Implementing Byte-Range Locks Using MPI
One-Sided Communication

Rajeev Thakur, Robert Ross, and Robert Latham

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439, USA

{thakur, rross, robl}@mcs.anl.gov

Abstract. We present an algorithm for implementing byte-range locks
using MPI passive-target one-sided communication. This algorithm is
useful in any scenario in which multiple processes of a parallel program
need to acquire exclusive access to a range of bytes. One application
of this algorithm is for implementing MPI-IO’s atomic-access mode in
the absence of atomicity guarantees from the underlying file system.
Another application is for implementing data sieving, a technique for
optimizing noncontiguous writes by doing an atomic read-modify-write
of a large, contiguous block of data. This byte-range locking algorithm
can be used instead of POSIX fcntl file locks on file systems that do not
support fcntl locks, on file systems where fcntl locks are unreliable,
and on file systems where fcntl locks perform poorly. Our performance
results demonstrate that the algorithm has low overhead and significantly
outperforms fcntl locks on NFS file systems on a Linux cluster and on
a Sun SMP.

1 Introduction

Often, processes must acquire exclusive access to a range of bytes. One appli-
cation of byte-range locks is to implement the atomic mode of access defined
in MPI-IO, the I/O interface that is part of MPI-2 [7]. MPI-IO, by default,
supports weak consistency semantics in which the outcome of concurrent over-
lapping writes from multiple processes to a common file is undefined. The user,
however, can optionally select stronger consistency semantics on a per file basis
by calling the function MPI_File_set_atomicity with flag=true. In this mode,
called the atomic mode, if two processes associated with the same open file write
concurrently to overlapping regions of the file, the result is the data written by
either one process or the other, and nothing in between.

In order to implement the atomic mode, either the underlying file system
must provide functions that guarantee atomicity, or the MPI-IO implementa-
tion must ensure that a process has exclusive access to the portion of the file
it needs to access [14]. Many POSIX-compatible file systems support atomic-
ity for contiguous reads and writes, such as those issued by a single read or
write function call. However, some high-performance parallel file systems, such
as PVFS [1] and PVFS2 [9], do not support atomicity even for contiguous reads
and writes. MPI-IO’s atomic mode supports atomicity even for noncontiguous

file accesses that are made with a single MPI function call by using noncontigu-
ous file views. No file system, not even the POSIX-compatible ones, supports
atomicity for noncontiguous reads and writes. In such cases, the MPI-IO imple-
mentation must explicitly acquire exclusive access to the byte range being read
or written by a process.

Another use of byte-range locks is to implement data sieving [13,15]. Data
sieving is a technique for optimizing noncontiguous accesses. For reading, it
involves reading a large chunk of data and extracting the necessary pieces from
it. For writing, the process must read the large chunk of data from the file into
a temporary buffer, copy the necessary pieces into the buffer, and then write it
back. This read-modify-write must be done atomically to prevent other processes
from writing to the same region of the file while the buffer is being modified in
memory. Therefore, the process must acquire exclusive access to the range of
bytes before doing the read-modify-write.

POSIX defines a function fcntl by which processes can acquire byte-range
locks on an open file [5]. However, many file systems, such as PVFS [1], PVFS2 [9],
some installations of NFS, and various research file systems [2,4, 8], do not sup-
port fcntl locks. On some file systems, fcntl locks are not reliable, for example,
some installations of NF'S. In addition, on some file systems, the performance of
fentl locks is poor. Therefore, one cannot rely solely on fcntl for file locking.

In this paper, we present an algorithm for implementing byte-range locks that
can be used instead of fcntl. Our algorithm uses MPI passive-target one-sided
communication. We describe the design and implementation of the algorithm
and present performance results demonstrating that the algorithm has low over-
head and significantly outperforms fcntl locks on NFS file systems on a Linux
cluster and a Sun SMP. This algorithm extends an algorithm we described in
an earlier work [12] for acquiring exclusive access to an entire file (not a range
of bytes). Byte-range locks are an important improvement because they enable
multiple processes to perform I/O concurrently to nonoverlapping regions of the
file, which whole-file locks preclude. Byte-range locks, however, add significant
complications to an algorithm for exclusive access to an entire file, which is es-
sentially just a mutex. Both algorithms have some similarities with the MCS
lock [6], an algorithm devised for efficient mutex locks in shared-memory sys-
tems, but differ in that they use MPI one-sided communication, which does not
have atomic read-modify-write operations. Furthermore, they can be used on
both distributed- and shared-memory systems.

