
Quality Assured Ad Hoc Grids

Kaizar Amin
Argonne National Laboratory, U.S.A.
University of North Texas, U.S.A.

Gregor von Laszewski
Argonne National Laboratory, U.S.A.

Corresponding Author: gregor@mcs.anl.gov

Armin R. Mikler
University of North Texas, U.S.A.

Abstract

This paper presents an integrated architecture for ad hoc
Grids developed within the Java CoG Kit project. It pro-
vides an overview of the key component frameworks that
collectively build the ad hoc Grid architecture. Further, it
outlines a formal model that can be formally evaluated. The
paper also presents an enhancement to the Java CoG Kit to
address requirements posed by ad hoc Grids. It integrates
into the Java CoG Kit commodity technologies such as Jxta,
and ClassAds.

1. Introduction

Ad hoc Grids are a significant evolution of the traditional
Grid computing approach that focuses on the spontaneity of
Grid establishment and collaborations [3, 17, 21, 23]. Irre-
spective of their geographic distributions and organizational
affiliations, participants of an ad hoc Grid can form dy-
namic collaborations on-the-fly without requiring any pre-
established environments or policies. Ad hoc Grids dif-
fer from traditional Grids in their assumptions for trust-
relationship, control-management, and technology-support.
The Traditional Grid approach and its architectures enable
wide-scale resource sharing between mutually collaborat-
ing participants. A pre-established central Grid manage-
ment authority is responsible for defining the Grid policies,
selecting a Grid technology [5,14], installing Grid services,
granting usage authorization, and monitoring the Grid us-
age. In contrast, ad hoc Grids offer a dynamically defined,
loosely coupled, autonomous, and self-organizing Grid en-
vironment. Rather than supporting a central management
authority, ad hoc Grids adhere to a distributed community
controlled Grid environment where participating members
are responsible for managing and controlling its own mem-
bership policies and services to grant membership. Any
participant can join the ad hoc Grid as long as the com-

munity grants appropriate membership privileges. Thus, ad
hoc Grids facilitate collaborations between “all” potentially
interested participants, including mutually collaborative en-
tities that may not be members of virtual organizations as
is the case in traditional Grids. A participant can join the
ad hoc Grid as a service consumer or provider, thereby also
referred as an ad hoc Grid peer. A service providing peer
secures its own services and manages the access and usage
permissions for its contributed services [22]. Therefore, an
ad hoc Grid can also be classified as a peer-to-peer (p2p)
Grid that specifically focuses on the establishment of on-
the-fly collaborations. We note that not all p2p Grids can
be termed as ad hoc Grids. For example, SETI@Home [9]
is a p2p Grid. However, it is not an ad hoc Grid since it is
neither established on-the-fly, nor does it adopt a distributed
community-based control.

Since ad hoc Grids are required to operate in dynamic
and transient environments, it can be justifiably argued that
they have to deal with the sporadic nature [21] of behav-
ioral patterns defined by the infrastructure and their par-
ticipants. Ad hoc Grid services are not maintained with a
goal of global optimization. Hence, it is difficult to predict
and analyze the availability, reliability, and quality of par-
ticipating services. For example, consider a transaction be-
tween a service consumer and a service provider. Since the
provider does not adhere to any global optimization poli-
cies, the withdraw from the transaction at a time of its con-
venience can cause consumer tasks to fail. Such a lack of
reliability in randomly available services prohibit ad hoc
Grids to become a mainstream technology like its tradi-
tional counterpart with established quality of service agree-
ments. In order to make the service availability more pre-
dictable and improve the reliability of ad hoc Grids, it is im-
portant for peers to employ also a quality assurance mecha-
nisms. Quality of service (QoS) models for service reserva-
tion and quality specification assists the service consumers
to make deterministic assessments regarding the behavior
of ad hoc Grids. Further, being an open framework, it is

possible for an ad hoc Grid to host several services offering
redundant Grid functionality to enable overprovisioning. In
such scenarios, it is important to have a mechanism that al-
lows the service consumer to scope these services based on
their quality offerings and consume the services that best
matches their requirements. Hence, an ad hoc Grid with ap-
propriate quality augmentations provides an open, adaptive,
and self-managing environment without compromising on
the availability and reliability.
This paper presents a quality augmented ad hoc Grid

