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ABSTRACT

Message passing via MPI is widely used in single-program,
multiple-data (SPMD) parallel programs. Data-flow analy-
sis frameworks that respect the semantics of message-passing
SPMD programs are needed to obtain more accurate and
in some cases correct analysis results for such programs.
We qualitatively evaluate various approaches for performing
data-flow analysis on SPMD MPI programs and present a
method for performing interprocedural data-flow analysis on
the MPI-ICFG representation. The MPI-ICFG is an inter-
procedural control-flow graph (ICFG) augmented with com-
munication edges between possible send and receive pairs.

We discuss in detail two analyses that potentially bene-
fit from propagating information over communication edges:
reaching constants and activity analysis. Constants can be
shared in SPMD programs without communicating them;
therefore, performing reaching constants over the MPI-ICFG
is useful mainly for illustrative purposes. Activity analysis
is a domain-specific analysis used to reduce the computa-
tion and storage requirements for automatically differenti-
ated MPI programs. Our experimental results show that
activity analysis performed over the MPI-ICFG has a con-
vergence rate comparable to a more conservative version of
the analysis performed on an ICFG. Also, using the MPI-
ICFG data-flow analysis framework improves the precision
of activity analysis and significantly reduces memory re-
quirements for the automatically differentiated versions of
some parallel benchmarks, including some of the NAS Par-
allel Benchmarks.

Key Words: MPI, data-flow analysis, activity analysis,
SPMD, MPI-ICFG

1. INTRODUCTION

Message passing via MPI is widely used in parallel programs
executing under the single-program, multiple-data (SPMD)
model. MPI is a standard interface for message-passing
parallel programs [28] written in C, C++, or Fortran that
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supports point-to-point communications (messages) and col-
lective operations (broadcast, gather-scatter, reductions).
Programs written in MPI typically employ single-program,
multiple-data (SPMD) parallelism, with branches based on
process rank used to achieve multiple instruction streams.
MPI is ubiquitous, with vendor-supplied and open source
implementations [12, 13, 6, 34] on essentially every parallel
platform.

In order to support program analysis and understanding,
data-flow analysis frameworks are needed that recognize the
semantics of MPI. Specifically, the communication opera-
tions induce data-flow and data dependencies from “sent”
variables to “received” variables. This flow of data affects
the precision and in some cases the correctness of nonsepara-
ble data-flow analyses. Reaching constants, is one example
of a nonseparable data-flow analysis; if all possible sends for
a particular receive send the same constant then the received
variable is equivalent to that constant. Handling the seman-
tics of communication within SPMD programs also is needed
in tools for program understanding, such as static slicing
or chopping [2, 30] and program verification [33]; tools for
finding security bugs, such as those that perform trust anal-
ysis [15]; and tools for program transformation, including
performance and power optimization such as bitwidth anal-
ysis [35] and automatic differentiation [4, 5], which requires
activity analysis.

Reaching constants is an example where modeling the
semantics of message passing can improve precision, but is
not necessary for correctness. We found that constants typ-
ically are shared in SPMD programs without communicat-
ing them; therefore, performing reaching constants over the
MPI-ICFG is useful mainly for illustrative purposes. Fig-
ure 1 presents a situation where the precision of reaching
constants analysis improves with the use of communication
semantics. The variable y will be assigned the constant value
1 due to the send of x and the corresponding receive into y.

Data-flow analysis that fails to take into account the
SPMD nature of MPI programs may be incorrect. Again
consider the simple program in Figure 1. If one attempts
to take a forward slice to identify all statements influenced
by the assignment x = 0 in statement 1, using an analysis
framework that does not consider the SPMD nature of the
program, an erroneous result will be obtained. The frame-
work will identify statements 1, 5, 6, and 7 as the only state-
ments in the slice, when in fact statements 1, 5, 6, 7, 9, 10,



begin program 0

x=0 (1)
z =2 (2)
b=7 3
if (rank == 0) then (4)
x=x+1 (5)
b=x%*3 (6)
send (x) €]
else (8)
receive(y) 9
z=bx*y (10)
endif (11)
f = Reduce(SUM,z) (12)
end program (13)

|b=x*3 | |receive(y)|
| send(x)ll |z=b*y|

AN

| £ = reduce(sum,z) |

Figure 1: A small SPMD program (left) and the
corresponding MPI-CFG. Analysis that ignores the
SPMD nature may be incorrect. For example,
reaching constants using the communication edges
in the MPI-CFG will be more accurate.

and 12 should be in the slice. This situation cannot be
remedied by changing only the behavioral model used for
the communication library.