The rest of this paper is organized as follows. In Section 2, we give a brief
overview of MPI one-sided communication, particularly those aspects used in
our algorithm. In Section 3, we describe the byte-range locking algorithm. In
Section 4, we present performance results. In Section 5, we conclude with a brief
discussion of future work.

2 One-Sided Communication in MPI

To enable one-sided communication in MPI, a process must first specify a con-
tiguous memory region, called a window, that it wishes to expose to other pro-

Process 0 Process 1 Process 2

MPI_Win create(&win) MPI_Win_create(&win) MPI_Win_create(&win)
MPI_Win_lock(shared,1) MPI_Win_lock(shared,1)
MPI_ Put (1) MPI_Put (1)

MPI_Get(1) MPI_Get (1)

MPI_Win unlock(1) MPI_Win unlock(1)
MPI_Win_free(&win) MPI_Win_free(&win) MPI_Win_free(&win)

Fig. 1. An example of MPI one-sided communication with passive-target synchroniza-
tion. Processes 0 and 2 perform one-sided communication on the window memory of
process 1 by requesting shared access to the window. The numerical arguments indicate
the target rank.

cesses for direct one-sided access. Each process in the communicator must call
the function MPI_Win_create with the starting address of the local memory win-
dow. This address could be NULL if the process has no memory to expose to
one-sided communication. MPI_Win_create returns an opaque object, called a
window object, which is used in subsequent calls to one-sided communication
functions.

Three one-sided data-transfer functions are provided: MPI_Put (remote write),
MPI_Get (remote read), and MPI_Accumulate (remote update). In addition, some
mechanism is needed for a process to indicate when its window is ready to be
accessed by other processes and to specify when one-sided communication has
completed. For this purpose, MPI defines three synchronization mechanisms.
The first two synchronization mechanisms require both the origin and target
processes to call synchronization functions and are therefore called active-target
synchronization. The third mechanism requires no participation from the target
and is therefore called passive-target synchronization. We focus on this method
because it is the one used in our byte-range locking algorithm.

2.1 Passive-Target Synchronization

In passive-target synchronization, the origin process begins a synchronization
epoch by calling MPI Win lock with the rank of the target process and indi-
cating whether it wants shared or exclusive access to the window on the tar-
get. After issuing the one-sided operations, it calls MPI_Win_unlock, which ends
the synchronization epoch. The target does not make any synchronization call.
When MPI Win unlock returns, the one-sided operations are guaranteed to be
completed at the origin and the target. Figure 1 shows an example of one-sided
communication with passive-target synchronization.

An implementation is allowed to restrict the use of this synchronization
method to window memory allocated with MPI_Alloc_mem. MPI Win_lock is not
required to block until the lock is acquired, except when the origin and target
are one and the same process. In other words, MPI_Win_lock does not establish
a critical section of code; it ensures only that the one-sided operations issued
between the lock and unlock will be executed on the target window in a shared
or exclusive manner (as requested) with respect to the one-sided operations from
other processes.

for rank 0: for rank 1: for rank 21 : :

(el sl e e[s|] el s| e e[|] el s[e ¢l 5] &

! ! ! ! !
F = flag S = start offset E = end offset

Fig. 2. Window layout for the byte-range locking algorithm

2.2 Completion and Ordering

MPI puts, gets, and accumulates are nonblocking operations, and an imple-
mentation is allowed to reorder them within a synchronization epoch. They are
guaranteed to be completed, both locally and remotely, only when the synchro-
nization epoch has ended. In other words, a get operation is not guaranteed to see
the data that was written by a put issued before it in the same synchronization
epoch. Consequently, it is difficult to implement an atomic read-modify-write
operation by using MPI one-sided communication [3]. One cannot simply do a
lock-get-modify-put-unlock because the data from the get is not available until
after the unlock. In fact, the MPI Standard defines such an operation to be er-
roneous (doing a put and a get to the same location in the window in the same
synchronization epoch). One also cannot do a lock-get-unlock, modify the data,
and then do a lock-put-unlock because the read-modify-write is no longer atomic.
This feature of MPI complicates the design of a byte-range locking algorithm.