framework developed within the Java CoG Kit project
[19, 20]. It outlines an overall design of the ad hoc Grid
framework and an implementation of the discussed design.
The rest of this paper is organized as follows. Section 2
describes the overall architecture design of the Java CoG
Kit ad hoc Grid framework. It also outlines a formal model
identifying the desired functionality of key ad hoc Grid el-
ements. Section 3 provides a detailed discussion of an ad
hoc Grid implementation. Section 4 summarizes the paper
and identifies future research issues.

Community Framework

Brokering
Framework

Ad Hoc Grid Applications

Execution
Framework

Information
Framework

Figure 1. The integrated Java CoG Kit ad hoc
Grid framework

2. Architecture Design

Figure 1 shows the high level component design of our
architecture. Rather than adopting a tightly integrated ar-
chitecture, we provide a loose coupling of several frame-
works to realize an ad hoc Grid architecture. The loose
coupling of component frameworks allows us to replace
any of the frameworks with different implementations and
technologies without affecting the overall functionality and
semantics of the ad hoc Grid. To support the technology-
and implementation-independence, we provide a formal ab-
straction model of our architecture. The ad hoc Grid ar-
chitecture assumes a service-oriented environment, where

resources are contributed and consumed as services. How-
ever, no assumptions are made with respect to the technol-
ogy or implementation details of these services. In the rest
of this section, we discuss the role and responsibility of each
of the component frameworks outlining important defini-
tions and significant assumptions.

Community management framework The community
management framework is a foundation framework that
provides a base for the ad hoc Grid peers to establish Grid
communities on-the-fly. Essential functionality required
from this framework is to allow peers to form an ad hoc
Grid, advertise the existence of an ad hoc Grid, discover
other existing ad hoc Grids, and acquire membership to an
ad hoc Grid.

Information management framework The information
management framework is another core component of the
ad hoc Grid architecture. An efficient information manage-
ment system is fundamental not only to ad hoc Grids, but to
any traditional Grid system. The information management
system represents a distributed service registry where peers
that contribute services to the Grid can register their ser-
vice description and availability. Likewise, consumer peers
can extract the description and availability information from
the distributed registry. Ad hoc Grids may host several ser-
vices belonging to the same functional class. For example,
an ad hoc Grid might host several job execution services
or several data storage services. Under such circumstances,
a mere description of the functional characteristics of the
service does not differentiate it from other services in the
same class. However, a service differentiation scheme is
important for providers to better advertise and market their
services. Likewise, it is important for the consumers to se-
lect target services that best satisfies their requirements. Our
service differentiation scheme is based on the quality assur-
ances given by a service provider. Thus, it allows service
consumers to make fine-grained service selections as per
their quality requirements. A service description is com-
posed of its functional and quality descriptions. While the
functional description of a service is static, its quality offer-
ings change dynamically. Hence, the information manage-
ment framework allows service providers to regularly up-
date the system with an up-to-date snapshot of their quality
offerings.
Formally, we denote f as a generic functional class. Ex-

ample functional classes include job execution, data stor-
age, file transfer, and workflow. We define a consumer task
t(f

′
, q

′
) with functionality requirements f

′ of a functional
class f and quality requirements q

′ . We also define an ad
hoc Grid service s(f

′′
, q

′′
) supporting functional class f

with functional capability f
′′ and quality offering q

′′ . An
information service S =

⋃n
i=1 si, is a collection of all the

available services in the ad hoc Grid. Let Sf ′ =
⋃m

i=1 si be
a set of Grid services registered by the information service,
where Sf ′ ⊆ S and for all si(f

′′

i , q
′′

i) ∈ Sf ′ , f
′ ≤ f

′′ .
Here,≤ represents the “satisfies” relationship. Hence, f ′ ≤
f

′′ denotes that functional requirements f
′ are satisfied by

the functional capabilities f
′′ . Likewise, Sq′ =

⋃o
i=1 si is

a set of Grid services registered by the information service,
where Sq′ ⊆ S and for all si(f

′′

i , q
′′

i) ∈ Sq′ , q
′ ≤ q

′′ .

