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ABSTRACT
A framework is proposed for the investigation of chemical

and mechanical properties of nanostructures. The methodology
is based on a two-step approach to compute the electronic density
distribution in and around a nanostructure, and then the equilib-
rium configuration of its nuclei. The Electronic Problem embeds
interpolation and coupled cross-domain optimization techniques
through a process called electronic reconstruction. In the second
stage of the solution, the Ionic Problem repositions the nuclei
of the nanostructure given the electronic density in the domain.
The new ionic configuration is the solution of a nonlinear system
based on a first-order optimality condition when minimizing the
total energy associated with the nanostructure. The overall goal
is a substantial increase in the dimension of the nanostructures
that can be simulated by using approaches that include accurate
DFT computation. This increase stems from the fact that during
the solution of the Electronic Problem expensive DFT calcula-
tions are limited to a small number of subdomains. For the Ionic
Problem, computational gains result from approximating the po-
sition of the nuclei in terms of a reduced number of representative
nuclei following the quasicontinuum paradigm.

∗Address all correspondence to this author.

PARADIGM OF THE PROPOSED APPROACH
Nanostructures have dimensions in the range of 1 ∼ 100

nm and typically contain 102 ∼ 108 atoms. Applying the well-
established Kohn-Sham DFT method [1] for nonperiodic struc-
tures of 60 atoms has led to simulations that can take up to three
months to complete. When long range interactions are ignored
and pseudo-potentials are used, ab-initio simulations have been
carried out for nonmetallic structures with up to 1,500 atoms [2].
The approach that enabled the increase in the number of atoms
belongs to the family of so-called O(N)methods [3], which scale
as N with the dimension of the problem (in this case the number
of electrons).

This work is not concerned with fundamental electronic
structure computation methods. Acknowledging the small-
dimension constraint placed on the problem by the existing Den-
sity Functional Theory (DFT)-based methods, the goal of the
proposed work is to use techniques that, by closing the spa-
tial scale gap, render electronic structure information at the
nanoscale. This electronic structure information is then used to
investigate the chemical and mechanical properties of the mater-
ial.

In the context of mechanical analysis of nanostructures,
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the methodology proposed follows in the steps of the quasi-
continuum work proposed in [4–6]. Specifically, this is an ex-
tension of the work in [5, 6], because rather than considering a
potential-based interatomic interaction that has a limited range of
validity and is difficult to generalize to inhomogeneous materi-
als, the methodology proposed uses ab-initiomethods to provide
for the particle interaction. At the same time it is a generaliza-
tion of the method proposed in [4] because rather than consider-
ing each mesh discretization element to be part of a periodic and
uniformly deformed infinite crystal, the proposed method treats
in a generic optimization framework any structure (nonperiodic
and inhomogeneous) once the electronic density distribution is
available.

The electronic structure computation is approached herein
as the solution of a constrained minimization problem [7]

min
ρ
E[ρ,ρA] (1a)

∫
ρ(r)dr= Ne (1b)

where Ne represents the number of electrons present in the sys-
tem. The solution to this problem depends parametrically on
the nuclear density ρA, ρ = ρ(ρA), a consequence of the Born-
Oppenheimer assumption. Subsequently, the computation of the
ground state of the entire system as the solution of the optimiza-
tion problem

min
ρA

E[ρ(ρA),ρA] (2)

From a geometric perspective two assumptions are made in
order to close the gap between the subatomic-level representation
of the electron density, and the nanoscale scale associated with
the structures investigated: (a) there is a near regularity in the
atomic compositions of the material, and (b) almost everywhere
in the nanostructure the solution to the Ionic Problem results
in only small deformations. The assumption (a) is referred to
as near-periodicity and is the vehicle that carries first-principles
computation results from micro to macro scale. This work does
not build on the periodicity assumption, it merely assumes that
the material displays close to periodic structure. As explained
later, the near-periodicity assumption enables the use of interpo-
lation for electronic structure reconstruction.

In regards to the second assumption; i.e., small deforma-
tions, in order to formally quantify this concept, the nanostruc-
ture is considered to occupy or be contained inside an initial ref-
erence configurationD0 ⊂ 3. The structure undergoes a change
of shape described by a deformation mapping Φ(r0, t) ∈ 3.

This deformation mapping gives the location r in the global
Cartesian reference frame of each point r0 represented in the
undeformed material frame. As indicated, the mapping might
depend on time t. The variable t does not necessarily represent
the time contemporary with the structure under consideration. In
fact, in a quasi-state simulation framework, this variable might be
an iteration index of an optimization algorithm that solves Eq.(2)
in the case ρA is made of nuclear point charges.

The components of the deformation gradient are introduced
as

FiJ =
∂Φi

∂r0J
(3)

where upper-case indices refer to the material frame, and lower-
case indices to the Cartesian global frame. Thus, F = ∇0 Φ,
where ∇0 represents the material gradient operator, and there-
fore the deformation of an infinitesimal material neighborhood
dr0 about a point r0 of D0 is expressed as

dri = FiJ dr0J (4)

The concept of small distortion is equivalent to requiring that the
spectral radius of F be sufficiently small; that is,

||∇0 Φ||2 < K (5)

is expected to hold for almost everywhere in the domain D0, for
a suitable chosen value of K .

