
Software Architecture Issues in Scientific
Component Development

Boyana Norris1

Mathematics and Computer Science Division, Argonne National Laboratory
9700 South Cass Ave., Argonne, IL 60439, U.S.A.

norris@mcs.anl.gov

Abstract. Commercial component-based software engineering practices,
such as the CORBA component model, Enterprise JavaBeans, and COM,
are well-established in the business computing community. These prac-
tices present an approach for managing the increasing complexity of sci-
entific software development, which has motivated the Common Com-
ponent Architecture (CCA), a component specification targeted at high-
performance scientific application development. The CCA is an approach
to component development that is minimal in terms of the complexity of
component interface requirements and imposes a minimal performance
penalty. While this lightweight specification has enabled the develop-
ment of a number of high-performance scientific components in several
domains, the software design process for developing component-based
scientific codes is not yet well defined. This fact, coupled with the fact
that component-based approaches are still new to the scientific com-
munity, may lead to an ad hoc design process, potentially resulting in
code that is harder to maintain, extend, and test and may negatively
affect performance. We explore some concepts and approaches based on
widely accepted software architecture design principles and discuss their
potential application in the development of high-performance scientific
component applications. We particularly emphasize those principles and
approaches that contribute to making CCA-based applications easier to
design, implement, and maintain, as well as enabling dynamic adaptivity
with the goal of maximizing performance.

1 Introduction

Component-based software engineering (CBSE) practices are well established
in the business computing community [1–3]. Component approaches often form
the heart of architectural software specifications. Garlan and Shaw [4] define a
software architecture as a specification of the overall system structure, such as
“gross organization and global control structure; protocols for communication,
synchronization, and data access; assignment of functionality to design elements,
physical distribution; composition of design elements; scaling and performance;
and selection among design alternatives.” This decade-old definition largely holds
today.



2 B. Norris

Recently, the emergence of a component specification targeted at high-per-
formance computing has led to initial experimentation with CBSE in scientific
software. The Common Component Architecture Forum [5, 6] has produced a
component architecture specification [7] that is semantically similar to other
component models, with an emphasis on minimizing programming requirements
and not imposing a significant performance penalty as a result of using com-
ponents. The CCA specification is defined by using SIDL (Scientific Interface
Definition Language), which provides language interoperability without sacrific-
ing performance.

CCA employs the notion of ports, public interfaces that define points of inter-
action between components. There are two types of ports: provides and uses, used
to specify functionality provided by a component, and to access functionality of
other components that provide the matching port type. To be CCA-compliant,
a component must implement the gov.cca.Component interface, which uses the
method setServices to pass a reference to a framework services handle to the
component. This handle subsequently is used for most framework interactions,
such as registering uses and provides ports and obtaining and releasing port
handles from the framework. The setServices method is normally invoked by
the framework after the component has been instantiated. A CCA framework
provides an implementation of the Services interface and performs component
management, including dynamic library loading, component instantiation, and
connection and disconnection of compatible ports.

In addition to the benefits of a component system for managing software
complexity, the CCA offers new challenges and opportunities. In the remainder
of this paper, we present some software architecture principles and approaches
that build on the current CCA specification and help better define the compo-
nent design and development process, as well as enable better dynamic adaptiv-
ity in scientific component applications. Going beyond the software architecture
specification, we briefly discuss other important aspects of scientific component
development, including code generation, implementation, compilation, and de-
ployment.

2 Software Architecture Principles

In this section we examine software design approaches in the context of their
applicability to high-performance scientific component development. One of the
main distinctive features of the CCA is its minimal approach to component spec-
ification. This was partly motivated by the need to keep component overhead
very low. Another motivation is to make the software design process more ac-
cessible to scientists who are concerned with the human overhead of adopting
an approach new to the scientific computing community. The result is a working
minimal-approach component model that has been used successfully in diverse
applications [8–11]. The CCA specification incorporates a number of principles
that Buschmann et al. [12] refer to as architecture-enabling principles, includ-



Scientific Component Development 3

ing abstraction, encapsulation, information hiding, modularization, coupling and
cohesion, and separation of interface and implementation.