Brokering framework Using the information manage-
ment framework along with the functional and quality scop-
ing of services, consumers can manually select services to
accomplish their tasks. Performing manual task-to-service
binding, even in isolated tasks with simple quality require-
ments can consume considerable amounts of resources. So-
phisticated execution flows with complex control dependen-
cies and quality requirements make it impractical to manu-
ally perform the service binding for each task. Therefore, to
streamline the task execution and service invocation process
we integrate an autonomous service brokering framework.
A service broker is an autonomous agent local to every con-
sumer. The service consumer delegates all its task execu-
tion to its local broker which is responsible for matching the
task to the most appropriate service available in the Grid. If
t(f

′
, q

′
) is a task to be executed on the Grid, the service bro-

ker is defined as B = {t ≡ sj , where sj ∈ {Sf ′ ∩ Sq′}}.
Here, ≡ denotes a successful match relationship. We fur-
ther expand our brokering model to make intelligent ser-
vice selections in scenarios where a task can be success-
fully matched to multiple candidate services. We know that
{Sf ′ ∩ Sq′} represents the set of services that can be suc-
cessfully matched to a task t(f

′
, q

′
). Let this set of can-

didate services be denoted as Scandidate = {Sf ′ ∩ Sq′ }.
Rather than matching the task with any randomly selected
service sj ∈ Scandidate, the brokering framework makes a
qualified service selection. We augment the definition of a
successful match between a task and a service from t ≡ sj

to t ≡mj sj , where m denotes the goodness or quality of
the match. The policy for evaluating the goodness of the
match can either be predefined by the user or extracted dy-
namically from every task based on the proximity between
the quality requirements of the task and quality offerings of
the service. In the event of multiple successful matches, the
broker adopts the following logic: t ≡mj sj , where sj ∈
Scandidate andmj = |M |max forM =

⋃n
i=1 mi. With the

extended brokering model, we further enhance the quality
of adhoc Grid interactions because the tasks not only bind
to a service that satisfies its needs, but they bind to a service
that “best” satisfies its needs.

Execution management framework The execution
framework is responsible for providing a dynamic plug-

n-play invocation mechanism allowing consumers to
utilize services offered by the providers. An ad hoc
Grid imposes no restrictions on the use of any Grid
technology [5, 7, 14, 16]. Peers can contribute services
supporting any functional class and may be implemented in
a technology of their convenience. Intuitively, consumers
invoking services implemented in a specific technology
would also be required to support that technology and
formulate their tasks specification in context to that tech-
nology. However, it is impractical for the consumers to
keep updating their task requirements and specification
dependent of the service implementation adopted by the
providers. Closely binding the consumer task specification
with the service implementation provides a rigid, inflexible,
and non-scalable architecture. We decouple the task
specification process from the service implementation- and
technology-dependent details by adopting an abstraction-
based “task-translator” execution paradigm [1, 2]. The
functional requirements f

′ of any ad hoc Grid task t
represents an abstract set of requirements independent
of any technology-specific details. For example, if the
consumer task is to execute some remote job, its functional
requirements f

′ can be supplied as the following abstract
specification: executable name, executable path, input
arguments, environmental variables, and input files. We
note that this specification contains no implementation-
specific details such as the “execution universe” in case
of Condor [14] jobs or “gass server” details in the case of
Globus [5] jobs.
In order to provide a formal model of the execution

framework, we extend our previous definition of an ad hoc
Grid service from s(f

′′
, q

′′
) to s(f

′′
, q

′′
, i) where i denotes

the service implementation technology. An implementa-
tion translator p(i, f) is a client-side component to invoke
any service s(f

′′
, q

′′
, i) of functional class f . For exam-

ple, a service supporting the remote job execution class
(fexecution) implemented in Globus v4 (gt4) technology is
represented as s(f

′′

execution, q
′′
, gt4). An implementation

translator for this service, represented as p(gt4, fexecution)
is a client component that is capable of understanding the
protocol-specific semantics of the GT4 job execution ser-
vice. Thus, given a task t(f