Little work appears to have been done on analysis of
SPMD message-passing programs. Typical data-flow anal-
ysis treats calls to a message-passing library like any other
function or procedure call. Without the semantics of com-
munication relationships between MPI function calls, data-
flow analysis must treat MPI function calls as they would
any other function. Since an MPI receive assigns to its input
parameter via a read from a buffer, nothing will be stati-
cally assumed about the contents of that buffer in existing
data-flow analysis frameworks. For example, it is possible
to indicate via a behavioral model or stub function that
an MPI_RECV defines the buffer receiving the data, but
within the context of a data-flow analysis characteristics of
the buffer will not always be semantically correct due to
SPMD semantics.

Shires et al. [32] developed an extension to the control

flow graph representation called the MPI-CFG. The MPI-
CFG represents the semantics of MPI by including com-
munication edges between message-passing procedure calls.
Unlike most other models for concurrent programs, the MPI-
CFG requires only one control-flow graph. If it were neces-
sary to represent each process explicitly, the analysis would
not be scalable to realistic computations involving thou-
sands of processes. Figure 1 contains an example MPI-CFG
with control flow edges represented as arrows with solid lines
and a communication edge represented with dashed lines.

In this paper, we present a method for performing data-
flow analysis on SPMD MPI programs that propagates mod-
ified data-flow information over the communication edges in
the MPI-CFG and our extension, the MPI-ICFG. Section 2
qualitatively compares augmenting data-flow analysis using
propagation over communication edges with other analy-
sis methods. Section 3 introduces a method for converting
data-flow analysis problems to operate on the MPI-CFG.
Section 4 extends the MPI-CFG to an MPI-ICFG for inter-
procedural analysis, discusses the convergence rate of data-
flow analysis over the MPI-ICFG, and describes a data-flow
analysis framework to implement such analysis. Section 5
provides experimental results that indicate that when activ-
ity analysis is performed on the MPI-ICFG, it can reduce
the space requirements for automatic differentiated code sig-
nificantly in some benchmarks.

2. METHODS FOR ANALYSIS OF MPI PRO-

GRAMS

Other approaches to performing data-flow analysis on SPMD
MPI programs are typically incorrect, not as accurate as
ours, or not scalable. We use the forward phase of activity
analysis to illustrate the shortcomings of other approaches.

Activity Analysis is used in the context of automatic
differentiation. Automatic differentiation is a technique for
generating a program F’ based on a program F, where F’
computes the derivatives of a subset of F’s outputs (the de-
pendent variables) with respect to a subset of F’s inputs
(the independent variables). Such derivatives are useful for
many algorithms in scientific computing, including those for
solution of differential equations, minimization of nonlinear
functions, and uncertainty quantification. Automatic dif-
ferentiation works by mechanically applying the chain rule
of differential calculus to the statements in a program. In
the absence of activity analysis, a conservative strategy is to
differentiate all statements and compute (and store) deriva-
tives for all variables. However, because the independent
variables are a subset of the input variables and dependent
variables are a subset of the dependent variables, one can
often tell a priori through static analysis that a variable
either does not contribute to the derivatives of the depen-
dent variables (is not useful) or has a zero derivative with
respect to the independent variables (does not vary). Such
variables are termed inactive, or passive, and need not have
their derivatives computed. This approach can lead to sub-
stantial savings in time and memory [3].