While the minimal CCA approach does make scientific component develop-
ment possible, it is not a complete design methodology, as is, for example, the
Booch method [13]. Furthermore, other than the minimal requirements of the
component interface and framework-component interactions, the actual compo-
nent design is not dictated by any set of rules or formal specifications. This makes
the CCA very general and flexible but imposes a great burden on the software
developer, who in many cases has no previous component- or object-oriented
design experience. We believe that a number of widely accepted software archi-
tecture principles, such as those summarized in [12, 14], can contribute greatly
to all aspects of scientific application development—from interface specification
to component quality-of-service support. These enabling technologies [12] can be
used as guiding design principles for the scientific component developer. More-
over, they can enable the development of tools that automate many of the steps
in the component development life cycle, leading to shorter development cycles
and to applications that are both more robust and better performing.

Although the following software architecture principles are applicable to a
wide range of domains, we focus on their impact on high-performance compo-
nents, with an emphasis on adaptability. We briefly examine each approach and
discuss an example context of its applicability in scientific component develop-
ment.

Separation of concerns. Currently the CCA provides a basic specification for
components and does not deal directly with designing ports and components
so that different or unrelated responsibilities are separate from each other and
that different roles played by a component in different contexts are independent
and separate from each other within the component. Several domain-specific
interface definition efforts are under way, such as interfaces for structured and
unstructured mesh access and manipulation, linear algebra solvers, optimization,
data redistribution, and performance monitoring. These common interfaces ide-
ally would be designed to ensure a clear separation of concerns. In less general
situations, however, this principle is often unknown or ignored in favor of quicker
and smaller implementation. Yet clearly separating different or unrelated respon-
sibilities is essential for achieving a flexible and reliable software architecture.
For example, performance monitoring functionality is often directly integrated
in the implementation of components, making it difficult or impossible to change
the amount, type, and frequency of performance data gathered. A better design
is to provide ports or components that deal specifically with performance mon-
itoring, such as those described in [15], enabling the use of different or multiple
monitor implementations without modifying the implementation of the client
components, as well as generating performance monitoring ports automatically.
Similar approaches can be used for other types of component monitoring, such
as that needed for debugging. Although in some cases the separation of concerns
is self-evident, in others it is not straightforward to arrive at a good design while
maintaining a granularity that does not deteriorate the performance of the appli-



4 B. Norris

cation as a whole. For example, many scientific applications rely on a discretized
representation of the problem domain, and it would seem like a good idea to ex-
tract the mesh management functionality into separate components. Depending
on the needs of the application, however, accessing the mesh frequently through
a fine-grained port interface may have prohibitive overhead. That is, not to say
that mesh interfaces are doomed to bad performance; rather, care must be taken
in the design of the interface, as well as the way in which it is used, in order to
avoid loss of performance.

Separation of policy and implementation. A policy component deals with context-
sensitive decisions, such as assembly of disjoint computations as a result of se-
lecting parameter values. An implementation component deals only with the
execution of a fully specified algorithm, without being responsible for making
context-dependent decisions internally. This separation enables the implemen-
tation of multimethod solution methods, such as the composite and adaptive
linear solvers described in [16, 17]. Initial implementations of our multimethod
linear system solution methods were not in component form (rather, they were
based directly on PETSc [18]), and after implementing a few adaptive strate-
gies, adding new ones became a very complex and error-prone task. The reason
was that, in order to have nonlinear solver context information in our heuristic
implementation of the adaptive linear solution, we used (or rather, “abused”)
the PETSc nonlinear user-defined monitor routine, which is invoked automati-
cally via a call-back mechanism at each nonlinear iteration. Without modifying
PETSc itself, this was the best way both to have context information about the
nonlinear solution, while monitoring the performance and controlling the choice
of linear solvers. While one can define the implementation in a structured way,
one is still limited by the fact that the monitor is a single function, under which
all adaptive heuristics must be implemented. Recently we have reworked our
implementation to use well-defined interfaces for performance data management
and adaptive linear solution heuristics. This separation of policy (the adaptive
heuristic, which selects linear solvers based on the context in the nonlinear solver)
and implementation (the actual linear solution method used, such as GMRES)
not only has lead to a simpler and cleaner design but has made it possible to
add new adaptive heuristics with a negligible effort compared to the noncompo-
nent version. Design experiences, such as this nonlinear PDE solution example,
can lead to guidlines or “best practices” that can assist scientists in achieving
separation of policy and implementation in different application domains.