′
, q

′
) and service s(f

′′
, q

′′
, i),

the translator extracts the technology-independent func-
tional specification f

′ and translates it into implementation
i specific constructs understood by the corresponding ser-
vice s to invoke f

′′ . A consumer x hosts a set of implemen-
tation translators Px =

⋃n
i=1 pi. A consumer is capable of

invoking a service s(f
′′
, q

′′
, i) ⇐⇒ ∃p(i, f) and p(i, f) ∈

Px.
Hence, the execution framework supports any service

with arbitrary functional class implemented in any technol-
ogy provided there exists a suitable implementation trans-
lator for it. Every service description points to an appropri-

ate Internet location to retrieve the corresponding translator.
During the invocation of a service, the consumer extracts
the translator from the recommended location if it is not al-
ready available in the set P hosted on the consumer.

Reservation framework The brokering framework of-
fers a mechanism to bind a task t to some service s ∈
{Sf ′′ ∩ Sq′′ } such that the quality requirements are satis-
fied by the offerings. However, even though the service is
capable of offering a specific level of quality q

′′ , the ac-
tual quality provided to the consumer may not necessar-
ily be the same. Let q

′′

p be the actual quality provided to
the consumer by the service s with a maximum quality
offering q

′′ . It may be possible for a set of independent
tasks T =

⋃n
i=1 ti belonging to different consumers to in-

voke a service s(f
′′
, q

′′
, i) at the same time. If every task

ti(f
′

i , q
′

i) ∈ T has the same priority, they are each provided
a quality q

′′

p = q
′′

n . Since q
′′

p < q
′′ , it may be possible that

q
′)≤ q

′′

p , where)≤ implies the “does not satisfy” relation-
ship. Such undeterministic quality provisions dependent on
the synchronous usage pattern of ad hoc peers reduces the
overall reliability and quality of ad hoc Grids. Therefore,
to improve the reliability of the quality of a service and to
make it independent of the service demand, we improve the
execution model to explicitly extract quality provisioning
assurances prior to the service invocation. In other words, a
provider makes a “deterministic guarantee” to the consumer
with respect to the value of q′′

p prior to its invocation. These
guarantees are implemented and offered by a suitable reser-
vation scheme. A consumer can reserve a service for itself
giving that consumer exclusive usage privileges for the du-
ration of the reservation.
We augment our previous definition of a task from

t(f
′
, q

′
) to t(f

′
, q

′
, r), where r represents a finite time-

based reservation for exclusive service usage. A service
reservation r can be further classified as an “elastic” reser-
vation re or a “fixed” reservation rf . An elastic reserva-
tion simply specifies the duration of the requested service
usage whereas the fixed service reservation specifies the ex-
act start date and end date of the service usage. Thus, if the
consumer wishes to invoke a service for a given duration in-
dependent of the starting date, it specifies its requirements
as an elastic reservation. On the other hand, if the service
usage is tightly bound to some specific date, a fixed reserva-
tion should be used. Prior to invoking a service s(f

′′
, q

′′
, i),

the implementation translator p(i, f) is responsible for ne-
gotiating the usage rights of the service as per the reserva-
tion requirements r of the task. For an elastic reservation,
the service provider has the flexibility to decide an appropri-
ate start time for the service invocation by the consumer. On
the other hand, in a fixed reservation requirement the start
time for the service invocation is determined by the con-

sumer. If both peers are in agreement with the service usage
parameters, they form a reservation agreement, also known
as a service level agreement. A reservation agreement is an
enforceable obligation on the part of the service provider
to ensure that the consumer receives the expected service
quality, q′′

p = q
′′ . Hence, it can be seen that the discussed

ad hoc Grid architecture offers enhanced quality assurances
at different levels of Grid interactions including the infor-
mation framework, the brokering framework, and the exe-
cution framework. As discussed earlier, such deterministic
quality assurances allows Grid applications to focus on dy-
namic and adaptive application requirements without any
compromise in Grid availability, reliability, and quality.

