

Statistical Data Reduction
for Efficient Application Performance Monitoring

Lingyun Yang1 Jennifer M. Schopf2 Catalin L. Dumitrescu1 Ian Foster1,2
1Department of Computer Science, University of Chicago, Chicago, IL 60637

2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
[lyang, catalind]@cs.uchicago.edu [jms, foster]@mcs.anl.gov

Abstract

There is a growing need for systems that can
monitor and analyze application performance data
automatically in order to deliver reliable and sustained
performance to applications. However, the
continuously growing complexity of high performance
computer systems and applications makes this process
difficult. We introduce a statistical data reduction
method that can be used to guide the selection of
system metrics that are both necessary and sufficient to
describe observed application behavior, thus reducing
the instrumentation perturbation and data volume to be
managed. To evaluate our strategy, we applied it to
one CPU-bound Grid application using cluster
machines and GridFTP data transfer in a wide area
testbed. A comparative study shows that our strategy
produces better results than other techniques. It can
reduce the number of system metrics to be managed by
about 80%, while still capturing enough information
for performance predictions.

1. Introduction
Recent experience in deploying Grid middleware

demonstrates the challenges one faces in delivering
robust services in distributed and shared environments
[12]. Applications often must deliver reliable
performance despite the use of distributed and shared
resources. The first step toward this kind of fault
tolerant and adaptive computing is to monitor the
performance of system components such that we can
diagnose the reason an anomaly happens. As high-
performance computer systems and applications
continue to increase in complexity, performance
monitoring and analysis grows more difficult.

There are two approaches to understand
relationships among performance components and to
address application performance problems. The most
common one is to build a performance model of the
application [15] . However, such models are usually

application specific and are themselves difficult and
costly to build especially in the distributed and
heterogeneous environments.

The second approach is to use instrumentation
systems that capture information on a large number of
these time-varying system metrics and then analyze the
relationship among system components and
applications [7]. However, direct instrumentation can
influence the performance of target systems and
produce tremendous volumes of data [10]. To combat
such performance instrumentation consequences and
simplify data analysis, we need mechanisms to select
only necessary metrics and measurement points.

We focus here on how to use a two-step statistical
data reduction strategy that selects only the monitoring
metrics that are necessary and sufficient for capturing
relevant application behaviors. Our goal is to reduce
perturbations and data volume while retaining
meaningful event characteristics. We evaluate the
effectiveness of our data reduction strategy in two
different contexts, namely a CPU-bound astrophysics
application and GridFTP data transfer. The rest of this
paper is organized as follows. Section 2 describes the
problem. Section 3 introduces our data reduction
strategy. Section 4 presents our experimental results.
Section 5 introduces related work. In Section 6, we
briefly summarize our effort.

2. Problem and Approach
Previous studies [9] show that variability in

resource characteristics can have a major influence on
application performance. To formalize this notion, we
consider a distributed system with p resources, each
characterized by a set of system metrics. For example,
a resource CPU might have three system metrics:
percentage of CPU utilization at the user level,
percentage of CPU utilization at the system level, and
percentage of time that the CPU was idle. The
characteristics of the system including p resources can
be described by the set of all system metrics:

 M =

where ni is the number of metrics for the ith resource;
and mi

j is the jth metric for the ith resource.
We also introduce the notion of a performance

metric, a quantitative description of some aspect of
application performance. For example, one useful
metric for an application that calculates the product of
two matrices might be the number of multiplications
finished during a time unit. Depending on the system
metrics available on a particular system and the
performance metrics of interest to the user, we may
find that there is a correlation between some function
of some subset of the system metrics and a particular
performance metric. If such a function and subset exist
and can be identified, then we can use this system
metric set as predictors for the performance metric.

We now state our problem as follows: Given a
system, a set of system metrics, and an application
described by a performance metric, identify a minimal
set of system metrics that can be used to predict the
performance metric with a desirable level of accuracy.

For solving this problem, we exploit the fact that
some metrics are redundant. For example, the value of
the metric used memory is equal to the total memory
size minus the value of the metric unused memory, and
vice versa.

Definition 1: Two system metrics m1, m2 are
dependent on each other if and only if the values of the
two system metrics are correlated with each other at a
level greater than a specified threshold. Otherwise, m1
and m2 are independent. !

For example, the value of used memory and the
value of unused memory of the same machine are
dependent on each other. Only one is necessary; the
other is redundant and can be eliminated from the set
of potential predictors without losing useful
information..