3 Byte-Range Locking Algorithm

In this section, we describe the design of the byte-range locking algorithm to-
gether with snippets of the code for acquiring and releasing a lock.

3.1 Window layout for byte-range locking algorithm

The window memory for the byte-range locking algorithm is allocated on any one
process—in our prototype implementation, on rank 0. Other processes pass NULL
to MPI Win_create. All processes needing to acquire locks access this window
by using passive-target one-sided communication. The window comprises three
values for each process, ordered by process rank, as shown in Figure 2. The three
values are a flag, the start offset for the byte-range lock, and the end offset. In
our implementation, for simplicity, all three values are represented as integers.
The window size, therefore, is 3 * sizeof (int) * nprocs. In practice, the flag
could be a single byte, and the start and end offsets may each need to be eight
bytes to support large file sizes.

3.2 Acquiring the Lock

The algorithm for acquiring a lock is as follows. The pseudocode is shown in
Figure 3. The process wanting to acquire a lock calls MPI_Win_lock with the
lock_type as MPI_LOCK_EXCLUSIVE, followed by an MPI_Put, an MPI_Get, and
then MPI_Win unlock. With the MPI_Put, the process sets its own three values

Lock_acquire (int start, int end)

{
val[0] = 1; /* flag */ wvall[l]l = start; val[2] = end;
while (1) {
/* add self to locklist */
MPI_Win_lock (MPI_LOCK_EXCLUSIVE, homerank, O, lockwin);
MPI_Put (&val, 3, MPI_INT, homerank, 3*(myrank), 3, MPI_INT, lockwin);
MPI_Get (locklistcopy, 3*(nprocs-1), MPI_INT, homerank, O, 1, locktypel,
lockwin);
MPI_Win_unlock (homerank, lockwin);
/* check to see if lock is already held */
conflict = 0;
for (i=0; i < (mprocs - 1); i++) {
if ((flag == 1) && (byte ranges conflict with lock request)) {
conflict = 1; break;
}
}
if (conflict == 1) {
/* reset flag to 0, wait for notification, and then retry the lock */
MPI_Win_lock (MPI_LOCK_EXCLUSIVE, homerank, O, lockwin);
val[0] = 0;
MPI_Put(val, 1, MPI_INT, homerank, 3*(myrank), 1, MPI_INT, lockwin);
MPI_Win_unlock (homerank, lockwin);
/* wait for mnotification from some other process */
MPI_Recv (NULL, O, MPI_BYTE, MPI_ANY_SOURCE, WAKEUP, comm,
MPI_STATUS_IGNORE);
/* retry the lock */
}
else {
/* lock is acquired */
break;
}
}
}

Fig. 3. Pseudocode for obtaining a byte-range lock. The derived datatype locktypel
is created at lock-creation time and cached in the implementation.

in the window: It sets the flag to 1 and the start and end offsets to those needed
for the lock. With the MPI Get, it gets the three values for all other processes
(excluding its own values) by using a suitably constructed derived datatype,
for example, an indexed type with two blocks. After MPI_Win unlock returns,
the process goes through the list of values returned by MPI_Get. For all other
processes, it first checks whether the flag is 1 and, if so, checks whether there is
a conflict between that process’s byte-range lock and lock it wants to acquire. If
there is no such conflict with any other process, it considers the lock acquired.
If a conflict (flag and byte range) exists with any process, it considers the lock
as not acquired.

If the lock is not acquired, the process resets its flag in the window to 0
by doing an MPI Win lock-MPI Put-MPI Win unlock and leaves its start and
end offsets in the window unchanged. It then calls a zero-byte MPI_Recv with
MPI_ANY_SOURCE as the source and blocks until it receives such a message from
any other process (that currently has a lock, see the lock-release algorithm be-
low). After receiving the message, it retries to acquire the lock by using the
above algorithm (further explained below).

