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Abstract

As scientists incorporate more sophisticated models into their simulations, soft-

ware complexity, as well as the underlying computational cost of these models, is

growing rapidly. Performance evaluation and tuning of applications that are large-

scale both in terms of source code and runtime requirements can be challenging

and time-consuming for scientists. We have developed a software infrastructure for

performance monitoring, performance data management, and adaptive algorithm

development for parallel component PDE-based simulations. We have instrumented
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Newton-Krylov nonlinear and linear solver components for performance monitor-

ing using the TAU performance tools. To reduce the performance monitoring and

component adaptation overhead, we employ two databases. The first is created and

destroyed during runtime and stores performance data for code segments of interest,

as well as various application-specific performance events in the currently running

application instance. The second database is persistent and contains performance

data from various applications and different instances of the same application. It

can also contain performance information derived through offline analysis of raw

data. We describe a prototype implementation of this infrastructure and show how

adaptive linear solver algorithms are employed in a driven cavity flow simulation

code.
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1 Introduction

Our performance infrastructure is motivated by the needs of parallel sim-

ulations based on the solution of partial differential equations (PDEs), such

as computational fluid dynamics, fusion, accelerator design, climate modeling,

and combustion. PDE-based scientific software complexity has been increasing
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as new models and solution methods emerge. Often a single simulation code

involves multiphysics, multimodel, multidisciplinary, and multi-institutional

software development. Typical numerical methods for such problems incorpo-

rate the solution of large sparse linear systems of equations. Solution of such

equations typically takes 70%–85% of the total simulation time and is therefore

a logical candidate for extensive performance analysis and optimization. New,

more robust or efficient algorithms are the traditional approach to achiev-

ing better performance. Another approach is to develop multimethod linear

solvers [1–5] that involve the application of several algorithms in the course of

solving the same problem. Several different types of multimethod approaches

exist; in this paper, we focus on two of them: composite and adaptive meth-

ods. A composite linear solver comprises several underlying (base) methods,

which are applied in sequence to the same linear system until convergence

is achieved. Such solvers are normally constructed statically, by using past

base method performance data and a simple performance model combining

robustness and execution time. An adaptive linear solver applies a sequence

of base solution methods to different linear systems arising at each nonlinear

iteration of the PDE solution. Adaptive heuristics usually select one among

several candidate base methods at runtime in order to optimize some per-

formance attribute of an application, for example, an approximation of the

nonlinear convergence rate or total simulation time. Detailed descriptions of

these multimethod approaches can be found in [1–3].
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While performance analysis-based algorithm selection and adaptation have

produced some promising results in terms of application performance, the

development of multimethod strategies is complicated and time-consuming

because of the lack of a software infrastructure supporting such nontraditional

methods. This has motivated the design and implementation of the component

performance monitoring and analysis interfaces and components described in

this paper. Our design was aided and influenced by our ongoing research in

computational quality of service (CQoS) [6, 7], which involves the automatic

selection and configuration of components to suit a particular computational

purpose.

We now introduce some of the terminology used in this article. We collec-

tively refer to performance-relevant attributes of a unit of computation, such

as a component, as performance metadata, or just metadata. These attributes

include algorithm or application parameters, such as problem size and physi-

cal constants, compiler optimization options, and execution information, such

as hardware and operating system information. Performance metrics, also re-

ferred to as CQoS metrics, are also part of the metadata, for example, ex-

ecution time and convergence history of iterative methods. Ideally, for each

application execution, the metadata should provide enough information to be

able to repeat the run; we collectively refer to these metadata as an applica-

tion instance, or experiment. The remainder of this section briefly introduces

the technologies that provide the specifications and tools that have enabled
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the creation of our performance monitoring and analysis infrastructure.

1.1 Component technology for scientific computing

The Common Component Architecture Forum [8–10] was launched in 1998 as

a grassroots initiative to bring the benefits of component-based software en-

gineering to high-performance scientific computing. In 2001, the U.S. Depart-

ment of Energy (DOE) established the Center for Component Technology for

Terascale Simulation Software (CCTTSS) [11], which supports component re-

search and software infrastructure development. As in other component-based

software engineering approaches, such as CCM [12], EJB [13], and COMM [14],

the goals are to help manage software complexity and to enable reuse of com-

ponents in multiple applications. Unlike these commodity component models,

the CCA specifically targets high-performance applications, particularly their

need for low-overhead component interactions, parallelism, and support for

language interoperability between components implemented in languages typ-

ically used in scientific software development, such as Fortran, C, and C++.