We also take into account the fact that not all
system metrics are related to the performance metric.
For example, in the case of a program that calculates
the sum of several integers, CPU utilization is likely to
be strongly related with execution speed, while the
number of opened files is not. To describe the
relationship between system metrics and performance
metric, we introduce the following definition:

Definition 2: A performance metric y is
predictable by system metrics m1,m2,…mn if and only
if the value of y can be predicted by a function of
variables m1,m2…mn, expressed by y=F(m1,m2,…, mn).
We then call y the response variable and each system
metric mi (i=1..n) a predictor of y. !

With the above definitions, our problem can be
formalized as follow: Given an application
characterized by a performance metric y and a system
characterized by a set of metrics M, our goal is to find
a subset of system metrics S= (x1,x2,…, xn), S⊆M such
that (a) every pair of system metrics in S, xi and xj,
i=1..n, j=1..n , i≠j, are independent and (b) every
system metric xi, i=1..n, is a predictor of the
performance metric y of the application running on this
system, using a given model. The goal of criterion (a)
is to remove redundant system metrics. The goal of
criterion (b) is to find all metrics that predict
application behavior and remove those that do not.

3. Statistical Data Reduction
From the above considerations, we know that two

kinds of unnecessary system metrics can be reduced
without losing any useful information when predicting
a specified performance metric with a desired level of
accuracy. We proceed in two steps: (1) eliminate
dependent system metrics (Section 3.1) and (2) identify
and further eliminate irrelevant system metrics (Section
3.2) with each step reducing one kind of unnecessary
system metrics. The result of our strategy is a subset of
system metrics that are necessary for predicting the
performance metric and are independent of each other.
In Section 3.3 we discuss the criteria used to evaluate
the data reduction strategy.

3.1. Redundant System Metrics Reduction
Dependent system metrics (Definition 1) are

metrics that are strongly correlated with each other.
Since a pair of dependent metrics conveys essentially
the same information, only one is necessary; the other
is redundant and can be eliminated.

We use the Pearson Product-Moment Correlation
Coefficient (r), or correlation coefficient for short, to
obtain a quantitative estimation of the degree of
correlation between two system metrics. The
correlation coefficient provides a measure of the degree
of linear relationship between two variables [16]. A
high correlation coefficient value indicates that the two
variables can be calculated from each other by some
linear model.

To identify system metrics that are dependent on
each other, we first construct a correlation matrix by
computing the correlation coefficient between every
pair of system metrics. Then, we apply a clustering
algorithm to this matrix to identify clusters of system
metrics such that every metric in a cluster has a
correlation coefficient with absolute value above a
threshold value to at least one other metric in the
cluster. We conclude that the system metrics in one
cluster capture essentially the same information and
eliminate all but one of those metrics.

m1
1, m1

2,…, m1
n1;

m2
1, m2

2,…, m2
n2;

…
mp

1, mp
2,…, mp

np ;

The research question we consider is: “How much
data do we need to determine whether an observed
correlation is significant?” To show why this is
important, Figure 1 shows 20 sample correlation
coefficients between the number of transfers issued per
second and the number of memory pages cached per
second for data collected during the execution of one of
our test applications, Cactus [3] (Section 4). Because
these two system metrics describe the performance of
two independent components in the system, we would
not expect them to be strongly correlated. As shown in
Figure 1, however, while in most cases (16 cases or
80% of the time) the absolute value of the sample
correlation coefficients between these two metrics is
small (< 0.2), in a few cases (4 cases or 20% of the
time) the absolute value is high (as high as 0.98 in our
example). Thus, a correlation coefficient obtained by
using a single sample could cause a false positive error
and group these two independent system metrics into
one cluster.

- 1
- 0. 6
- 0. 2
0. 2
0. 6

1

1 3 5 7 9 11 13 15 17 19

sampl es

r

Fig. 1: Sample correlation coefficient between

the number of transfers issued per second
and the number of memory pages cached per

second for 20 Cactus runs

To reduce the chance of such false positive errors,
we use a one-tailed Z-test to determine whether an
observed correlation is statistically significant. The Z-
test is a statistical method used to test the viability of a
hypothesis in the light of sample data with specific
confidence. More specifically, in our strategy, the
hypothesis to be tested is as follows: The actual
correlation coefficient is less than or equal to the
threshold value. Given a set of sample data, the Z-test
tests the possibility of observing the sample correlation
coefficient if the hypothesis is true. If the possibility is
small (< 5% in our work), we can reject the hypothesis
with more than 95% confidence and say that the real
correlation coefficient is statistically larger than the
threshold value. We then group the two system metrics
involved into one cluster.

Thus, given a set of samples, we proceed as
follows. We perform the Z-test for the correlation
coefficient between every pair of system metrics, and
we group two metrics into one cluster only when the
absolute value of their correlation coefficient is larger
than the threshold value with 95% confidence. The
result of this computation is a set of system metric

clusters. System metrics in each cluster are strongly
correlated, so only one metric from the cluster can be
used as the representatives of the cluster while the
others are deleted as redundant. Currently, we pick as
the representative the system metric with the highest
correlation coefficient value with the application
performance metric.