Activity analysis involves a forward analysis that deter-
mines the set of variables that depend on selected inputs
(the independents) OUTyary and a backward analysis that
determines the set of variables needed for the computation



of selected outputs (the dependents) INysefui. The vary
and useful results are flow sensitive. Variables in the inter-
section of OUTyary and I Nysesui at a particular point in a
program are active and require additional data structures
and code for the calculation of derivatives. For example, in
Figure 1 assume that we want to create the derivative pro-
gram that computes the derivative of £ with respect to x.
The forward analysis should determine that the variables x,
¥, z, b, and f depend on the input x. The backward analysis
should determine that variables x, y, b, and z are needed for
the computation of £f. The active variables are x, y, z, and
f. The variable b is not active because at no point in the
program is it both vary and useful. On the left branch b is
vary, and on the right branch b is useful. A more complete
description of activity analysis can be found in [29, 17].

Applying activity analysis to an MPI program without
recognizing the communication and SPMD semantics results
in an incomplete set of active variables. For the example in
Figure 1, if the relationship between the send of x and the
receive of y is unknown, then the forward analysis will deter-
mine that only the variables x and b depend on the variable
x. The backward analysis finds that only f, z, and y are
needed to compute £. The final intersection incorrectly con-
cludes that there are no active variables within this program.

One possible solution is to model sends and receives
as writes to and reads from global variables. This mod-
els the communication that can occur, but not the fact that
in SPMD execution model multiple processes may be ex-
ecuting the same program. In Figure 1, we can model the
communication semantics by assigning x to a global variable
mpi_buff and then copy the value of mpi_buff into y at the
receive statement. However, since normal data-flow analysis
assumes that the program could go down either side of the
branch, but not both at the same time, activity analysis will
simply conclude that mpi_buff is active and still incorrectly
leave out other variables. To fix this situation, we could add
a fictitious outer loop around the program to simulate the
SPMD paradigm, but then the results may be overly conser-
vative, because data-flow information associated with other
variables ends up being carried by the loop as well.

A second strategy for fixing the approach where sends
and receives are modeled with writes to and reads from a
global variable is to treat the the communication edges in the
MPI-CFG as if they were normal control-flow edges. This
approach introduces spurious activity because the communi-
cation edges represent communication between processes in
disjoint memory spaces. In Figure 1, if all of the variables in
the vary set were propagated over the communication edge
then the variable b would end up vary and useful before the
statement z = b * y and therefore unnecessarily active.

A third strategy is to copy the control-flow graph for each
process, provide each process with its own variable names-
pace, model communication with global shared variables,
and propagate data-flow information over communication
edges. This approach provides accurate results, but is not
scalable.

A fourth strategy involves analyzing the program using
only two copies of the control-flow graph (an idea also used

within the context of performing cycle detection [24]). If
the communication edges go between the two control-flow
graphs, then the semantics of disjoint memory spaces is
properly modeled, and overly conservative results are avoided.
Our approach requires only one copy of the control-flow
graph and provides results with equivalent precision.

In our experimental results, we compare activity analysis
performed over an ICFG to activity analysis performed over
an MPI-ICFG. Activity analysis can be solved correctly on
an ICFG by using some global assumptions, specifically that
all sends and receives write to and read from a global vari-
able and that the global variable is an interesting input and
output for the derivative code (i.e., initially put into the vary
and useful sets). The global assumptions force all variables
being sent and received to be active if even one variable be-
ing sent is vary and one being received is useful. The main
contributor to loss of precision using the MPI-CFG model is
communication nodes that have more than one incoming or
outgoing communication edge. As the results in Section 5
show, however, in some cases data-flow analysis over the
MPI-ICFG can result in significant precision improvements.

3. INTRAPROCEDURAL DATA-FLOW

ANALYSIS ON THE MPI-CFG

The MPI-CFG [32] represents message-passing between state-
ments within the same procedure as communication edges.
We present data-flow analysis for the MPI-CFG by first
reviewing the data-flow analysis problem formulation for
reaching constants on a typical control-flow graph and then
extending that formulation to data-flow analysis over an
MPI-CFG.

Reaching constants is a well-known forward data-flow
analysis. Each variable is paired with a value from the con-
stant lattice, where top T indicates that no information is
known about the variable, bottom L indicates the variable
is not constant, and a constant value ¢ indicates that the
variable holds the value c. Before performing the analysis,
the <variable, lattice value > pair for each variable v is ini-
tialized to < v, T > everywhere except at the entry of the
program where all variables are initialized to L.