Lock_release(int start, int end)

{

val[0] = 0; val[1] = -1; val[2] = -1;

/% set start and end offsets to -1, flag to 0, and get everyone else’s status */

MPI_Win_lock (MPI_LOCK_EXCLUSIVE, homerank, O, lockwin);

MPI_Put(val, 3, MPI_INT, homerank, 3*(myrank), 3, MPI_INT, lockwin);

MPI_Get (locklistcopy, 3*(nprocs-1), MPI_INT, homerank, O, 1, locktype2,

lockwin);

MPI_Win_unlock (homerank, lockwin);

/* check if anyone is waiting for a conflicting lock. If so, send them a
O-byte message, in response to which they will retry the lock. For
fairness, we start with the rank after ours and look in order. */

i = myrank; /* ranks are off by 1 because of the derived datatype */

while (i < (mprocs - 1)) {

/% the flag doesn’t matter here. check only the byte ranges */
if (byte ranges conflict) MPI_Send(NULL, O, MPI_BYTE, i+1, WAKEUP, comm);
i++;

}

i = 0;

while (i < myrank) {

if (byte ranges conflict) MPI_Send(NULL, O, MPI_BYTE, i, WAKEUP, comm);
i++;

}

}

Fig. 4. Pseudocode for releasing a byte-range lock. The derived datatype locktype2
is created at lock-creation time and cached in the implementation.

3.3 Releasing the Lock

The algorithm for releasing a lock is as follows. The pseudocode is shown in
Figure 4. The process wanting to release a lock calls MPI_Win_lock with the
lock_type as MPI_LOCK_EXCLUSIVE, followed by an MPI_Put, an MPI_Get, and
then MPI_Win_unlock. With the MPI_Put, the process resets its own three values
in the window: It resets its flag to 0 and the start and end offsets to —1. With the
MPI _Get, it gets the start and end offsets for all other processes (excluding its own
values) by using a derived datatype. After MPI_Win unlock returns, the process
goes through the list of values returned by MPI_Get. For all other processes, it
checks whether there is a conflict between the byte range set for that process
and the lock it is releasing. The flag is ignored in this comparison. For fairness,
it starts with the next higher rank after its own, wrapping back to rank 0 as
necessary. If there is a conflict with the byte range set by another process—
meaning that process is waiting to acquire a conflicting lock—it sends a 0-byte
message to that process, in response to which that process will retry the lock.
After it has gone through the entire list of values and sent 0-byte messages to all
other processes waiting for a lock that conflicts with its own, the process returns.

3.4 Discussion

In order to acquire a lock, a process opportunistically sets its flag to 1, before
knowing whether it has got the lock. If it determines that it does not have the
lock, it resets its flag to O with a separate synchronization epoch. Had we chosen
the opposite approach, that is, set the flag to 0 initially and then set it to 1

after determining that the lock has been acquired, there could have been a race
condition because another process could attempt the same operation between
the two distinct synchronization epochs. The lack of an atomic read-modify-write
operation in MPI necessitates the approach we use.

When a process releases a byte-range lock, multiple processes waiting on a
conflicting lock may now be able to acquire their lock, depending on the byte
range being released and the byte ranges those processes are waiting for. In the
lock-release algorithm, we use the conservative method of making the processes
waiting on a conflicting lock retry their lock instead of having the releasing
process hand the lock to the appropriate processes directly. The latter approach
can get fairly complicated for byte-range locks, and in Section 5 we describe
some optimizations that we plan to explore.

If processes are multithreaded, the current design of the algorithm requires
that either the user must ensure that only one thread calls the lock acquisition
and release functions (similar to MPI_THREAD_SERIALIZED), or the lock acquisi-
tion and release functions themselves must acquire and release a thread mutex
lock. We plan to extend the algorithm to allow multiple threads of a process to
acquire and release nonconflicting locks concurrently.

The performance of this algorithm depends on the quality of the implemen-
tation of passive-target one-sided communication in the MPI implementation.
In particular, it depends on the ability of the implementation to make progress
on passive-target one-sided communication without requiring the target process
to call MPI functions for progress. On distributed-memory environments, it is
also useful if the implementation can cache derived datatypes at the target, so
that the derived datatypes need not be communicated to the target each time.

