCFG. In USENIX [17], pages 363–
372.

[2] Ron Brightwell and Lee Ann Fisk. Scalable parallel ap-
plication launch on cplant. In Proceedings of SC 2001,
2001.

[3] Greg Burns, Raja Daoud, and James Vaigl. LAM: An
open cluster environment for MPI. In John W. Ross,
editor, Proceedings of Supercomputing Symposium ’94,
pages 379–386. University of Toronto, 1994.

[4] R. Butler, W. Gropp, and E. Lusk. A scalable process-
management environment for parallel programs. In Jack
Dongarra, Peter Kacsuk, and Norbert Podhorszki, edi-
tors, Recent Advances in Parallel Virutal Machine and
Message Passing Interface, number 1908 in Springer
Lecture Notes in Computer Science, pages 168–175,
September 2000.

[5] N. Desai, R. Bradshaw, R. Evard, and A. Lusk. Bcfg : a
configuration management tool for heterogeneous envi-
ronments. InProceedings of IEEE International Confer-
ence on Cluster Computing (CLUSTER03), pages 500–
503. IEEE Computer Society, 2003.

[6] Narayan Desai, Rick Bradshaw, Andrew Lusk, and Ew-
ing Lusk. MPI cluster system software. In Dieter Kran-
zlmuller, Peter Kacsuk, and Jack Dongarra, editors, Re-
cent Advances in Parallel Virutal Machine and Mes-
sage Passing Interface, number 3241 in SpringerLecture
Notes in Computer Science, pages 277–286. Springer,
2004. 11th European PVM/MPI Users’ Group Meet-
ing.

[7] Brian Elliot Finley. VA SystemImager. In USENIX [17],
pages 181–186.

[8] R. Flannery, A. Geist, B. Luethke, and S. L. Scott. Clus-
ter command & control (c3) tools suite. In Proceedings
of the Third Distributed and Parallel Systems Confer-
ence. Kluwer Academic Publishers, 2000.

[9] Mike Gancarz. The UNIX Philosophy. Digital Press,
1994.

[10] Message Passing Interface Forum. Document for a stan-
dard message-passing interface. Technical Report CS-
93-214 (revised), University of Tennessee, April 1994.
Available on netlib.

[11] MPICH2. http://www.mcs.anl.gov/mpi/mpich2.

[12] Emil Ong, Ewing Lusk, and William Gropp. Scal-
able Unix commands for parallel processors: A high-
performance implementation. In Y. Cotronis and

J. Dongarra, editors, Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface, volume
2131 of Lecture Notes in Computer Science, pages 410–
418. Springer-Verlag, September 2001. 8th European
PVM/MPI Users’ Group Meeting.

[13] PBS home page. http://pbs.mrj.com/.

[14] Pdsh:parallel distributed shell. http://www.llnl.gov/
linux/pdsh/pdsh.html.

[15] Load Sharing Facility (LSF).
http://www.platform.com.

[16] POE home page. http://publib.boulder.ibm.com/
clresctr/windows/public/pebooks.html.

[17] USENIX, editor. Proceedings of the 4th Annual Linux
Showcase and Conference, Atlanta, October 10–14,
2000, Atlanta, Georgia, USA, Berkeley, CA, USA, 2000.
USENIX.

http://www.llnl.gov/linux/pdsh/pdsh.html
http://www.llnl.gov/linux/pdsh/pdsh.html
http://publib.boulder.ibm.com/clresctr/windows/public/pebooks.html
http://publib.boulder.ibm.com/clresctr/windows/public/pebooks.html