For data-flow analysis, a control-flow graph represents
a procedure with a node for each statement' and edges
between statements indicating possible control flow. FEach
statement s has a set of predecessors pred(s) and a set of
successors succ(s). The IN(s) set contains the < variable,
lattice value > pairs, one for each variable, that are valid at
the entry of statement s. The OUT(s) set contains those
pairs that are valid upon exiting statement s.

Forward data-flow analysis occurs by applying a transfer
function fs(IN(s)) that computes the OUT(s) set for the
statement s based on the IN(s) set and the semantics of
the statement with respect to the specific data-flow analysis.
The transfer functions for reaching constants are specified
in Table 1.

When two or more control paths in the CFG merge, a
meet operation occurs between the lattice values for a vari-

!This can be generalized to basic blocks.



Table 1: Transfer functions for reaching constants.

Statement s Transfer Function fs(IN(s))

Ty opz
any other stmt

T —y (IN(s) —{<z,ca>}) U{<a,cy> | <y,cy>€ IN(s)}
(IN(s) —{<z,ca >})U{<z,cy Op c:> | <y,cy>€ IN(s) and <z,c,;>€ IN(s)}
IN(s) — {<®,c; > |z is defined in the statement }

Added transfer functions for data-flow analysis over communication edges

send(x) IN(s)
receive(y)

(IN(5) = {<y, ey >}) U{<y; Tgccommpred(s) feomm (IN (¢)) >}

oUT(p1) OUT(pn)
IN(s)
- commouT - >
OUT(s)
Figure 2: Control-flow edges and communication

edges incident on a send node.

able; if <w, ¢y > is valid along one control path and <v, co >
is valid along another path, then <w, c; Mece > is valid at the
merge. For reaching constants, if ¢; equals c2, then ¢1Mca is
c1. If ¢1 or ¢z is equal to L, then the result of the meet op-
eration is also L. If ¢; equals T, then the result of the meet
operation is ¢z, and vice versa. The IN(s) set for a state-
ment is calculated by performing the pairwise meet over all
the < variable, lattice value > pairs valid upon exiting pre-
decessor statements, IN(s) = Mpepreds(s) fo(OUT (p)).

Extending reaching constants analysis to the MPI-CFG
involves defining the communication transfer function feomm
that calculates the lattice value to propagate over commu-
nication edges based on the IN(s) set for a send statement
and the variable being sent. For reaching constants, the
communication transfer function is

commOUT = feomm(IN(s)) = {ca| <x,co >€ IN(s)},

where s is the send statement send(x) and c, is the lattice
value assigned to the variable x in the I N data-flow set for
the send statement (see Figure 2).

The transfer function for the receive statement must be
defined so that it uses the lattice value propagated over all
incoming communication edges as input. Assume that an
MPI-CFG has been constructed such that there are com-

OUT(p2) -
oUT(p1) OUT(pn)
IN(s) commOUT(q1)
~commiN -
'lf -
\\commOUquz)
OUT(s) \ o
-
AY
\
\.
commOUT(gm)

\

Figure 3: Control-flow edges and communication
edges incident on a receive node.

munication edges between send and receive statements that
conservatively estimate possible communications (see Fig-
ure 3). For each receive statement, we denote the set of
possible sends indentified by the incoming communication
edges as commpred(s). In Figure 1, the receive(y) state-
ment only has the send(x) statement in its commpreds(s)
set. For reaching constants, the transfer function for the
receive statement is defined in Table 1.

The approach used to define the transfer functions and
communication transfer function for reaching constants can
be used for other nonseparable data-flow analyses as well.
Activity analysis is the example we implement for our ex-
perimental results. One phase of activity analysis involves
a backward data-flow analysis to determine what variables
are useful when computing a particular output variable.

Useful analysis is a bitvector analysis; each variable is
either useful or not. If the variable is useful at the exit
of a statement, then that variable is in the OUT(s) set.
The same is true for the IN(s) set. The meet operator
is set union. In order to initialize the analysis, all output
variables of interest are put into the IN(EXIT) set. The
transfer function shown in Table 2 has been generalized for
any statement where some variable x is defined as a function
of the variables y; through y,. Notice that the used variables
might be arrays and that in the context of activity analysis,
z does not depend on any of the variables used to index such
arrays.