As a consequence of the two assumptions introduced, com-
putational savings are anticipated due to a two-tier interpolation-
based approach that will reduce the dimension of the problem.
First, the electronic structure will be evaluated in some domains
by interpolation using adjacent regions in which a DFT-based ap-
proach is used to accurately solve the electronic structure prob-
lem; this procedure is called electronic density reconstruction
(EDR). Second, the position of the nuclei will be expressed in
terms of the positions of a reduced set of so-called representa-
tive nuclei, repnuclei, in an approach similar to the one proposed
in [6]. The proposed approach solves only for the position of
these repnuclei; the position of the rest of the nuclei is then ob-
tained by interpolation.
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Figure 1. NANOSTRUCTURE PARTITIONED IN COMPUTATIONAL
DOMAINS.

THE ELECTRONIC PROBLEM
The Electronic Problem refers to the computation of the

electron density in a domain surrounding the nanostructure.
There are two ways in which this task can be carried out: in
external-mode, when third-party software is employed to this
end, and internal-mode, when at least in some domain the elec-
tron density is computed directly as the solution of Eq.(1). The
Electronic Problem is addressed by carrying out high accuracy
electronic computation in a select number of domains. In the
remaining domains the electron density is recovered by interpo-
lation.

External-mode Electron Density Reconstruction
Consider, as shown in Fig.1, a two-dimensional structure

D = D1 ∪ . . .∪D9 that surrounds the nanostructure. The figure
presents a two-dimensional case, but the discussion applies both
to the two- and the three-dimensional cases. For the external-
mode EDR, accurate computation using an established code,
such as NWChem [8] for instance, is used to compute ρ in the
reference domains Y1 through Yp. The objective is to develop ef-
ficient tools that compute the solution to the electronic structure
problem up to higher-order terms O (F)2+O (∇0 F) in the entire
domain D = D1 ∪ . . .∪Du that contains the nanostructure. This
is equivalent to carrying out the first step of the classical homog-
enization technique (fluctuation reconstruction) [9].

In reference to Fig.1, in what follows, Y = Y1 ∪ . . .∪Yp ⊂
D; more precisely, there is an integer-to-integer mapping χ :

{1, . . . , p} → {1, . . . ,u} such that Yj = Dχ( j). Considering that
outside D the electron density is zero, the potential generated by
the total charge in the system is

V (r) =
∫

D

ρ(r′)+ρA(r′)
||r− r′|| dr′

Taking for instance the reference domain Y2, it is important to
consider separately the potential that is generated by electronic
density outside this domain, whose complement is denoted by
Ȳ2 = D−Y2, that is, for r ∈ D

Vext(r;Y2) =
∫

Ȳ2

ρ(r′)+ρA(r′)
||r− r′|| dr′+

∫

Y2

ρA(r′)
||r− r′||dr

′ (6)

Thus, the methodology for external-mode EDR starts by consid-
ering the external potential of Eq.(6) for each of the p reference
domainsY1 throughYp. NWChem is applied to compute the elec-
tronic density in these domains. As far as Y2 is concerned,

V (r) =Vext(r;Y2)+
∫

Y2

ρ(r′)
||r− r′||dr

′

which effectively indicates that the influence of the remaining
domains is perceived as the presence of an external potential in
which the reference domain Y2 is immersed. This approach how-
ever hinges upon the availability of ρ in Ȳ2. In the reference
domains Y1 through Yp, ρ is explicitly computed, while based on
the near-periodicity assumption, interpolation is used to recover
ρ in D−Y . For ρi on domain Di a set of weights ϑ is considered
that depends exclusively on the type of interpolation considered
(linear, quadratic, etc.). Thus,

ρi(Φ(r0′, t)) =
p

∑
α=1

ϑα(i)ρα(Φ(r0′+Tiα, t)) (7)

where the vector Tiα is the translation vector that based on the
periodicity assumption takes the point r0′ in domain D0i to its im-
age in the domain Yα. Here, a zero superscript indicates the un-
deformed domain, and by convention, Greek subscripts are used
to index quantities associated with a reconstruction domain Yα,
α = 1, . . . , p. Note that in order to define the deformation field,
an appropriate representation for Φ(r0′, t) is necessary. Follow-
ing the quasicontinuum paradigm [5, 6], this mapping is defined
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based on the relative displacement of a subset of nuclei in the
nanostructure:

Φ(r0′, t) = ∑
A∈B

ϕ(r0′|R0A)Φ(R0A, t) (8)

The deformation needs to be represented only at the points
R0A, A∈B , and is then reconstructed by interpolation at the other
points of the space, by using the shape functions ϕ(·, ·). This as-
pect of the presentation is going to be covered in more detail
when discussing the Ionic Problem.

Note that not all domains need to be included in the elec-
tronic density reconstruction. If a domain Yγ has a defect,
the electronic density is severely distorted away from the near-
periodicity assumption and should not be included in the recon-
struction process in neighboring domains. This translates in tak-
ing ϑγ(i) = 0 for a domain Di ⊂ D−Y when carrying out inter-
polation (the density ργ is nevertheless used for reconstructing
the external potential Vext(r;Yα) for each α *= γ).

Concluding on the external-mode EDR, based on an initial
electron density distribution, three steps that effectively amount
to a nonlinear Gauss-Jacobi method are iteratively taken to re-
construct the electron density in D: (1) for each Yα generate the
external potential as in Eq.(6); (2) carry out accurate DFT com-
putation in each domainYα; (3) use Eq.(7) to evaluate ρ inD−Y .
This iterative process stops when the change in electron density
between successive iterations becomes smaller than a threshold
value.

Internal-mode Electron Density Reconstruction
The discussion for the internal-mode EDR starts with the

premise that for a given ionic distribution, the electronic energy
is expressed as

E(ρ,ρA) =
∫
Θ1(ρ,ρA,r)dr+

∫ ∫
Θ2(ρ,ρA,r;ρ,ρA,r′)dr dr′

(9)
This representation is commonly used in conjunction with the
so-called Orbital-Free DFT (OFDFT) method [10]. Here Θ1,2
are the relevant energy density functionals; ρ is the electronic
density; and ρA is the nuclear density, which may include delta
functions. The first term typically includes the kinetic energy
and an exchange-correlation term, whereas the second integral
includes all pairwise interactions. Details regarding the defini-
tion of these terms are provided by several authors [11–13].