We also find it useful to identify and eliminate
system metrics that have no variation in the sample
data, which means that no correlation coefficient
involving these metrics can be calculated. We group
these metrics into a special cluster called “zero
variation,” in which all metrics have a variation of zero.
We consider all metrics with zero variations to be
redundant metrics and immediately eliminate them,
since (as far as we can determine based on our sample
data) they do not carry any useful information for
predicting the performance metric.

We also need to decide the value of the threshold
used to judge whether the correlation between two
system metrics is strong enough to put them into one
cluster. In Section 4, we discuss our selection of this
value and its influence on data reduction.

3.2. Statistical Variable Selection
After eliminating all dependent system metrics, we

obtain a subset of independent system metrics.
However some of these system metrics may not relate
to our chosen performance metric. Thus, in the second
step of our strategy, we identify the subset of all
predictors that are necessary to predict the performance
metric, further reducing system metrics that either are
unrelated to the performance metric, or, given other
metrics, are not useful for predicting the performance
metric. This data reduction is also known as variable
selection.

Two basic methods for variable selection have
evolved. The first method uses a criterion statistic
computed for all possible subsets of predictors. This
method is able to find the best solution but is
inefficient. The second method, generally called
stepwise regression, provides a systematic technique
for choosing a path through the possible subsets, first
looking at a subset of one size, and then looking only at
subsets obtained from preceding ones by deleting one
potential predictor. This limiting of the number of
subsets of each size that must be considered makes the
second method more efficient than the first.

We focus here on the second method. Specifically,
we use the Backward Elimination (BE) stepwise
regression method [19] to select our predictors. This
method is a well-known variable selection technique
commonly used in statistics to select a good set of
predictors among many potential predictors for a

response variable. We use it because of its simplicity
and efficiency.

To apply BE in our data reduction problem, we treat
every system metric left after the first step as a
potential predictor and the application performance
metric as the response variable to be predicted. We
start with a model that includes all potential predictors,
and at each step, delete one metric that is irrelevant or,
given other metrics, is not useful to the model, until all
metrics left are statistically significant. More
specifically, the algorithm can be described as follows:
!"# Build a full model by regressing the response
variable on all possible predictors using a linear model:#

Y=β0+β1x1+β2x2+…βnxn (1)
where Y is the response variable, or performance
metric in our work; and xi (i=1…n) are all potential
predictors, namely., the independent system metrics
considered in our work.
2) Pick the least significant predictor in this model by
calculating the F value of every predictor in current
model. The F value of a predictor captures its
contribution to the model. A smaller value indicates a
smaller contribution, thus a less significant predictor.
The F value of a predictor x is defined as the result of
an F test, which assesses the statistical significance of
two different models: one with all predictors
considered, called the full model; the other with all the
other metrics except the predictor x, called the reduced
model. The F value indicates how different the two
models are: a small F value means there is little
difference between the two models, and thus x does not
make a large contribution. Hence. we can remove it
without reducing the prediction power of the model.
3) If the smallest F value is less than some predefined
significant value (in our case, 2 as suggested by [19]),
remove the corresponding predictor from the model.
Go to step 4; if not, the algorithm stops. The remaining
predictors are considered to be significantly related to
the response variable and necessary when predicting
the response variable.
4) Re-regress the response variable on all left
potential predictors as function 1. Go to step 2.
We note that while the BE regression method is usually
employed with a linear model as defined in function 1,
it need not be limited to a linear function. For example,
we can add a quadratic item for every potential
predictor in the model. For each system metric x, we
not only consider x itself, but also treat x2 as a potential
predictor to predict the performance of application. The
new regression model is:

Y=β0+β1x1+β2x2+…βnxn+βn+1x1
2+βn+2x2

2+…β2nxn
2

 (2)
Using this model, the BE method will select those

system metrics that are either linearly or quadratically

related to the performance metric. Quadratic terms turn
out to be important in the GridFTP data transfer that
we consider in Section 4.4.

3.3. Evaluating Data Reduction Strategies
Recall that the general goal of our strategy is to

reduce the number of system metrics to be monitored
while still capturing enough important information. We
use two criteria to evaluate this data reduction strategy.

The reduction degree criterion is the total
percentage of system metrics eliminated. This criterion
measures how many system metrics are reduced by the
strategy, so the larger the better. This criterion is used
to ensure that we do not leave many redundant or
unnecessary metrics in the results.