This approach ensures minimal overhead in most cases (approximately the

cost of a virtual function call) for component interactions and possible data

type conversions handled by the Babel language interoperability layer [15,16]

used in CCA [17].

Briefly, CCA components are units of encapsulation that can be composed to
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form applications; ports are the entry points to a component and represent

public interfaces through which components interact; provides ports are in-

terfaces that a component implements, and uses ports are interfaces that a

component uses. A runtime framework provides some standard services to all

CCA components, including instantiation of components, and uses and pro-

vides port connections. Components can be instantiated/destroyed and port

connections made/broken at runtime, thereby allowing dynamic adaptivity of

CCA component applications and enabling the implementation of the adaptive

linear solver methods introduced above.

1.2 Performance tools

Tuning and Analysis Utilities (TAU) [18, 19]. TAU is a portable pro-

filing and tracing toolkit for performance analysis of parallel programs. In

addition to providing a portable instrumentation interface, TAU can be used

in conjunction with the Program Database Toolkit [20] to instrument code

automatically at the function level. A TAU-based abstract interface for sci-

entific components was also recently introduced [21] and used in constructing

performance models in component applications [7,22], as well as in our imple-

mentation as described in Section 3.

Performance Data Management Framework (PerfDMF) [23]. PerfDMF

is a new, general-purpose environment for performance data management, in-
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cluding importing and exporting of data from parallel profiling tools, portable

large-scale profile data management, and abstract interfaces for database ac-

cess. In our work we mainly use the profile database component, which sup-

ports a number of database engines, including PostgreSQL, MySql, Oracle,

and DB2.

The rest of this paper is organized as follows. Section 2 describes our approach

to designing a component infrastructure that supports performance monitor-

ing, analysis, and adaptation. Section 3 presents implementation details of this

infrastructure. Section 4 illustrates the use of our infrastructure in a driven

cavity flow simulation, and Section 5 contains our conclusions, as well as brief

discussion of ongoing and future work.

2 Performance monitoring and analysis infrastructure

In high-performance scientific computing, execution time is one of the key

parameters when considering performance, but it is not the only one. Other

application attributes can affect the quality of a scientific simulation, such as

convergence rate, stability, parallel scalability, and accuracy of the final result.

These are not independent of each other, and optimizing all simultaneously

is difficult or impossible. For example, maximizing accuracy will almost cer-

tainly result in longer execution time. We consider these and other application-

specific CQoS parameters when discussing the performance of component
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applications in general. Our goal is to enable the implementation of CQoS-

enhanced applications by providing the necessary performance data gathering

and manipulation infrastructure, which can then be used by algorithms and

heuristics to automate component application assembly and support dynamic

adaptation based on CQoS metadata from analytical performance models or

synthesized from past performance history of the application.

For a particular application, such as the driven cavity flow example intro-

duced in Section 4, several parameters (e.g., grid size, lid velocity, Grashof

number, or initial CFL number) can be varied to create problem instances of

varying difficulty. Every combination of parameters represents a certain ex-

periment, or instance of a problem. As Figure 1 illustrates, we can loosely

divide these parameters into three categories: model parameters, which influ-

ence the definition of the problem, such as lid velocity in the driven cavity

problem; algorithmic parameters, which characterize the implementation ap-

proach, such as error tolerance for a nonlinear solver; and architecture-specific

compiler and hardware parameters, which can influence the execution time

of an application. Our initial focus is on model and algorithmic parameters,

with plans to incorporate architecture-specific parameters later. One of the

main goals of our framework is to enable and support the development of

performance-improving component assembly and adaptation strategies based

on performance analysis results annotated with CQoS parameters.