As an example in this paper the proposed methodology is
applied in conjunction with Thomas-Fermi DFT [14, 15]. The
Thomas-Fermi functional has well-known severe accuracy lim-
itations. It provides, however, a simple vehicle that allows the

introduction of an otherwise involved reconstruction methodol-
ogy. The Thomas-Fermi-based energy functional assumes the
form

E [ρ,{RA}] = Ene [ρ,{RA}]+ J [ρ] (10)
+ K [ρ]+T [ρ]+Vnn ({RA})

where

Ene [ρ,{RA}] = −
M

∑
A=1

∫ ZA ρ(r)
‖RA− r‖

dr (11a)

J [ρ] =
1
2

∫ ∫
ρ(r) ρ(r′)
‖r− r′‖ dr dr′ (11b)

T [ρ] = CF
∫
ρ
5
3 (r) dr (11c)

K [ρ] = −Cx
∫
ρ
4
3 (r) dr (11d)

Vnn ({RA}) =
M

∑
A=1

M

∑
B=A+1

ZA ZB
‖RA−RB‖

(11e)

HereCF = 3
10 (3π

2)2/3, andCx = 3
4
( 3
π

)1/3, and the following no-
tation is used:

Ene - energy corresponding to nucleus-electron interaction
J - Coulomb energy
K - exchange energy
T - kinetic energy
Vnn - internuclear interaction energy
ZA - atomic number associated with nucleus A
ri - global position of electron i
RA - global position of nucleus of atom A∫

(·) without integration limits - an integral over the entire
domain.

The expression of the energy functional of Eq.(10) justi-
fies the notation used in Eq.(9): the kinetic, exchange, and
nuclear-electronic energy are represented through the Θ1 term;
the electron-electron interaction is associated with the term Θ2.
In the Thomas-Fermi case, the optimization problem of Eq.(1)
depends parametrically on the positions of the nuclei:

minρ E(ρ;{RA})+λ

(∫
ρdr−N

)
(12a)

s.t.
∫
ρdr−N = 0 (12b)

In a domain decomposition framework, it can be shown [16]
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that solving the above optimization problem in D is equivalent
to solving a set of smaller optimization problems on domains Di.
For this define

Ei [ρi,λi; ρ̄i,{RA}] =CF
∫

Di

ρ
5
3
i (r) dr−Cx

∫

Di

ρ
4
3
i (r) dr (13)

+
∫

Di

∫

D−Di

ρi(r) ρ̄i(r′)
‖r− r′‖ dr dr′+ 1

2

∫

Di

∫

Di

ρi(r) ρ̄i(r′)
‖r− r′‖ dr dr′

−
M

∑
A=1

∫

Di

ZA ρi(r)
‖RA− r‖

dr+λi
∫

Di

ρi dr

where ρ̄i denotes the electronic density in D̄i, i= 1, . . . ,u used as
in Eq.(6) to generate the external potential in which the domain
Di is considered immersed.

The nonlinear-system approach. The equivalent op-
timality conditions for the subdomain optimization problems
[16] are

∇ρiEi(ρi,λi; ρ̄i,{RA}) = 0, i= 1, . . . ,u (14a)
λ1 = . . . = λu (14b)
∫
ρdr−Ne = 0 (14c)

Following the reconstruction paradigm, this accurate computa-
tion of the electron density is only going to be carried out in
the reference subdomains Y1 through Yp (that is, Dχ(1) through
Dχ(p)). The first order optimality conditions for a generic do-
main Yα ∈ Y assume the form [16]

5
3
CFρ

2
3
α (r)− 4

3
Cxρ

1
3
α (r)+

u

∑
i=1

∫

Di

ρi(r′)
||r− r′||dr

′ (15)

−
M

∑
A=1

ZA
||r−RA||

+λ= 0

Next, the density ρi on domain Di is expressed in terms of re-
construction densities ρα ∈ Yα,α ∈ {1, . . . , p} based on Eq.(7).
Taking into account the deformation of the structure,

∫

Di

ρi(r′)
||r− r′||dr

′ =
p

∑
α=1

∫

Y 0α

ρα(Φ(r0′, t))K̃iα(r0,r0
′) dr0′(16a)

K̃iα(r0,r0
′) =

ϑα(i) |F(r0′ −Tiα, t)|
||Φ(r0, t)−Φ(r0′ −Tiα, t)||

(16b)

Define for r0 ∈ Y 0α

Kαγ(r0,r0
′) =

u

∑
i=1

K̃iγ(r0,r0
′) (17a)

Then, Eq.(15) yields

5
3
CFρ

2
3
α (Φ(r0, t))+

p

∑
γ=1

∫

Y 0γ

Kαγ(r0,r0
′)ργ(Φ(r0′, t))dr0′(17b)

−4
3
Cxρ

1
3
α (Φ(r0, t))−

M

∑
A=1

ZA
||Φ(r0, t)−Φ(R0A, t)||

+λ= 0

which should hold for any r0 ∈ Yα. Finally, since ρ ≥ 0, a new
function η is introduced such that

ρ(Φ(r0, t)) = ηs(r0, t) (18a)

where s≥ 4 is an even integer; a recommended value is s= 4, and
this will enforce only non-negative values for the density ρ. This
new function must then satisfy in the subdomainYα the following
integral equations:

5
3
CFη

2s
3
α −

4
3
Cxη

s
3
α +

p

∑
γ=1

∫

Y 0γ

Kαγ(r0,r0
′)ηsγ(r0

′
, t)dr0′ (18b)

−
M

∑
A=1

ZA
||Φ(r0, t)−Φ(R0A, t)||

+λ= 0

The algorithm at this point calls for the solution of a nonlin-
ear system of integral equations in ρα, α = 1, . . . , p. In order to
solve this system, the reconstruction domains Yα are meshed by
using hexahedrons. These meshes are denoted in what follows
by G1 through Gp, and they are associated with Y1 through Yp,
respectively.
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The direct numerical solution of the nonlinear system of in-
tegral equations becomes intractable in Cartesian coordinates be-
cause of the singularity when the grid points in a mesh Gα ap-
proach a nuclei of location RA (see Eq.(18b)). When approached
in spherical coordinates in a three-dimensional representation
this apparent singularity is nonexistent [16]. Below, a potential-
smoothing step is introduced to address the situation when r0→
R0A. Compared to the original term ||Φ(r0, t)−Φ(R0A, t)||−1, the
δ-smoothing function

Sδ(r0,R0A, t) =
1− e−

||Φ(r0 ,t)−Φ(R0A,t)||
δ

||Φ(r0, t)−Φ(R0A, t)||
(19)

behaves similarly for large values of ||Φ(r0, t)−Φ(R0A, t)|| and
δ small but positive, but it converges to 1

δ rather than going to
infinity when r0→ R0A. Thus, the smoothing process applied to
Eq.(18b) leads to

5
3
CFη

2s
3
α −

4
3
Cxη

s
3
α +

p

∑
γ=1

∫

Y 0γ

Kαγ(r0,r0
′)ηsγ(r0

′
, t)dr0′ (20)

−
M

∑
A=1

ZA Sδ(r0,R0A, t)+λ= 0

To make the presentation simpler, the following notation is intro-
duced:

ηβ j – the value of η at the node j of grid Gβ
τ– a generic grid discretization cell of volume ||τ||
V (τ) – the set of vertices associated with cell τ (four for a
tetrahedron, eight for an hexahedron, etc.)
|Gα| – the number of grid points in Gα

Y 0γ – undeformed reconstruction domain meshed with Gγ;
Yγ = ∪τ∈Gγ τ

After discretization, the integral equation above yields at an ar-
bitrary grid node i ∈ Gα of location r0i ∈ Yα,

5
3
CFη

2s
3
αi +

p

∑
γ=1



 ∑
τ∈Gγ

∫

τ

Kαγ(r0i ,r0
′) ηsγ(r0

′
, t)dr0′



 (21)

−4
3
Cxη

s
3
αi−

M

∑
A=1

ZA Sδ(r0i ,R0A, t)+λ= 0

The integral on τ is performed by q-point Gaussian numerical

quadrature with weights wl :

∫

τ

Kαγ(r0i ,r0
′) ηsγ(r0

′
, t)dr0′ ≈ ||τ||

q

∑
l=1

wl Kαγ(r0i ,r0l
′) ηsγ(r0l

′
, t)

Figure 1 shows in the two-dimensional case a mesh cell and the
quadrature points. As indicated in this figure, r0i describes the
position of the grid nodes; the interior points (quadrature points)
are located at r0l

′. The abscissas r0l
′ of the quadrature points are

different from the mesh (grid) points, and the value of the un-
known function η at these abscissas is obtained by interpolation.
Interpolation at point r0l

′ ∈ τ, using a set of shape functions ϕd
associated with the nodes d ∈ V (τ), yields

ηsγ(r0l
′
, t)≈ ∑

d∈V (τ)
ηsγd ϕd(r0l

′
, t) = ∑

d∈V (τ)
ηsγd ϕ

l
d

where ϕld are constants that can be precomputed. If one defines
for r0 ∈ Yα and r0l

′ ∈ Yγ

kαγd(r0) =
q

∑
l=1

wl ϕld Kαγ(r0,r0l
′) , (22a)

the discretized form of the integral equation expressed at grid
node i ∈ Gα of location r0i ∈ Yα becomes

5
3
CFη

2s
3
αi −

4
3
Cxη

s
3
αi+

p

∑
γ=1

[

∑
τ∈Gγ

||τ|| ∑
d∈V

kαγd(r0i ) ηsγd

]
(22b)

−
M

∑
A=1

ZA Sδ(r0i ,R0A, t)+λ= 0

By denoting the left side of Eq.(22b) by Pαi(η), where η =
(η11,η12, . . . ,ηp1,ηp2, . . .)T , the nonlinear system of equations
that should be solved becomes

Pαi(η) = 0 (23)

for α ∈ {1,2, . . . , p}, i= 1, . . . , |Gα|.
One additional equation is added to the set of ∑p

α=1 |Gα|
equations above, and it follows from the charge constraint of
Eq.(1b). The central idea is again to use the electronic density
in the reconstruction domains Yα to express the electronic den-
sity in the whole domain D. Skipping the intermediary steps,
this yields
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∫

D

ρ(r)dr=
p

∑
α=1

∫

Y 0α

ηsα(r0, t)K̂α(r0, t)dr0 (24a)

K̂α(r0, t) =
u

∑
i=1

ϑα(i) |F(r0−Tiα, t)| (24b)

For the charge constraint equation, using for the evaluation of
the integral on a cell of the undeformed grid Y 0α the same quadra-
ture rule and using the same interpolation method to evaluate the
function at the quadrature points yields:

p

∑
α=1



 ∑
τ∈Y 0α

∑
d∈V (τ)