Reflection. The Reflection architectural pattern enables the structure and be-
havior of software systems to be changed dynamically [12]. Although Reflection
is not directly supported by the CCA specification, similar capabilities can be
provided in some cases. For example, for CCA components implemented with
SIDL, interface information is available in SIDL or XML format. Frameworks or
automatically generated ports (which provide access to component metainfor-
mation) can be used to provide Reflection capabilities in component software.
Reflection also can be used to discover interfaces provided by components, a par-



Scientific Component Development 5

ticularly useful capability in adaptive algorithms where a selection of a suitable
implementation must be made among several similar components. For exam-
ple, in an adaptive linear system solution, several solution methods implement
a common interface and can thus be substituted at runtime, but knowing more
implementation-specific interface details may enable each linear solver instance
to be tuned better by using application-specific knowledge. We note, however,
that while reflection can be useful in cases such as those cited, it may negatively
affect performance if used at a very fine granularity. As with other enabling ar-
chitectural patterns, one must be careful to ensure that it is applied only at a
coarse-enough granularity to minimize the impact on performance.

While the omission of formal specifications for these and other features makes
the CCA approach general and flexible, it also increases the burden on the sci-
entific programmer. While in theory it is possible to design and implement CCA
components in a framework-independent fashion, in practice the component de-
veloper is responsible for ensuring that a component is written and built in such
a way that it can be used in a single framework that is usually chosen a priori1.

3 Implementation and Deployment

Implementation and deployment of CCA components are potentially complex
and time-consuming tasks compared to the more traditional library development
approaches. Therefore, CCA Forum participants have recently begun streamlin-
ing the component creation and build process. For example, CHASM [19] is be-
ing used to automate some of the steps required to create language-independent
components from legacy codes or from scratch [20]. We have also recently begun
automating the build process by generating most of the scripts needed to create
a build system based on GNU tools, such as automake and autoconf [21, 22].
Currently we are integrating the component generation tools based on CHASM
[19] and Babel [23] with the build automation capabilities. Other efforts are
making the code generation, build automation, and deployment support tools
easy to use, extensible, portable, and flexible. Until recently, little attention was
given to the human overhead of component design and implementation. Many of
the above-mentioned efforts aim to increase the software developers’ efficiency.
Most ongoing work focuses on the tasks of generating ports and components
from existing codes, generating code from existing interfaces, compiling, and de-
ploying components. At this point, however, little is available on the techniques
for designing ports and components. We believe that the architecture-enabling
principles mentioned in this paper, as well as others, can help guide the design
of scientific applications. Furthermore, we hope that in the near future, when
more and more component scientific applications go through this design and
implementation process, domain-specific patterns will emerge that will lead to
1 The CCA Forum has defined a number of interfaces for framework interoperability,

so that while components are written in a way that may not be portable across
frameworks, interaction between components executing in different frameworks is
possible in some cases.



6 B. Norris

the same type of improvement in the software development approaches and effi-
ciency that design and architectural patterns have led to in the business software
development community.

Scientific applications may need to execute in environments with different
capabilities and requirements. For example, in some cases it is possible and desir-
able to build components as dynamic libraries that are loaded by the framework
at runtime. In other cases, the computing environment, such as a large paral-
lel machine without a shared file system, makes the use of dynamic libraries
onerous, and one statically linked executable for the assembled component ap-
plication is more appropriate. Being able to support both dynamic and static
linking in an application makes the build process complex and error-prone, thus
necessitating automation. Furthermore, support of multiple deployment modes
(e.g., source-based, RPM or other binary formats) is essential for debugging,
distribution, and support of multiple hardware platforms. Many of these issues
can be addressed by emerging CCA-based tools that generate the required com-
ponent meta-information, configuration, build, and execution scripts.