Figure 2. Communication semantics between
the different frameworks of the CoG ad hoc
Grid architecture

Figure 2 summarizes the inter-framework communica-
tion semantics. The consumer formulates a task t(f

′
, q

′
, r)

and delegates it to the brokering framework. The broker-
ing framework interact with the information management
framework to get Scandidate for the task. Based on its
policy, the brokering framework selects the best service
s ∈ Scandidate to match the task t. The task is bound to the
selected service and delegated to the execution framework.
The execution framework negotiates the reservation agree-
ment with the service provider. On reaching a mutually-
acceptable agreement, the execution framework invokes the
service within the scope of the agreement. The result of
the service invocation is appropriately delegated back to the
consumer.

Figure 3. User interfaces for ad hoc Grid creation, discovery, presence management, and Grid-wide
communication

3. Implementation

In order to validate the formal model discussed in Sec-
tion 2 we have implemented an ad hoc Grid prototype. Be-
ing an integral part of the Java CoG Kit project, the im-
plementation adheres to the concept of providing advanced
ad hoc Grid solutions reusing existing commodity technolo-
gies. More importantly it follows the design based on ab-
stractions that are augmented with providers [17]. In this
section we describe the implementation details and the tech-
nologies used for each of the component frameworks de-
picted in Figure 1.
The community management framework provides func-

tionality to create ad hoc Grids, discover existing Grids, join
discovered Grids, and communicate with peers of an ad hoc
Grid. However, an implementation of this framework is re-
quired to operate in a distributed environment independent
of any participant entity. Several ad hoc, distributed, and
self-organizing community management frameworks have
been proposed in literature [4, 6, 8]. Significant research
has also been conducted in the area of distributed peer-to-
peer lookup and discovery mechanisms [11, 13]. Any of
these frameworks or algorithms can be adopted for our pro-

totype. However, we build on top of the capabilities of-
fered by project Jxta [8], which is at this time the most
comprehensive framework available. Jxta is a collection of
open peer-to-peer protocols and services that allow any de-
vice with a “network heartbeat” to communicate and col-
laborate with other Jxta peers autonomously. It provides
a mechanism to create virtual ad hoc collaborations with-
out exposing any of the underlying peer-to-peer protocol
complexities. It enables the formation of a self-organizing
super-peer-based overlay network on the Internet. Further,
to adapt to the ever-changing participation of peers in the
community, Jxta employs a completely decentralized ad-
vertisement and discovery of peers and services using ad-
vanced techniques such as distributed hash tables [15].
Jxta technology is primarily based on the concept of

“peer groups”. A Jxta peer can seamlessly create, discover,
and join peer groups within the Jxta environment. It can
also exchange application-pertinent information within the
scope of a joined group. For the ad hoc Grid implemen-
tation, we provide a one-to-one mapping between the Jxta
group and an ad hoc Grid community. Using Jxta proto-
cols, every participating member becomes the member of
the “Global Grid Group”. Such a global Grid community

provides the requisite infrastructure to advertise the avail-
ability of an ad hoc Grid and discover the existence of other
Grids on the network.
Even though the a peer may discover existing production

Grids, it cannot participate in that Grid without formally ac-
quiring membership to that production Grid. Based on their
adopted policy, every ad hoc Grid implements its own group
admission-control scheme including voting, passwords, cer-
tificates, and web of trust [12]. Our prototype supports open
Grid memberships and password-based Grid memberships.
It further enhances the collaborative experience by pro-

viding utility communication tools for presence manage-
ment and Grid-wide user messaging. Figure 3 shows the
user interface for the ad hoc Grid creation, Grid discovery,
presence management and group communication.

Listing 1. Quality offerings of a service
[
Name = ‘‘org.cog.execution.service’’;
Type = ‘‘Provider’’;
Class = ‘‘Execution’’;
OS = ‘‘Linux’’;
Arch = ‘‘Intel’’;
KFlops = 21893;
MemoryGB = 2;
Requirements =
Other.Class == ‘‘Execution’’;

Rank = Self.MemoryGB-Other.MemoryGB;
]