Extending useful analysis for the MPI-CFG involves pass-



Table 2: Transfer functions for useful analysis.

Statement s

Transfer Function fs(IN(s))

L~ g(yh '--7ym7ym+1[*}7 7yn[*])

(OUT(S) - {l’}) J {yla ceos Ymy Ym41, yn}

Added transfer functions for data-flow analysis over communication edges

send(x)
receive(y)

OUT(s)

OUT(S) U {x|(|_|7“€commsuccs(v~)fcomm (OUT(T))) == true}

ing a Boolean value over the communication edge from the
receive node to the send node to indicate whether the re-
ceived variable is useful and therefore the sent variable is
also useful. The communication transfer function applied to
receive(y) is commIN = feomm(OUT(s)) = {true | y €
OUT(s)}.

4. INTERPROCEDURAL DATA-FLOW

ANALYSIS OF SPMD MPI PROGRAMS
Most MPI programs do not have all of their MPI calls in
one procedure; therefore, interprocedural data-flow analysis
is necessary. We generate an interprocedural control-flow
graph (ICFG) [25] and augment the ICFG with communi-
cation edges that can cross procedure boundaries to generate
the MPI-ICFG. We specify the worst-case complexity for it-
erative data-flow analysis over the MPI-ICFG and describe
the general functions that must be implemented within an
MPI-ICFG data-flow analysis framework.

4.1 Construction of the MPI-ICFG

The construction of the MPI-ICFG applies to programs that
use MPI. The MPI standard specifies interfaces for C, C++,
and Fortran. In our experiments we perform analysis of
Fortran programs; therefore, we describe the construction
of the MPI-ICFG using the Fortran syntax. The relevant
MPI routines and their semantics are listed in Table 3.

We build the MPI-ICFG by first constructing an ICFG
and then adding communication edges between possible send/
isend and receive/ireceive pairs, among all calls to broadcast,
and among all calls to reduce. We perform an intraproce-
dural reaching constants analysis and perform a matching
using the MPI semantics to reduce the number of commu-
nication edges that are conservatively necessary. For broad-
cast and reduce, the root parameters must match if they
evaluate to constants. For send and receive pairs, the tag
and communicator must match if they evaluate to constants.
Additional heuristics for reducing the number of communi-
cation edges are described in [32] but are not within the
scope of this paper.

The MPI-ICFG also modifies how calls to MPI routines
are represented. The MPI_RECEIVE, MPI_IRECEIVE,
MPI_SEND, and MPIISEND routines are modeled with
stub functions. To ensure context sensitivity for the MPI
routines, the MPI-ICFG connects a unique copy of the ICFG
nodes for each stub to the call and return nodes at the call-
site.

4.2 Convergence of Data-Flow Analysis

To demonstrate convergence, we reduce data-flow analysis
over the MPI-ICFG to normal data-flow analysis over a mod-

'

y = top
X = nonconst
z = nonconst
£ = nonconst
y = X

Figure 4: Converting the communication edge in
Figure 1 to control-flow edges and modeling the
change of address space.

ified ICFG. For forward data-flow analyses, each communi-
cation edge can be converted to two control-flow edges with a
node in between them. The node must include assignments
that kill data-flow information for all the variables except
the one being sent and must include a statement modeling
a copy between the variable being sent and the variable re-
ceiving the value. The variable being received must also be
set to top T before the receive statement. For the example
in Figure 1, the communication edge would be replaced as
shown in Figure 4.

The depth of the MPI-ICFG multiplied by the number of
variables provides an upper bound on the number of passes
required for convergence. However, the depth is difficult to
calculate because the MPI-ICFG is in general irreducible
as a result of the communication edges. Nonetheless, our
experimental results show that the convergence is reasonable
(see Table 4).

4.3 Implementation of Data-Flow Analysis
The next issue is how to implement data-flow analysis over
an MPI-ICFG. Data-flow analysis frameworks for CFG’s are
typically implemented so that only the transfer and meet op-
erations must be specified [10, 16, 37]. Data-flow analysis
over ICFGs also requires some specification of how informa-
tion is mapped from the caller to the callee, and vice versa.
These same operations must be specified for data flow over
an MPI-ICFG. The only new methods needed for analysis
over an MPI-ICFG are the communication transfer func-
tion, the send and receive transfer functions, and a meet
operation for the communication values.