4 QoS-Enabled Software Architecture

As more functionally equivalent component implementations become available,
the task of selecting components and assembling them into an application with
good overall performance becomes complex and possibly intractable manually.
Furthermore, as computational requirements change during the application’s ex-
ecution, the initial selection of components may no longer ensure good overall
performance. Some of the considerations that influence the choice of implemen-
tation are particular to parallel codes, for example, the scalability of a given
algorithm. Others deal with the robustness of the solution method, or its con-
vergence speed (if known) for a certain class of problems.

Recent work [24–26] on computational quality of service (QoS) for scien-
tific components has defined a preliminary infrastructure for the support of
performance-driven application assembly and adaptation. The CCA enables this
infrastructure to augment the core specifications, and new tools that exploit the
CCA ports mechanism for performance data gathering and manipulations are
being developed [15]. Related work in the design and implementation of QoS
support in component architectures includes component contracts [27], QoS ag-
gregation models [28], and QoS-enabled distributed component computing [29,
30].

5 Conclusion

We have examined a number of current challenges in handling the entire life
cycle of scientific component application development. We outlined some soft-
ware architecture ideas that can facilitate the software design process of scien-
tific applications. We discussed the need and ongoing work in automating dif-
ferent stages of component application development, including code generation



Scientific Component Development 7

from language-independent interfaces, automatic generation of components from
legacy code, and automating the component build process. We noted how some
of the software architecture ideas can be used to support adaptivity in applica-
tions, enabling computational quality-of-service support for scientific component
applications. Many of these ideas are in the early stages of formulation and im-
plementation and will continue to be refined and implemented as command-line
or graphical tools, components, or framework services.

Acknowledgments

Research at Argonne National Laboratory was supported in part by the Math-
ematical, Information, and Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept.
of Energy, under Contract W-31-109-ENG-38. We thank Matt Knepley, Lois
McInnes, Paul Hovland, and Kate Keahey of Argonne National Laboratory for
many of the ideas that led to this work, Sanjukta Bhowmick and Padma Ragha-
van of the Pennsylvania State University for their ongoing contributions, and
the CCA Forum for enabling this collaborative effort.

References

1. Anonymous: CORBA component model. http://www.omg.org/technology/docu-
ments/formal/components.htm (2004)

2. Anonymous: Enterprise JavaBeans downloads and specifications. http://ja-
va.sun.com/products/ejb/docs.html (2004)

3. Box, D.: Essential COM. Addison-Wesley Pub. Co. (1997)
4. Garlan, D., Shaw, M.: An Introduction to Software Architecture. In: Advances

in Software Engineering and Knowledge Engineering. World Scientific Publishing
Company (1993)

5. Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L. C.,
Parker, S., Smolinski, B.: Toward a common component architecture for high-
performance scientific computing. In: Proceedings of High Performance Distributed
Computing. (1999) 115–124

6. Common Component Architecture Forum: CCA Forum website. http://www.
cca-forum.org (2004)

7. CCA Forum: CCA specification. http://cca-forum.org/specification/ (2003)
8. Norris, B., Balay, S., Benson, S., Freitag, L., Hovland, P., McInnes, L., Smith,

B.: Parallel components for PDEs and optimization: Some issues and experiences.
Parallel Computing 28 (12) (2002) 1811–1831

9. Lefantzi, S., Ray, J.: A component-based scientific toolkit for reacting flows. In:
Proceedings of the Second MIT Conference on Computational Fluid and Solid
Mechanics, Boston, Mass., Elsevier Science (2003)

10. Benson, S., Krishnan, M., McInnes, L., Nieplocha, J., Sarich, J.: Using the GA and
TAO toolkits for solving large-scale optimization problems on parallel computers.
Technical Report ANL/MCS-P1084-0903, Argonne National Laboratory (2003)



8 B. Norris

11. Larson, J. W., Norris, B., Ong, E. T., Bernholdt, D. E., Drake, J. B., Elwasif, W
.R., Ham, M. W., Rasmussen, C. E., Kumfert, G., Katz, D. S., Zhou, S., DeLuca,
C., Collins, N. S.: Components, the Common Component Architecture, and the
climate/weather/ocean community. In: 84th American Meteorological Society An-
nual Meeting, Seattle, Washington, American Meteorological Society (2004)

12. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons Ltd.
(1996)