We assume that every service belongs to some functional
class and that all services belonging to a given functional
class exhibit the same functionality description. For exam-
ple, all services belonging to the job execution functional
class can execute remote jobs when provided with appropri-
ate parameters such as executable name, arguments, envi-
ronment variables, input files, and output files. Likewise, all
tasks for the same functional class have a standardized ab-
stract template to express their functionality requirements,
also called the task specification. Quality descriptions, how-
ever, are not bound to a functional class. Irrespective of the
associated functional class, peers can express their quality
descriptions in terms of arbitrary parameters suiting their
needs. To provide an elegant quality description language
that is expressive for peers to depict their quality character-
istics yet formal to allow its unambiguous evaluation, we
use the ClassAd (Classified Advertisement) language [10].
The ClassAd language is a functional language with its

basic unit being an expression. A ClassAd is a set of name/-
value pairs where every value may be an arbitrarily complex
expression, including nested record expression and list of
expression. The ClassAd language is a comprehensive sys-
tem in itself and its complete analysis is beyond the scope

Listing 2. Quality description of a consumer
[
Name = ‘‘org.cog.execution.task’’;
Type = ‘‘Consumer’’;
Class = ‘‘Execution’’;
MemoryGB = 0.05;
Requirements =
Other.Class == ‘‘Execution’’ &&
Self.MemoryGB < Other.MemoryGB;

Rank = Other.KFlops;
]

of this paper. For a deeper understanding of its semantics,
the reader is directed to [10]. Listing 1 shows a sample
quality description from a provider describing the quality
offering of a service named “org.cog.execution.service”. It
shows the various quality attributes provided by this service
such as flops, available memory, supporting operating sys-
tem, and hardware architecture. It also contains a “Require-
ments” attribute expressing the quality requirements of this
service. Further, the “Rank” attribute specifies the provider
policy in evaluating the goodness of tasks it is willing to
process. In this example, it implies that tasks with lower
memory requirements get better ranking. Listing 2 shows
the sample quality requirements from a service consumer
highlighting its requirements and ranking policy.

Listing 3. Service advertisement from a
provider

ServiceAdvertisement :
PeerName : amin@mcs.anl.gov
ServiceName : org.cog.execution.service
Class : execution
ServiceContact : hot.anl.gov:2119
ServiceTechnology : GT2
Keywords : Java CoG Kit
Description : Java CoG Kit GT2 service
ClassAd : [
OS = Linux;
Arch = Intel;
KFlops = 21893;
AvailDisk = 13000;
AvailMemory = 1000;
Requirements = (AvailMemory > 10000);
Rank = (1/Other.ReqMemory)

]

Every contributed service has an associated advertise-
ment. This advertisement encapsulates all relevant infor-
mation of that service such as its name, functional class,

Figure 4. User interfaces for publishing service advertisements and discovering published advertise-
ments

service contact, functional description, quality description
(ClassAd), and an implementation technology. The service
contact represents the service endpoint to be used for com-
munication with the service. Listing 3 shows a service ad-
vertisement from a Globus Toolkit v2.4 (GT2) job execution
service.
The distributed information service allows providers to

advertise their service descriptions and enable consumers
to discover existing services. The information service is an
extension of the core discovery service provided by project
Jxta. The Jxta discovery service enables an infrastructure to
publish and discover arbitrary advertisements using loosely
coupled rendezvous nodes and distributed hash tables [15].
A rendezvous node in the Jxta framework is a special peer
that maintains a cache of published advertisements. When
a peer joins the ad hoc Grid, it automatically seeks a ren-
dezvous peer in that community. If no rendezvous peer is
found, the new peer itself becomes the rendezvous peer for
that community. If its connection with the rendezvous peer
fails or if the rendezvous peer itself fails, the peer actively
seeks connection with another rendezvous peer. When
member peers wish to publish an advertisement, they push
it to their rendezvous peers. The rendezvous peer caches

this advertisement and may further push it to additional ren-
dezvous peers (as a fault tolerance mechanism) selected by
the calculation of a hash of the advertisement. Peers that
wish to discover advertisements, query their correspond-
ing rendezvous peer. If the rendezvous peer contains the
queried advertisement in its cache, it honors the request.
Otherwise, it will contact other known rendezvous peers
in the community to fulfill the request. The information
service extends the discovery service to exclusively pub-
lish and discover “service” advertisements. It also enables
a mechanism to periodically update the rendezvous cache
with up-to-date service advertisements. Such a scheme not
only assists in maintaining an updated snapshot of service
capabilities but also helps in flushing advertisements of in-
active service from the rendezvous cache. Figure 4 shows
the user interfaces to publish service advertisements and
discover published advertisements.
We support two modes of task submissions. In the first