4 Performance Evaluation

To measure the performance of our algorithm, we wrote two test programs: one
in which all processes try to acquire a conflicting lock (same byte range) and
another in which all processes try to acquire nonconflicting locks (different byte
ranges). In both tests, each process acquires and releases the lock in a loop several
times. We measured the time taken by all processes to complete acquiring and
releasing all their locks and divided this time by the number of processes times
the number of iterations. This gave the average time taken by a single process
for acquiring and releasing a single lock. We compared the performance of our
algorithm versus fcntl locks.

We ran the tests on a Myrinet-connected Linux cluster at Argonne and on
a 24-CPU Sun SMP at the University of Aachen in Germany. On the Linux
cluster, we used the latest CVS version of MPICH2 (version 1.0.1 plus some
enhancements) with the GASNET channel running over GM. To measure the
performance of fcntl locks, we used an NFS file system that mounted a GFS [10]
backend. This is the only way to use fcntl locks on this cluster; the parallel file
system on the cluster, PVFS, does not support fcntl locks.

On the Sun SMP, we could not use Sun MPI because of a bug in the im-
plementation that caused one of our tests to hang when run with more than

four processes. We therefore used MPICH?2 instead. We used the latest CVS ver-
sion of MPICH2 (version 1.0.1 plus some enhancements) with the sshm (scalable
shared-memory) channel. This version includes some optimizations for one-sided
communication in the sshm channel when the window memory is allocated with
MPI_Alloc_mem, as it is in our tests. For fcntl locks, we used an NFS file system.
When we ran our test for conflicting locks with more than 16 processes, fcntl
returned an error with errno set to “no record locks available.” This is an exam-
ple of the unreliability of fcntl locks with NFS, mentioned in Section 1. When
running on a cluster of SMPs, however, NFS is the only option because the local
Unix file system is available only within an SMP. We ran our tests on a single
SMP only, because the sshm channel of MPICH2 runs on a single SMP using
shared memory, and we could not use Sun MPI because of the bug mentioned
above.

On distributed-memory environments, MPICH2 currently has two limitations
that can affect performance. One limitation is that it requires the target pro-
cess to call MPI functions in order to make progress on passive-target one-sided
communication. This restriction did not affect our test programs because the
target (rank 0) also tried to acquire byte-range locks and therefore made MPI
function calls. Furthermore, all processes did an MPI Barrier at the end, which
also guaranteed progress at the target. The other limitation is that MPICH2
does not cache derived datatypes at the target process, so they need to be com-
municated each time. Both these limitations will be fixed in a future release of
MPICH2. These limitations do not exist on shared-memory environments when
the window is allocated in shared memory with MPI_Alloc_mem, because the ori-
gin process itself can make progress by directly copying to the shared-memory
window, and derived datatypes do not need to be communicated.

Figure 5 shows the average time taken by a single process to acquire and
release a single lock on the Linux cluster and the Sun SMP. On the Linux clus-
ter, for nonconflicting locks, our algorithm is on average about twice as fast as
fcntl, and the time taken does not increase with the number of processes. For
conflicting locks, the time taken by our algorithm increases with the number of
processes because of the overhead induced by lock contention. In Section 5, we
describe some optimizations we plan to incorporate that will reduce communi-
cation traffic in the case of conflicting locks and therefore improve performance
and scalability. The graph for conflicting locks with £cntl on NFS on the Linux
cluster is not shown because the time taken was on the order of seconds—about
three orders of magnitude higher than any of the other results!

On the Sun SMP, for nonconflicting locks, our algorithm is about 10 times
faster than fcntl, and the time taken does not increase with the number of
processes. For conflicting locks, our algorithm is 59 times faster than fcntl. As
mentioned above, fecntl on NFS for conflicting locks failed when run on more
than 16 processes on the Sun SMP.

Time (microsec)

1000

500

100

50

10

Myrinet Linux Cluster Sun SMP

Fig. 5. Average time for acquiring and releasing a single lock on a Myrinet-connected
Linux cluster (left) and a Sun SMP (right). The graph for conflicting locks with fcntl
on the Linux cluster is not shown because the time was three orders of magnitude
higher than the other results. On the Sun SMP, when run on more than 16 processes,
fentl on NFS for conflicting locks failed.

5 Conclusions and Future Work

We have presented an efficient algorithm for implementing byte-range locks using
MPT one-sided communication. We have shown that our algorithm has low over-
head and outperforms NFS fcntl file locks on the two environments we tested.
We plan to use this algorithm for byte-range locking in our implementation of
MPI-IO, called ROMIO [11].