Finding a set of algorithms that are best for solving a problem or a part
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Implementation/
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Algorithm parameters
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Hardware parameters
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specific
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Fig. 1. Hierarchy of parameters for a given application. Some (e.g., problem size)
are fixed, while others (e.g., algorithmic parameters or compiler options) can be
fine-tuned for better performance.

of a problem is a difficult task. For example, there are numerous choices for

iterative linear solvers for large sparse systems; since properties of the linear

systems change, it would be desirable to use a solver that achieves the best

performance on the current system. Most iterative algorithms, however, do not

come with neat performance models that provide this information a priori.

An alternative approach is to analyze past performance information and try

to identify those CQoS parameters that have the greatest impact on perfor-

mance. One of our ultimate objectives is to discover whether there are common

performance characteristics for given CQoS parameters across various exper-

iments. If such characteristics exist, we would like to represent them in the

performance database in the form of metadata. One can then develop adaptive

strategies that take advantage of the derived metadata in addition to current

execution data to choose a best set of parameters and the best algorithm for

a given experiment.

The design of our infrastructure was guided by the following goals: (1) low

overhead during the application’s execution; since all the time spent in perfor-

mance monitoring and analysis/adaptation is overhead, the impact on overall
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Fig. 2. Some of the components and port connections in a typical PDE applica-
tion: (a) in a traditional nonadaptive setting, and (b) augmented with performance
monitoring and adaptive linear solver components.

performance must be minimized; (2) minimal code changes to existing applica-

tion components in order to encourage use of this performance infrastructure

by as many CCA component developers as possible; and (3) ease of implemen-

tation of performance analysis algorithms and new adaptive strategies, which

would enable and encourage the development and testing of new heuristics or

algorithms for multimethod components.

Figure 2 (a) shows a typical set of components involved in nonlinear PDE

applications; no explicit performance monitoring or adaptive method support

is available. Figure 2 (b) shows the same application with the new performance

infrastructure components.

The adaptive heuristics component implements a simple AdaptiveAlgorithm

interface, whose single method, adapt, takes an argument containing application-

specific metadata needed for implementing a particular adaptive heuristic and

storing the results. Specific implementations of the AdaptiveContext interface

contain performance metadata used by adaptive heuristics, as well as refer-

ences to the objects that provide the performance metadata contained in the
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context.

Within our framework we have to differentiate between tasks that have to

be completed at runtime and tasks that are performed when the experiment

is finished. Consequently, we have two databases that serve significantly dif-

ferent purposes. The first one is created and destroyed during runtime and

stores performance data for code segments of interest and application-specific

performance events for the running experiment. The second database is per-

sistent and contains data about various applications and experiments within

one application. The second database also contains metadata derived by per-

formance analysis of raw performance results. At the conclusion of an ex-

periment, the persistent database is updated with the information from the

runtime database.

2.1 Runtime support

Figure 3 illustrates the components involved in the dynamic performance mon-

itoring and analysis. The “Numerical Component” represents any of the com-

ponents involved in the application for which monitoring and optionally adap-

tation can be done. Our initial focus is on adaptive linear solvers in the context

of nonlinear PDE solution; therefore, the “Numerical Component” represents

the nonlinear and linear solver components. The following components provide

performance monitoring and data management support at runtime.
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• TAU Measurement Component. This component collects runtime data

from hardware counters, timing, and user-defined application-specific events.

This component was provided by the developers of TAU, and complete im-

plementation details can be found in [22].

• Checkpoint Component. This component checkpoints and stores the col-

lected data into a runtime database that can be queried efficiently during

the execution for the purpose of runtime performance monitoring and adap-

tation. The TAU profiling API can only give either callpath-based or cu-

mulative performance information about an instrumented object (from the

time execution started). Hence, we have introduced the Checkpoint com-

ponent to enable us to store and retrieve data for the instrumented object

during the application’s execution (for example, number of cache misses for

every three calls of a particular function). The period for checkpointing can

be variable; the component can also be used by any other component in the

application to collect and query context-dependent and high-level perfor-

mance information. For example, a linear solver component can query the

checkpointing component for performance metadata of the nonlinear solver

(the linear solver itself has no direct access to the nonlinear solver that in-

voked it). We can therefore always get the latest performance data for the

given instrumented object from the database constructed during runtime.