mode, referred to as direct-mode, the consumer knows the
details of the service it wants to invoke including the service
contact, functional class, and technology implementation.
The consumer provides the task specification with the

relevant service details. The consumer is allowed to make

Figure 5. User interfaces for submitting tasks in direct-mode and broker-mode

immediate and advanced service reservations (if supported
by the service) before submitting the task requirements.
Such reservations guarantee exclusive access to the service
during the reserved period. The second mode of task sub-
mission, referred as the broker-mode, is a more flexible
mode of task submission allowing the service broker to per-
form the task-to-service binding.
The consumer only provides the generic task specifi-

cation and its quality requirements (ClassAd) without any
knowledge of the target service. The broker, interacts with
the distributed information service and extracts a list of ser-
vices whose quality offerings (ClassAd) match the quality
requirements (ClassAd) of the task. Two ClassAds are said
to match each other if the “Requirements” attribute in both
ClassAds evaluate to true in the context of the other Clas-
sAd. Further, the brokering component grades every task-
to-service match based on the “Rank” criteria specified in
the task ClassAd. A successful match with the best ranking
is handed to the execution framework for remote service
invocation. Figure 5 shows the user interfaces for task sub-
mission in direct mode and broker mode whereas Figure 6
shows the user interface to make time-bound service reser-
vation.
The implementation of the execution framework adopts

an abstraction-based service invocation mechanism offered

by the Java CoG Kit [1, 2]. The execution framework is
supplied with an abstract specification of the task along
with service-specific details. The execution framework ap-
propriately deploys the technology translators (also called
protocol providers) to invoke the given service. A detailed
discussion of all the constructs involved in the execution
framework is beyond the scope of this paper. For a bet-
ter understanding of an abstraction-based Grid execution
framework we refer to [2].

4. Summary and Future Work

In this paper we describe a novel architecture for ad hoc
Grids that integrates a suite of component frameworks. The
discussed architecture combines a community management
framework, information management framework, brokering
framework, and an abstraction-based execution framework.
We present the formal design of the ad hoc Grid architecture
as well as provide details of an implementation, developed
as an integral part of the Java CoG Kit. The design and
implementation of our architecture focuses on the issues of
community-control, quality assurances, and spontaneity of
service contribution and invocation. The implementation
uses several commodity technologies including Java, Java

Figure 6. User interface for making immediate and advanced service reservation

CoG Kit, Jxta, and ClassAds.
Ongoing research is focusing on integrating an au-

tonomous, robust, and flexible authentication and authoriza-
tion control framework within our architecture. It is impor-
tant to enhance the security of ad hoc Grids with a policy-
based security infrastructure that can be conveniently man-
aged by the individual participants without any central con-
trol. Additional research activities are focusing on integrat-
ing a trust and reputation framework [18] with existing qual-
ity provision schemes. Such enhancements will allow the
community to collectively isolate malicious peers that do
not fulfill their quality promises.

Acknowledgments

This work was supported by the Mathematical, Infor-
mation, and Computational Science Division subprogram
of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38. DARPA, DOE, and NSF support
Globus Project research and development. The Java CoG
Kit Project is supported by DOE MICS, and NSF Alliance.

References

[1] K. Amin, M. Hategan, G. von Laszewski, and N. J. Zaluzec.
Abstracting the Grid. In Proceedings of the 12th Euromi-
cro Conference on Parallel, Distributed and Network-Based
Processing (PDP 2004), pages 250–257, La Coruña, Spain,
11-13 Feb. 2004.

[2] K. Amin, G. von Laszewski, R. A. Ali, O. Rana, and
D. Walker. An Abstraction Model for a Grid Execution
Framework. Euromicro Journal of Systems Architecture,
2005. Accepted for publication.