This algorithm requires that the MPI implementation handle passive-target
one-sided communication efficiently, which is not the case in many MPI im-
plementations today. For example, with IBM MPI on the IBM SP at the San
Diego Supercomputer Center, we observed wide fluctuations in the performance
of our algorithm. We hope that such algorithms that demonstrate the useful-
ness of passive-target one-sided communication will spur MPI implementers to
optimize their implementations.

While we have focused on making the algorithm correct and efficient, it can
be improved in several ways. For example, in our current implementation of the
lock-release algorithm, we make the processes waiting for conflicting locks retry
their lock, instead of having the releasing process grant the locks directly. We
chose this approach because, in general, the analysis required to determine which
processes can be granted their locks is tricky. For special cases, however, such as
processes waiting for a byte range that is a subset of the byte range being held
by the releasing process, it is possible for the releasing process to grant the lock
directly to the other process. With such an approach, the releasing process could
grant the lock to processes for which it can easily determine that the lock can
be granted, deny it to processes for which it can determine that the lock cannot
be granted, and have others retry their lock. Preventing too many processes

F T — 2000 T T T
F e T E o B 8 USRS -
[3] 1000 T KR e]
X F |
L] E E
r g 1 500 | e i
r 1 o L -]
2
* e e e | _8 e - b
C] g
] £ r]
[1 = F]
|- 4 50 F .
r our algorithm, nonconflicting locks —— - i our algorithm, nonconflicting locks —— |
our algorithm, conflicting locks --->--— our algorithm, conflicting locks -
r fentl on NFS, nonconflicting locks - 1 = fentl on NFS, nonconflicting locks %
fentl on NFS, conflicting locks =
. . . . 10
4 8 12 16 20 24 4 8 12 16 20
Processes Processes

24

from retrying conflicting locks will improve the performance and scalability of
the algorithm significantly. Another optimization for scalability is to replace the
linear list of values with a tree-based structure, so that a process does not have
to fetch and check the values of all other processes. We plan to explore such
optimizations to the algorithm.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract W-
31-109-ENG-38. We thank Chris Bischof for giving us access to the Sun SMP
machines at the University of Aachen.

References

1. Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS:
A parallel file system for Linux clusters. In Proceedings of the 4th Annual Linux
Showcase and Conference, Atlanta, pages 317-327, October 2000.

2. Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. ACM
Transactions on Computer Systems, 14(3):225-264, August 1996.

3. William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features
of the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

4. Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and David S.
Blumenthal. PPFS: A high performance portable parallel file system. In Proceed-
ings of the 9th ACM International Conference on Supercomputing, pages 385—394.
ACM Press, July 1995.

5. IEEE/ANSI Std. 1003.1. Portable Operating System Interface (POSIX)-Part 1:
System Application Program Interface (API) [C Language], 1996 edition.

6. J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 1991.

7. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface, July 1997. http://www.mpi-forum.org/docs/docs.html.

8. Nils Nieuwejaar and David Kotz. The Galley parallel file system. Parallel Com-
puting, 23(4):447-476, June 1997.

9. PVFS2: Parallel virtual file system. http://wuw.pvfs.org/pvis2/.

10. Red Hat Global File System. http://www.redhat.com/software/rha/gfs.

11. ROMIO: A high-performance, portable MPI-10 implementation.
http://www.mcs.anl.gov/romio.

12. Robert Ross, Robert Latham, William Gropp, Rajeev Thakur, and Brian Toonen.
Implementing MPI-IO atomic mode without file system support. In Proceedings
of CCGrid 2005, May 2005.

13. Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and collective I/O
in ROMIO. In Proceedings of the Tth Symposium on the Frontiers of Massively
Parallel Computation, pages 182-189. IEEE Computer Society Press, February
1999.

14. Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-10
portably and with high performance. In Proceedings of the 6th Workshop on 1/0O
in Parallel and Distributed Systems, pages 23—-32. ACM Press, May 1999.

15. Rajeev Thakur, William Gropp, and Ewing Lusk. Optimizing noncontiguous ac-
cesses in MPI-IO. Parallel Computing, 28(1):83-105, January 2002.

10