• Metadata Extractor. This component retrieves metadata from the data-

base at runtime. After running several experiments, analyzing the perfor-

mance data, and finding a common performance behavior with some pa-
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rameter values, we store data summarizing this behavior in the database.

An example of derived metadata is the rate of convergence of a nonlinear

or a linear solver. During runtime, these data are used in adapting our pa-

rameter and algorithm selection, and the Metadata Extractor component

can retrieve compact metadata from the database efficiently.

• Monitor Component. This component monitors the application and the

algorithm and parameter selection based on runtime performance data and

stored metadata.

Checkpoint Component
TAUMetadata

Extractor

Runtime
Database

Monitor

Performance
Database

request
adaptation

response
adapttaion

Numerical
Component

extract

extract

extract query

checkpoint

start, stop, trigger

Fig. 3. Dynamic performance components.

2.2 Offline analysis support

The portions of the infrastructure that are not used at runtime are illustrated

in Figure 4. They include a performance data extractor for retrieving data from

the performance database, which is used by the offline analysis algorithm com-

ponents. At present, the extractor also produces output in Matlab-like format,

which is convenient for plotting some performance results; this output can be

enhanced to interface with tools that provide more advanced visualization ca-
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Fig. 4. Offline analysis components.

pabilities, such as an extension of ParaProf (part of the TAU suite of tools).

Many analyses can be applied offline to extract performance characteristics

from the raw execution data or the results of previous analyses—in fact, facil-

itating the development of such analyses was one of our main motivations for

developing this performance infrastructure. Initially we are focusing on sim-

ple analyses that allow us to replicate results in constructing composite linear

solvers from performance statistics of base linear solver experiments [1]. For

the longer term, we plan to use this infrastructure for rapid development of

new performance analyses and adaptive heuristics.

3 Implementation

Our initial implementation consisted only of C++ components and C libraries.

Since many scientific applications are written in Fortran, we next developed

language-independent interfaces and corresponding initial implementations us-

ing the Scientific Interface Definition Language (SIDL) and Babel [15]. Our

current implementation is still in C++ but is accessible from other languages

through the Babel-generated stubs code, which automates the interoperability
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of object-oriented codes written in C, C++, Fortran, Python, and Java.

Our persistent database is based on the PerfDMF specification, with small

extensions. Since we are collecting performance data for iterative algorithms,

where different iterations do not normally take the same amount of time,

we need to express and store performance information for single iterations or

ranges of iterations. While TAU allows callpath profiling of an application, this

approach is too general for our purposes and imposes too great an overhead.

Our performance metadata table has the following fields:

• Iteration range for which the metadata result applies (this is a two-element,

one-dimensional array)

• Average slope of change of metadata in this range

• Input parameter range for which the metadata result applies (this is a two-

dimensional array).

This information enables the user or analysis algorithm to investigate certain

behavior for a particular subset of experiments. The component that performs

the data analysis must ensure that, within this range of iterations and param-

eters, the minimum and maximum slope do not vary much from the average

slope. Currently the runtime interface supports two types of queries of the

performance database:

• Extracting metadata for a certain performance parameter. Metadata are

related to a common behavior of performance values recorded with TAU
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over a wide range of experiments performed on an application. For example,

we may want to find out for which nonlinear iterations the slope of CFL

number is bigger than some predefined number. We provide a C++ interface

and corresponding library for easy access to this kind of information. This

library is a thin wrapper over the SQL API and therefore can be used for

arbitrary SQL queries and is not limited to metadata extraction.

• Finding “optimal” algorithm parameters. In some cases we wish to find a

value for a certain algorithmic parameter that yields the best performance

over the experiments that have already been profiled. Algorithmic parame-

ters can be fine-tuned in order to achieve better performance. For example,

we may want to find out what fill level for incomplete factorization precon-

ditioning would yield the fastest overall convergence of a nonlinear solver.