[3] K. Amin, G. von Laszewski, and A. R. Mikler. Toward an
Architecture for Ad Hoc Grids. In 12th International Con-
ference on Advanced Computing and Communications (AD-
COM 2004), Ahmedabad Gujarat, India, 15-18 Dec. 2004.

[4] Berkeley Open Infrastructure for Network Computing. Web
Page.

[5] The Globus Project. Web Page.
[6] Gnutella Homepage. Web Page.
[7] A. S. Grimshaw and W. A. Wulf. The Legion Vision of a

Worldwide Virtual Computer. Communications of the ACM,
40(1):39–45, January 1997.

[8] Project JXTA. Web Page.
[9] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and

M. Leboisky. SETI@home-massively distributed computing
for SETI. Computing in Science & Engineering, 3(1):78–83,
January–February 2001.

[10] R. Raman. Matchmaking Frameworks for Distributed
Resource Management. PhD thesis, The University of
Wisconsin-Madison, 2000.

[11] S. Ratnaswamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
Applications, technologies, architectures, and protocols for
computer communications, number ISBN:1-58113-411-8,
pages 161–172, San Diego, CA, August 2001. ACM SIG-
COMM.

[12] N. Saxena, G. Tsudik, and J. H. Yi. Admission Control in
Peer-to-Peer: Design and Performance Evaluation. In Pro-
ceedings of the 1st ACM workshop on Security of ad hoc and
sensor networks, pages 104–113. ACM Press, 2003.

[13] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A Scalable Peer-To-Peer Lookup Service for
Internet Applications. In Applications, technologies, archi-
tectures, and protocols for computer communications, num-
ber ISBN:1-58113-411-8, pages 149–160, San Diego, CA,
August 2001. ACM SIGCOMM.

[14] D. Thain, T. Tannenbaum, and M. Linvy. Grid Computing:
Making the Global Infrastructure a Reality, chapter Condor
and the Grid, pages 299–336. Number ISBN:0-470-85319-
0. John Wiley, 2003.

[15] B. Traversat, M. Abdelaziz, and E. Pouyoul. A Loosely-
Consistent DHT Rendezvous Walker. Technical report, Sun
Microsystems, Inc, March 2003.

[16] Unicore. Web Page.
[17] G. von Laszewski. The Grid-Idea and Its Evolution. to be

published., 2005. Argonne National Laboratory, Argonne,
IL 60439, U.S.A.

[18] G. von Laszewski, B. Alunkal, and I. Veljkovic. Toward
Reputable Grids. (to be published), 2004.

[19] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java
Commodity Grid Kit. Concurrency and Computation: Prac-
tice and Experience, 13(8-9):643–662, 2001.

[20] G. von Laszewski, J. Gawor, S. Krishnan, and K. Jackson.
Grid Computing: Making the Global Infrastructure a Real-
ity, chapter Commodity Grid Kits - Middleware for Building
Grid Computing Environments, pages 639–656. Communi-
cations Networking and Distributed Systems. Wiley, 2003.

[21] G. von Laszewski, J. Gawor, C. J. Peña, and I. Foster. Info-
Gram: A Peer-to-Peer Information and Job Submission Ser-
vice. In Proceedings of the 11th Symposium on High Perfor-
mance Distributed Computing, pages 333–342, Edinbrough,
U.K., 24-26 July 2002.

[22] G. von Laszewski and M. Sosonkin. A Grid Certificate Au-
thority for Community and Ad-hoc Grids. In 7th Interna-
tional Workshop on Java for Parallel and Distributed Com-
puting, published in the Proceedings of the 19th Interna-
tional Parallel and Distributed Processing Symposium, Den-
ver, CO, 4-8 Apr. 2005. IEEE.

[23] Y. Wang, F. D. Carlo, D. Mancini, I. McNulty, B. Tie-
man, J. Bresnahan, I. Foster, J. Insley, P. Lane, G. von
Laszewski, C. Kesselman, M.-H. Su, and M. Thiebaux. A
High-Throughput X-Ray Microtomography System at the
Advanced Photon Source. Review of Scientific Instruments,
72(4):2062–2068, Apr. 2001.