13. Booch, G.: Unified method for object-oriented development Version 0.8. Rational
Software Corporation (1995)

14. Medvidovic, N., Taylor, R. N.: A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software Engi-
neering 26 (2000)

15. Shende, S., Malony, A. D., Rasmussen, C., Sottile, M.: A performance interface
for component-based applications. In: Proceedings of International Workshop on
Performance Modeling, Evaluation and Optimization, International Parallel and
Distributed Processing Symposium (2003)

16. Bhowmick, S., Raghavan, P., McInnes, L., Norris, B.: Faster PDE-based simula-
tions using robust composite linear solvers. Future Generation Computer Systems
20 (2004) 373–387

17. McInnes, L., Norris, B., Bhowmick, S., Raghavan, P.: Adaptive sparse linear solvers
for implicit CFD using Newton-Krylov algorithms. In: Proceedings of the Second
MIT Conference on Computational Fluid and Solid Mechanics, Massachusetts In-
stitute of Technology, Boston, USA, June 17-20, 2003

18. Balay, S., Buschelman, K., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.,
Smith, B. F., Zhang, H.: PETSc users manual. Technical Report ANL-95/11 -
Revision 2.1.5, Argonne National Laboratory (2003). http://www.mcs.anl.gov/
petsc.

19. Rasmussen, C. E., Lindlan, K. A., Mohr, B., Striegnitz, J.: Chasm: Static analysis
and automatic code generation for improved Fortran 90 and C++ interoperability.
In: 2001 LACSI Symposium (2001)

20. Rasmussen, C. E., Sottile, M. J., Shende, S. S., Malony, A. D.: Bridging the
language gap in scientific computing: the chasm approach. Technical Report LA-
UR-03-3057, Advanced Computing Laboratory, Los Alamos National Laboratory
(2003)

21. Bhowmick, S.: Private communication. Los Alamos National Laboratory (2004)
22. Wilde, T.: Private communication. Oak Ridge National Laboratory (2004)
23. Anonymous: Babel homepage. http://www.llnl.gov/CASC/components/babel.html

(2004)
24. Trebon, N., Ray, J., Shende, S., Armstrong, R.C., Malony, A.: An approximate

method for optimizing HPC component applications in the presence of multiple
component implementations. Technical Report SAND2003-8760C, Sandia National
Laboratories (2004) Also submitted to 9th International Workshop on High-Level
Parallel Programming Models and Supportive Environments, held during the 18th
International Parallel and Distributed Computing Symposium, 2004, Santa Fe,
NM, USA.

25. Hovland, P., Keahey, K., McInnes, L. C., Norris, B., Diachin, L. F., Raghavan,
P.: A quality of service approach for high-performance numerical components.
In: Proceedings of Workshop on QoS in Component-Based Software Engineering,
Software Technologies Conference, Toulouse, France (2003)



Scientific Component Development 9

26. Norris, B., Ray, J., Armstrong, R., McInnes, L.C., Bernholdt, D.E., Elwasif, W.R.,
Malony, A.D., Shende, S.: Computational quality of service for scientific compo-
nents (2004). In: Proceedings of International Symposium on Component-Based
Software Engineering (CBSE7), Edinburgh, Scotland.

27. Beugnard, A., Jézéquel, J.M., Plouzeau, N., Watkins, D.: Making components
contract aware. IEEE Computer (1999) 38–45

28. Gu, X., Nahrstedt, K.: A scalable QoS-aware service aggregation model for peer-
to-peer computing grids. In: Proceedings of High Performance Distributed Com-
puting. (2002)

29. Loyall, J. P., Schantz, R. E., Zinky, J. A., Bakken, D. E.: Specifying and measur-
ing quality of service in distributed object systems. In: Proceedings of the First
International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC ’98). (1998)

30. Raje, R., Bryant, B., Olson, A., Auguston, M., , Burt, C.: A quality-of-service-
based framework for creating distributed heterogeneous software components. Con-
currency Comput: Pract. Exper. 14 (2002) 1009–1034



10 B. Norris

U.S. Government License (not to be included in printed version).

The submitted manuscript has been created by
the University of Chicago as Operator of Argonne
National Laboratory (“Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonex-
clusive, irrevocable worldwide license in said ar-
ticle to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.