ηsαd k̂αd



−Ne = 0 (25a)

k̂αd =
q

∑
l=1

wl ϕld K̂α(r0l , t) (25b)

If a Newton-type method is considered for the solution of the
nonlinear system of Eqs.(23) and (25a), the partials are computed
as

∂Pαi
∂ηαi

=
10s
9
CFη

2s−3
3

αi − 4s
9
Cxη

s−3
3

αi + ∑
τ∈Y 0α

||τ|| δατi kααi(r0i ) ηs−1αi

(26a)
where δατi = 1 if for τ ∈ Gα, i ∈ V (τ), and δατi = 0 otherwise.
When i *= j or α *= β,

∂Pαi
∂ηβ j

= ∑
τ∈Y 0β

||τ|| δβτ j kαβ j(r
0
i ) η

s−1
β j (26b)

Likewise,

∂P00
∂ηβ j

=
p

∑
α=1

∑
τ∈Y 0α

s ηs−1αd δατd k̂αd (26c)

where, by convention, P00(η) is a notation for the left side of
Eq.(25a).

The Optimizations approach. In this approach the in-
terpolation of Eq.(7) is used to create a reduced energy functional
that depends only on the electron density ρα, in the reconstruc-
tion domains Yα, α= 1, . . . , p. This reduced energy functional is

then minimized.
For α,γ= 1,2, . . . , p, r0 ∈ Y 0α , r0′ ∈ Y 0γ , define

J̃αγ(r0,r0
′
) =

u

∑
i=1

u

∑
j=1

vα(i)vγ( j)
|F(r0−Tiα, t)| · |F(r0′ −T jγ, t)|
||Φ(r0−Tiα, t)−Φ(r0′ −T jγ, t)||

L̃α(r0) =
M

∑
A=1

u

∑
i=1

vα(i)
∣∣F(r0−Tiα, t)

∣∣

||Φ(r0−Tiα, t)−Φ(R0A, t)||

M̃α(r0) =
u

∑
i=1

vα(i)
∣∣F(r0−Tiα, t)

∣∣

Based on Eq.(7), several of the terms in Eq.(10) become
functions of densities in the representative domains:

J(ρ) =
1
2

p

∑
α=1

p

∑
γ=1

∫

Y 0α

∫

Y 0γ

J̃αγ(r0,r0
′
)ρα(Φ(r0, t))ργ(Φ(r0′ , t))dr0dr0′

Ene(ρ) = −
p

∑
α=1

∫

Y 0α

L̃α(r0)ρα(Φ(r0, t))dr0,

∫
ρdr =

p

∑
α=1

∫

Y 0α

M̃α(r0)ρα(Φ(r0, t))dr0

The difficult part has to do with the kinetic energy and ex-
change terms T [ρ], K[ρ] whose dependence on the density is not
linear and, outside the Thomas-Fermi theory, not even simple to
state. Assume that the latter terms are described by a univari-
ate density Θ1(ρ,r), as indicated by the first term of Eq.(9). For
instance, for the Thomas-Fermi representation,

Θ1(ρ,r) =CFρ
5
3 (r)−Cxρ

4
3 (r)

which then leads to

T [ρ]+K[ρ]≈
p

∑
α=1

∫

Y 0α
M̃α(r0)Θ1(ρα,Φ(r0, t))dr0

With these approximations and definitions and referring
back to Eq.(10), the following electronic structure computation
problem is defined:

minEIO(ρ), subject to
∫
ρ= N, (27)

7 Copyright c© 2005 by ASME



where we use the superscript “IO” to denote the “interpolate-and-
optimize” approach, and EIO represents the quantity obtained
in Eq.(10) after expressing the energy as a function of electron
densities in the reconstruction subdomains only. The evalua-
tion of the energy EIO on a grid, and details of the optimization
process (gradient computation) is detailed in an upcoming publi-
cation [17].

Nonlinear equations vs. optimization approaches
Recall that optimality conditions followed by interpolation

eventually led to the nonlinear system of Eqs.(22b) and (24a).
One can be immediately prove that, in aggregate, this system
does not represent the first-order conditions of an optimization
problem. That issue is a bit unsettling because solving optimiza-
tion problems is typically a more robust process than is solving
equivalent nonlinear equations, since any local minimum of the
optimization problem satisfies the nonlinear equation of its op-
timality conditions. When only a nonlinear system is available,
a local minimum of the residual is not necessarily a solution of
the nonlinear system. It is therefore important to assess whether
there exists an optimization problem that is equivalent, at least up
to the leading order of the homogenization error, with the non-
linear system (see [16] for a mode detailed discussion on this
topic).

In an abstract formulation, we have the following problem:

min
x1,x2

f (x1,x2)

where the variables x1 correspond to the representative degrees of
freedom, whereas x2 correspond to the rest of the degrees of free-
dom, and an operator T relates x2 to x1. Thus, in EDR the repre-
sentative degrees of freedom are the ones used to parametrize the
electron density in the representative domainsYα, α= 1,2, . . . , p;
the mapping T (·) is the interpolation-based operator from (7).
Likewise, in the quasicontinuum method [6], the representative
degrees of freedom are the positions of the representative nu-
clei repnuclei; the location of the remaining nuclei, abstractly
denoted by x2, is then obtained as x2 = T (x1), where T (x1) is the
piecewise linear interpolation mapping with nodes at the repnu-
clei.