The user is not limited to specifying only one performance metric: if more

than one is given, then the parameter value optimizes the weighted sum of

the performance metric values computed with user-specified weights. For

each of the options, the user can search for parameter values over all ex-

periments for a given application or only for experiments that have certain

model parameters in a certain range (for example, in the driven cavity appli-

cation example in Section 4, one can specify that grid size should be larger

than 100 or lid velocity should be 130). The output is a matrix in which the

first column is the parameter value and the rest of the columns contain the

values of the performance metrics specified. Figure 5 illustrates an example

use of this query interface.
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//NOTE: Name of a particular function is recorded in the database

//as name+type.

string function_name("main() int (int, char **)");

string metric_name("PAPI_FP_INS");

string param_name(" initial_cfl");

bool inclusive = true;

ierr = det.DetermineParameterMetric(param_name,

metric_name, function_name,

inclusive, &result_size, &result,

minimum, &optimal_index,

dstart, dend, lstart, lend);

Fig. 5. Code segment for extracting optimal values for algorithm parameters from
the database.

4 Application example

We illustrate the use of our performance infrastructure in a computational fluid

dynamics application that simulates flow in a driven cavity, which combines

lid-driven flow and buoyancy-driven flow in a two-dimensional rectangular cav-

ity. We use a velocity-vorticity formulation of the Navier-Stokes and energy

equations, which we discretize using a standard finite-difference scheme with a

five-point stencil for each component on a uniform Cartesian mesh; see [24] for

a detailed problem description. Commonly used pseudo-transient continuation

methods introduce a false time-stepping term into the model and necessitate

solving a nonlinear system of equations at each time step using Newton’s

method. The transition of the time step from small to large controls the con-

ditioning of the linearized Newton systems; thus, the resulting linear systems

are initially well-conditioned and easy to solve, while later in the simulation

they become progressively harder to solve.
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Fig. 6. Comparison of single-method linear solvers and an adaptive scheme. We plot
the nonlinear convergence rate (in terms of residual norm) versus both time step
(left-hand graph) and time (right-hand graph).

In this parallel application, metadata describing the performance of the nonlin-

ear solution, as well as each linear solution method, can be used to determine

when to change or reconfigure linear solvers. More details about the adap-

tive methodology can be found in [2, 3]. Figure 6 shows some performance

results comparing the use of an adaptive heuristic with the traditional single

solution method approach. The automated adaptive strategy performs better

than most base methods, and almost as well as the best base method (whose

performance, of course, is not known a priori).

Another use of our performance infrastructure is selection of application pa-

rameters based on performance information with the goal of maximizing per-

formance. For example, in the application considered here, the initial CFL

value is essential for determining the false time step for the pseudo-transient

Newton solver, which in turn affects the overall rate of convergence of the

problem. Using the query interface described in Section 3, we can query the

database to determine the best initial CFL value from the experimental data
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available. We hope that this CFL value will perform better than a random CFL

value or at least as well as the CFL value adopted by other researchers when

performing the experiments; we plan to evaluate this in further experiments.

5 Conclusions and future work

We have designed a framework for performance monitoring, evaluation, and

adaptation of parallel scientific applications and implemented a prototype us-

ing CCA components, TAU, and the PerfDMF database format. This infra-

structure enables the performance characterization of scientific component

applications and the rapid development of performance analyses and adaptive

algorithms. We illustrated our initial implementation with an application that

represents the problem domain we are targeting.

Our current and future work includes expanding our current implementation

with more components for offline analyses of performance information, as well

as developing new adaptive heuristics for dynamic method selection. In addi-

tion to runtime adaptation, our performance infrastructure can support ini-

tial application assembly and can potentially be integrated with existing CCA

component infrastructure that uses component performance models for auto-

mated application assembly [7, 22].

We have performed some initial tests with the driven cavity application and

will next consider other PDE-based simulations with similar structure, such as

19



compressible Euler flow. A large number of experiments will be performed to

populate the database with enough performance data for analyses algorithms.

One of the short-term goals is to use the new performance infrastructure in

the automatic definition of composite linear solvers based on single method

performance data (currently composite algorithms are assembled manually).

We will also extend our infrastructure with new types of performance meta-

data as we develop new analyses. One longer-term objective is to investigate

whether accurate performance models can be synthesized or refined through

statistical analysis of the parameterized performance information of applica-

tions, potentially with the help of models derived through source code analysis

of the numerical component implementations.
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