5. EXPERIMENTAL RESULTS

5.1 Methodology

We implemented the creation of the MPI-ICFG, the data-
flow framework for an MPI-ICFG, and activity analysis us-
ing the OpenAnalysis toolkit [36] coupled with the Open64/SL
compiler infrastructure [31] and used the data-flow analysis
framework to apply activity analysis to various benchmarks.
The NAS parallel benchmarks [1], labeled NASPB, were ob-



Table 3: MPI routines that we recognized as possible sources and destinations of communication edges when
building our MPI-ICFG.

MPI_SEND ( sendbuf, count, datatype, dest, tag, comm)
A message consisting of count number of datatype values at starting address sendbuf is being sent to the process with the dest rank
in the comm group and is marked with the message identifier tag.

MPI_ISEND ( sendbuf, count, datatype, dest, tag, comm, request)

A message consisting of count number of datatype values at starting address sendbuf is being sent to the process with the dest rank
in the comm group and is marked with the message identifier tag. The status of this nonblocking send may be queried using the
request handle.

MPI_RECYV ( recvbuf, count, datatype, source, tag, comm, status )

A message consisting of count number of datatype values and marked with the identifier tag is to be received from the process with
the source rank in the comm group and stored at the starting address recvbuf. The status of this blocking receive may be queried
using the status handle.

MPI_IRECV ( recvbuf, count, datatype, source, tag, comm, request )

A message consisting of count number of datatype values and marked with the identifier tag is to be received from the process
with the source rank in the comm group and stored at the starting address recvbuf. The status of this nonblocking receive may be
queried using the request handle.

MPI_BCAST ( buf, count, datatype, root, comm )
A message consisting of count number of datatype values at starting address buf is being sent from the process with the root rank
in the comm group to all processes within that group. It is copied into the starting address buf at each process.
MPI_REDUCE ( sendbuf, recvbuf, count, datatype, op, root, comm )

Each process within the comm group will submit count numbers of datatype values at starting address sendbuf to be reduced
element-wise using the operation op into a single collection of count numbers of datatype values. This collection will be stored at
the starting address recvbuf at the process with the root rank in the comm group.

MPI_ALLREDUCE ( sendbuf, recvbuf, count, datatype, op, comm )
Each process within the comm group will submit count numbers of datatype values at starting address sendbuf to be reduced
element-wise using the operation op into a single collection of count numbers of datatype values which is then copied into the
starting address recvbuf at each process within the comm group.

tained from http://www.nas.nasa.gov/Software/NPB/; the
benchmark labeled SOR is an implementation of successive
overrelaxation developed by one of the authors [18]; and the
benchmark labeled Biostat is a parallelized version of a bio-
statistical analysis function provided by D. Spiegelman [19].

Table 4 includes definitions of our benchmarks. Each
benchmark is a unique combination of source, context rou-
tine, and independent and dependent variables. For exam-
ple, LU-1 refers to the source NASPB LU with context routine
rhs, independent variable frct and dependent variable rsd.

As described in Section 2, activity analysis requires se-
lecting a subset of the input variables to a procedure within
the program as the independent variables and a subset of
the output variables as the dependent variables. For each
benchmark, we selected at least one reasonable set of inde-
pendent and dependent variables and a context routine. The
context routine is a subroutine within the program that it
makes sense to automatically differentiate. The ICFG and
MPI-ICFG contain the routines that are called either di-
rectly or indirectly by the context subroutine.

The Biostat and SOR problems had previously been dif-
ferentiated using the ADIFOR automatic differentiation tool
and appropriate independent and dependent variables were
known. The NAS Parallel Benchmarks considered primarily
solve a linear system. Therefore, we selected as independent
variables one or more of the scalar quantities used to com-

pute the righthand-side (rhs) vector or the rhs vector itself.
We selected as the dependent variable either the rhs vector,
the solution vector, or the residual of the solution vector.
For context routine, we selected either the subroutine used
to form the rhs vector or the subroutine used to set up and
solve the linear system.