Based on this observation, one can formulate the nonlinear
equation

∇x1 f (x1,x2), x2 = T (x1) (28)

which will provide the same solution as the original problem.
However, the problem is an equilibrium problem with equilib-
rium constraints rather than a minimization problem. Further-
more, it immediately results using the chain rule that the opti-

mization problem

min
x1

f (x1,T (x1)) (29)

has the same solution as the previous two, provided that the re-
duced Hessian is positive definite, which should be true if the
original Hessian was positive definite, and the interpolation map-
ping is full rank. This observation presents the advantage that
one solves an optimization problem as opposed to a system of
nonlinear equations, with better global convergence safeguards.
When there are many local minima, this should help avoid the
points that do not have the correct inertia of the Hessian.

The case in Eq.(28) corresponds to the internal nonlinear-
system approach, whereas the case in Eq.(29) corresponds to
the internal optimization approach. The following result settles
in the positive the question of whether the two approaches are
equivalent in the limit of the ansatz x2 = T (x1) [16]:

Theorem 1. Assume that the solution x∗ = (x∗1,x∗2) of the orig-
inal optimization problem satisfies ‖x∗2−T (x∗1)‖ . 1; therefore
the multiscale ansatz is not perfect but is merely very good. Then
the solution x̃1 of the nonlinear equation and x̂1 of the reduced
optimization problem satisfy

‖x∗1− x̃1‖= O(‖x∗2−T (x∗1)‖
2) ‖x∗1− x̂1‖= O(‖x∗2−T (x∗1)‖

2)

NANOSTRUCTURE SHAPE INVESTIGATION
The optimization of the geometry of a nanostructure (called

hereafter the Ionic Problem), to find the most stable shape re-
duces to minimizing the total energy given a ground state elec-
tronic energy Ee as a function of the position of the nuclei. More
precisely, the equilibrium configuration of a nanostructure is pro-
vided by that distribution of the nuclei that minimizes the energy

Etot = Ee+Enn (30)

where Enn is the nucleus-nucleus interaction energy and, central
to this development, Ee is the electronic ground-state energy for
the considered nuclear distribution.

Following the Born-Oppenheimer assumption, the elec-
tronic energy depends parametrically on the positions of the nu-
clei through the dependence of the electronic density on the nu-
clei positions. Thus, in a general form (that has the Thomas-
Fermi of Eq.(10) as a subcase),
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Ee = T [ρ(r)]+EHar[ρ(r)]+Exc[ρ(r)]+
∫
ρ(r)Vext(r;{RA})dr

(31)
where T [ρ(r)] is the kinetic energy functional, EHar[ρ(r)] is the
electron-electron Coulomb repulsion energy, Exc[ρ(r)] is the ex-
change and correlation energy, and Vext(r;{RA}) is the ionic po-
tential, which parametrically depends on the distribution of the
nuclei {RA}. The explicit dependence of T [ρ(r)] and Exc[ρ(r)]
on the density ρ(r) is typically not available, and consequently
it is approximated in some fashion [10, 18–20], an issue beyond
the scope of this document. According to the Hohenberg-Kohn
theorem [7], the electronic density is such that it minimizes Ee
subject to the charge conservation constraint of Eq.(1b). The fol-
lowing results is proved in [16]:

Theorem 2. Consider the optimization problem

min
{RA}

Etot = Ee+Enn (32a)

subject to the constraint that for a nuclear configuration {RA}
the energy Ee is the electronic ground-state energy, and the elec-
tronic density ρ̂ that realizes this electronic ground energy addi-
tionally satisfies the charge constraint equation of Eq.(1b). Un-
der these assumptions, the first-order optimality conditions for
the optimization problem of Eq.(32a) lead to

FK =
∂Eext
∂RK

+
∂Enn
∂RK

= 0 (32b)

where FK is interpreted as the force acting on nucleus K, and

Eext(r;{RA}) = −
M

∑
A=1

∫
ρ̂(r)Vext (r;{RA})dr (32c)

= −
M

∑
A=1

∫ ZAρ̂(r)
|r−RA|

dr

Enn =
1
2

M

∑
A=1

M

∑
B=A+1

ZAZB
RAB

(32d)

For each nucleus K in the system, Eq.(32b) leads to the con-
dition

∫
ρ̂(r) r−RK

||r−RK ||
3
2
dr +

M

∑
A=1,A*=K

ZA
RA−RK

||RA−RK ||
3
2

= 0 (33)

A couple of remarks are in order. First, the value of the
above theorem is that it allows to solve the nuclear equilibrium
problem by using only the solution of the electronic density prob-
lem, and not the values and the derivatives of the kinetic and ex-
change energy functionals. Therefore, an entirely nontransparent
encapsulation of the electronic structure problem can be used,
which allows the proposed approach to work well with legacy
codes that do not provide all the needed derivatives. The key
observation is that once the electronic density is available, the
equilibrium conditions of Eq.(33) can be imposed right away.
Whether the electronic structure computation is done with third-
party software is irrelevant; moreover, there is no need to know
the explicit dependence of the energy Ee on the electronic den-
sity ρ(r). Second, as suggested in [21], the one-atom conditions
of Eq.(32b) can be replaced by cluster conditions, an alternative
that will be explored in the future.

When a local quasicontinuum approach is used, the condi-
tion of Eq.(33) is imposed only for repnuclei; that is, only for
K ∈ B (see Eq.(8)). The position of the rest of the atoms in the
system is then expressed in terms of the position of the repnuclei.
The repnuclei become the nodes of an atomic mesh, and interpo-
lation is used to recover the position of the remaining nuclei. For
instance, if the atomic mesh is denoted by M , τ is an arbitrary
cell in this mesh, V (τ) represents the set of the nodes associated
with cell τ, and ϕL is the shape function associated with node L,
then the condition of Eq.(33) is approximated as

∫
ρ̂(r) r−RK

||r−RK ||
3
2
dr + ∑

τ∈M
∑
A∈τ

ZA

∑
L∈V (τ)

RLϕL(RA)−RK

|| ∑
L∈V (τ)

RLϕL(RA)−RK ||
3
2

= 0

(34)
This effectively reduces the dimension of the problem from

3M (the (x,y,z) coordinates of the nuclei), to 3Mrep, whereMrep
is the number of nodes in the atomic mesh (the number of repnu-
clei). The sum in Eq.(34) is most likely not going to be the sim-
ulation bottleneck (solving the electronic problem for ρ̂ is sig-
nificantly more demanding), but fast-multipole methods [22–24]
can be considered to speed the summation.

Denoting by Pi, i= 1, . . . ,Mrep, the position of the represen-
tative nucleus ni, the set of nonlinear equations of Eq.(34) can
be grouped into a nonlinear system that is solved for the relaxed
configuration of the structure.

f1(P1,P2, . . .PMrep) = 0
f2(P1,P2, . . .PMrep) = 0
· · ·
fMrep(P1,P2, . . .PMrep) = 0

(35)
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where fK is the left side of Eq.(34). Finding the solution of this
system is done by a Newton-like method. Evaluating the Jaco-
bian information is straightforward but not detailed here.

Finally, note that within Eq.(34) a connection is made back
to Eq.(8); the position of an arbitrary nucleus A in cell τ is com-
puted based on interpolation using the nodes V (τ), one of many
alternatives available (one could consider repnuclei from neigh-
boring cells for instance). Effectively, this provides in Eq.(8) an
expression for Φ(·, t) that depends only on A ∈ V (τ) rather than
A ∈ B .

PROPOSED COMPUTATIONAL SETUP
Given a nanostructure of known atomic composition (not

necessarily mono-atomic or single-crystal), the goal is to deter-
mine the electron density distribution as well as the final con-
figuration of the nanostructure, that is, the mapping Φ. Because
of the assumption that the kinetic energy of the nuclei is zero,
the problem corresponds to a zero Kelvin temperature scenario.
A methodology that handles the nonzero temperature case is not
addressed here; most likely, it would follow an approach similar
to that of Car-Parrinello [25], or Payne et al. [26].

As indicated in Fig.2, the proposed solution has three prin-
cipal modules: the Preprocessing stage, the Electronic Problem,
and the Ionic Problem. Preprocessing is carried out once at the
beginning of the simulation. A suitable chosen domain D is se-
lected to include the nanostructure investigated. The partition-
ing of D into u subdomains Di, i = 1, . . . ,u, is done to mirror
the underlying periodicity of the structure. A set of subdomains
Dχ(1) through Dχ(p) is determined to constitute the reconstruc-
tion domains, and as in Fig.1, they are denoted by Y1 through Yp.
In these p subdomains explicit electronic structure computation
will be carried out accurately. A set of values of the electronic
density is required at the nodes of the discretization mesh; the
initial guess for the electronic density could be a uniform distri-
bution throughout the nanostructure or, when practical, could be
obtained based on a periodic boundary conditions assumption by
computing it in a domain Dj and then cloning for the remaining
domains Dk. Preprocessing concludes with the initialization of
the deformation map Φ to be the identity mapping.

The Electronic Problem can be solved externally or inter-
nally. When it is solved externally, a specialized code such as
NWChem [8] is employed to compute the electronic density
in the reconstruction subdomains Yα,α ∈ {1, . . . , p}. When the
Electronic Problem is solved internally (only for qualitative stud-
ies, using for instance the Thomas-Fermi DFT, or OFDFT), the
computation requires a mesh grid on which the integrals asso-
ciated with the formulation are discretized. The algorithm uses
three-dimensional interpolation to provide for the density in Dj,
where j ∈ {1, . . . ,u}−{χ(1), . . . ,χ(p)}.

Independent of the type of solver invoked (external or in-
ternal), using a suitable norm the new electronic density ρnew

!"#$%&'%"()#*&
+,-&.&,"%)/0"1*-

Reevaluate deformation 
mapping Φ

Reposition nuclei 
based on newρ

 
IONIC

PROBLEM

PREPROCESSING
Partition  in ( 1, , )iD D i u= !

Initialize deformation 
mapping  to identityΦ

Select reconstruction 
domains Y  ( 1, , )pα α = !

Mesh domains Y  ( 1, , )pα α = !

Provide  in Y  ( 1, , )init pα αρ α = !

Select repnuclei

 
ELECTRONIC
PROBLEM

Solve system of Integral 
Equations for newρ

init newρ ρ= ?new initρ ρ ε− <

Run external DFT code
in Y ( 1, , )pα α = !

Reconstruct potential 
based on initρ

Interpolate  from initρ ρ

Figure 2. COMPUTATIONAL FLOW.

is compared to ρinit , and the computation restarts the Electronic
Problem after setting ρinit = ρnew, unless the corrected and initial
values of the electronic density are close. This iterative process
constitutes the first inner loop of the algorithm.