We performed activity analyses over ICFGs and MPI-
ICFGs on all the benchmarks. When using the ICFG, the
benchmarks were augmented with the global variable within
the appropriate MPI routines to model possible communica-
tion between all send and receive pairs, and the global vari-
able was declared both independent and dependent within
the context routine. We recorded the number of iterations
for convergance as well as the number of active bytes found
by each analysis. The decrease in number of active bytes is
given as a percentage and is calculated by subtracting the
MPI-ICFG-Active-Bytes from the ICFG-Active-Bytes and
dividing by the ICFG-Active-Bytes. From the number of
active bytes and the number of independent variables it is
possible to estimate the storage that will be needed within
the derivative code using the following formula.

DerivBytes = (number of independents) * (ActiveBytes)

5.2 Effect on Activity Analysis

Each analysis determines an active symbol list and its size in
bytes. Figure 5 shows the possible storage savings when ac-
tivity analysis is performed over the MPI-ICFG versus the
ICFG. Storage savings only occur for three of the bench-



= 1000 =
O =
> C
cs -
U) -
& 100 =
g S
< -
3 10

=

B Active
Deriv

Biostat SOR CG
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activity analysis for both the Active set and within the Derivitive code.

Table 4: Differences in number of iterations, number of active bytes and number of DerivBytes between

ICFG and MPI-ICFG Activity analyses.

LU 4 MG_1 MG_2

Active # of Deriv %
B’mark | Source Context IND DEP Analysis Tter Bytes | Indeps Bytes | Decrease
Biostat | Spiegelman: Biostat lglik3 xmle xlogl M;E}I?CGFG g 1432232 1089 1560333222 99.98%
SOR Hovland: SOR mainsor omega | resid MFI’EII:(CJ}FG 1? ggggégg 1 ggggégg 0.40%
ca NASPB: CG conjgrad | x = | mpiicec | 15|  seo01s0 1| Seo01s0 | 000%
LU-L | NASPB: LU ths | fret | wd | ypriop | 10| owseoo0 | %0 | rasadooon | a0.98%
LU-2 | NASPB: LU sor | omega | 150 | \ipiicpe | 6 | vassontz2 | | 1asoonir2 | ooo%
LU-3 | NASPB: LU ths | oo | s [0S | o | astsore 2| *ooca003 | 66.65%
MG-1 | NASPB: MG meP | x| w | vpricee | s | geosson | M| deomss | o0
MG2 | NASPB: MG megP | o | w | wpriore | 2| deoosars | 1| aresier | o00%

marks, but the amount of storage saved for those bench-
marks is significant. Table 4 details the differences between
activity analysis over the ICFG and analysis over the MPI-
ICFG on all of the benchmarks.

The most dramatic difference is seen in Biostat—a 99.98%
decrease in the number of active bytes with MPI-ICFG over
ICFG. In the Biostat problem, using the MPI-ICFG allows
us to determine that a large data array (in this small test
problem, an array of approximately 300,000 floating-point
values) is not active and therefore does not need deriva-
tives [18]. For this small example, the resulting memory
savings would be approximately 1.5 gigabytes; for the real
problem, the savings would be hundreds of gigabytes [19, 3].
In addition to the space savings, there would be significant
time savings, since otherwise all of this useless data would
need to be broadcast from the root processor to all other
processors.

The LU-1 and LU-3 benchmarks also see dramatic reduc-
tions in active bytes and space requirements for the deriva-
tive code. The other benchmarks experience disappoint-
ing reductions. These results are probably due to precision
losses within the analysis. The activity analysis over the
MPI-ICFG experiences precision loss due to the may alias
analysis being used, due to the context-insensitivity in the
MPI-ICFG for all routines except the MPI communication
routines, and due to spurious communication edges. Fu-
ture work includes implementing must alias analysis within
OpenAnalysis, looking at representations other than the
ICFG as the basis for data-flow analysis over MPI pro-
grams so as to increase context-sensitivity, and implement-
ing heuristics for reducing the number of communication
edges adjacent to each send and receive.

5.3 Convergence
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