The Ionic Problem uses the newly computed electronic den-
sity to reposition the nuclei and thus alter the shape of the struc-
ture. The nonlinear system of Eq.(35) provides the position of
the repnuclei; the other nuclei are positioned based on the quasi-
continuum paradigm according to Eq.(32b). The nonlinear sys-
tem in Eq.(35) is solved by an iterative method, which leads to
the second inner loop that in turn has four steps:

1. Evaluate the integral of Eq.(34); when necessary, evaluate
its partial with respect to Pi

2. Evaluate the double sum of Eq.(34), which is based on a par-
titioning of the structure; when necessary, evaluate its partial
with respect to the position of the representative atoms

3. Carry out a quasi-Newton step to update the positions Pi of
theMrep representative nuclei.

4. Go back to 1 if not converged
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Figure 3. THOMAS-FERMI SOLUTIONS.

The precision in determining the position of the nuclei is di-
rectly influenced by the accuracy of the electronic density ρ(r).
Accurately solving the Electronic Problem is computationally in-
tensive, and thus an important issue not addressed by this work is
the sensitivity of the solution of the nonlinear system of Eq.(35)
with respect to ρ(r). It remains to determine whether a crude
approximation of the electronic density suffices for solving the
Ionic Problem at a satisfactory level of accuracy.

After determining the position of the nuclei, the algorithm
computes the new deformation mapping Φ according to Eq.(8).
If the overall change in the position of repnuclei at the end of the
Ionic Problem is smaller than a threshold value, the computation
stops; otherwise the new distribution of the nuclei is the input to
a new Electronic Problem (second stage of the algorithm).

In summary, the algorithm passes through the Preprocessing
stage once. It then solves the Electronic Problem (the first inner
loop) and proceeds to the Ionic Problem (the second inner loop).
The outer loop (Electronic Problem, followed by Ionic Problem)
stops when there is no significant change in the position of the
repnuclei.

NUMERICAL RESULTS
For a simple example, this section compares the numeri-

cal results obtained with the direct minimization approach of the
Thomas-Fermi DFT, with the ones produced by EDR using the
internal optimization approach introduced in this paper.

In the one-dimensional test, eleven equally spaced nuclei
with unit charge, ZA = 1, are considered; the total number of
electrons is Ne = 11. The location of the atoms corresponds to
the peaks seen in Fig.(3). Amesh is constructed that has 50 nodes
per cell, with 30 of them equally spaced on an interval centered

1 2 3 4 5 6 7 8 9 10 11
0.9
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0.94

0.96

0.98

1

1.02

1.04

Index of the domain

Total charge in subdomains

Direct Simulation
Linear Reconstruction
Quadratic Reconstruction

Figure 4. THOMAS-FERMI TOTAL CHARGE.

at the position of the atom and whose length is 1/5 of the dis-
tance between two atoms. This results in 11 domains, D1, D2,
. . ., D11; for this example, Y1 = D1, Y2 = D2, Y3 = D6, Y4 = D10,
Y5 = D11. For discretization of the integral operators the trape-
zoidal rule was considered. Only the domains D2, D6,D10 are
used for interpolation in order to avoid the boundary distortion.
Either piecewise linear, or quadratic interpolations is employed
for the interpolation-based approach. The parameter δ = 10−4
leads to a slightly different regularization from that described in
the previous sections (see Eq.(19)), whereby terms of the type
1/|| · || are replaced with 1/|| ·+δ||.

The resulting electronic structure optimization problem is
solved with the augmented Lagrangian software Lancelot [27],
which uses an iterative method to solve the bound constrained
subproblem obtained after penalization of the constraints. When
using the interpolation method, the interpolation conditions of
Eq.(7) are actually enforced as constraints, rather than substitut-
ing them in the functional that describes the problem (see EIO of
Eq.(27)). When efficiency is a concern, this substitution would
be carried out and only the electronic density degrees of freedom
in D1, D2,D6,D10,D11 would be considered. The objective here
is only to validate the interpolation-based reconstruction without
regard to computational efficiency.

The solution of the direct numerical simulation and of the
linear-interpolation-based optimization are presented in Fig.3.
The results are almost identical, which is an indication that the
interpolation approach was effective in reconstructing the so-
lution in the “gap” domains. The results were better yet for
the quadratic-interpolation-based reconstruction (not presented
in the figure). Note, however, that the solutions are not identical.
This can be seen by computing the total charge in the subdo-
mains. The results for the three numerical experiments are pre-
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sented in Fig.3, the right panel. This indicates that the quadratic
interpolation method produced a very good fit, with a relative er-
ror that is uniformly below 2% for domains 2 through 10. The
solution presents some artifacts at the very end of the domain.
That in itself is not surprising, given the limitations associated
with the Thomas-Fermi DFT.

CONCLUSIONS
The paper proposes a theoretical framework for nanostruc-

ture investigation. The near-periodicity and small-deformation
assumptions introduced are at the center of a methodology that
uses interpolation and coupled cross-domain optimization tech-
niques to increase the size of the problems that rely on a DFT-
based solution component. In this and the companion work [16],
for the electron density computation (the Electronic Problem)
formal error bounds are provided for the interpolation and cross-
domain reconstruction techniques used. The EDR process can be
done internally by following a nonlinear-system approach, or an
optimization approach introduced here in conjunction with the
Thomas-Fermi DFT; alternatively, it can be carried out exter-
nally by using dedicated third-party software such as NWChem.
In either case, the EDR methodology calls for the solution of a
cross-domain coupled nonlinear problem. The last step of the
proposed methodology solves the Ionic Problem; that is, reposi-
tioning the nuclei of the structure given the electronic density in
the domain. It was shown that the new ionic configuration is the
solution of a nonlinear system obtained based on first-order op-
timality conditions. The Jacobian information for this system is
readily available, and its solution does not require the explicit de-
pendency of the kinetic and exchange-correlation energies on the
electronic density. The proposed methodology is currently being
implemented for three-dimensional structures. The short-term
goal is to use the EDR methodology to determine the electronic
structure of an inner defect in a silicon crystal. Early simulation
results are promising, setting the stage for future tests with more
complex structures and more sophisticated DFT approaches.
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