The coefficient of determination [19] criterion,
denoted as R2, uses a statistical measurement that
indicates the fraction of the total variability in the
response variable (performance of application in our
case) that can be explained by the predictors (the
system metrics in our work) in a given model. In
another words, R2 measures whether the predictors
used in this model are sufficient to predict the response
variable. R2 is a scale-free number, ranging from 0 to 1,
the larger the better. A small value of R2 may indicate
that we lost useful information.

R2 can be calculated by the following formula:

SSyy

SSE
R −= 12 (3)

where, SSE is the error sum of squares = Σ((Yi -
EstYi)2), Yi is the actual value of Y for the ith case
and EstYi is the regression prediction for the ith case;
and SSyy is the total sum of squares = Σ((Yi - MeanY)2).

4. Experimental Evaluation
To evaluate the validity of our data reduction

strategy, we ran a series of comparative experiments
involving one parallel program running in a shared
local area network environment and GridFTP data
transfers in a shared wide area network environment.

4.1. Test Applications and Data Collection
 We tested our strategy on data collected on one
CPU-bound Grid application, Cactus, and on GridFTP
data transfers. Cactus [3] is a numerical simulation of a
3D scalar field produced by two orbiting astrophysical
sources. The application can run on multiple processors;
each processor updates each iteration its local point and
then uses MPI to synchronize the boundary. This
performance metric is defined as the elapsed time per
iteration.
 GridFTP [2] is part of the Globus Toolkit [6] and is
widely used as a secure, high-performance data transfer
protocol. It extends the standard FTP implementation

with several features needed in Grid environments,
such as security, partial file transfers and third party
transfers. The application metric of the GridFTP
transfer is the rate with which the data transferred, in
megabits per second.

We collected system metrics and application
metrics at a frequency of 0.033 Hz. Each data point
included one performance metric and roughly 100
system metrics on each machine. All machines were
shared with other users during the data collection

We collected system metrics on each machine
using three utilities: (1) the sar command of the
SYSSTAT tool set [1], (2) network weather service
(NWS) sensors [20], and (3) the Unix tool ping. A
detailed description of the system metrics used for each
application is available online [21].

4.2. Experimental Methodology
We divided the data collected into two disjoint sets:

the training data and the verification data. The first step
of our experiment involved using our data reduction
strategy on the training data to select a subset of system
metrics that are both necessary and sufficient to capture
the application behavior. In this step, we also evaluated
the influence of the threshold parameter (Section 3.1)
on our data reduction strategy, by exhaustively
searching the space of feasible selections. We present
our results in Sections 4.3 and 4.4.

In the second step of our experiment, we evaluate
the efficiency of our strategy using the verification data.
We compared the result of our statistical data reduction
strategy (SDR) to two other strategies. The first
method, RAND, randomly picks a subset of system
metrics equal in number to those selected by our
strategy. The second method, MAIN, uses a subset of
system metrics that are commonly used to model the
performance of applications [15]. More specifically,
the MAIN metrics for Cactus application included (1)
network measurements, including bandwidth, latency
and the time required to establish a TCP connection
between every pair of the machines; (2) CPU
measurements, including the fraction of CPU available
to a process that is already running and to a newly
started process, and the system load average for the
last minute on every machine; (3) the amount of space
unused in memory on every machine; and (4) the
amount of space unused on the disk of every machine.
For GridFTP data transfer, besides the cited MAIN
metrics, disk I/O behavior plays a large role in data
transfer time [17]. Therefore, we added disk I/O
measurements when applying MAIN strategy to the
GridFTP transfer data: (5) amount of data read
from/write to the physical disk per sec on every
machine.

In the second step, we used the coefficient of
determination (R2) to determine whether the system
metrics selected on the training data are sufficient to
capture the application behavior. As noted above, R2
indicates the fraction of the total variability in the
application performance that can be explained by the
system metrics considered. A small value may indicate
that the system metrics selected are not sufficient and
that the strategy is less effective.

4.3. Cactus Results
We ran Cactus on six shared Linux machines at

the University of California, San Diego over a one-day
period. Data was partitioned into 12 roughly equal-
sized chunks. Every data point comprised the values of
a total of 628 system metrics for six machines and one
application metric. We used the first chunk of data as
the training data to select the necessary and sufficient
system metrics, while varying the threshold value to
evaluate its influence on the data reduction result. The
threshold value was evaluated at intervals of 0.05
between 0 and 1. Two criteria, the coefficient of
determination (R2) and reduction degree (RD), were
calculated for every selection, as shown in Figure 2.

0
0. 2
0. 4
0. 6
0. 8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

t hr eshol d

R2

RD

Fig. 2: R2 and RD as function of threshold
value on Cactus data

As expected, when the threshold increases, fewer
system metrics are grouped into one cluster and
removed as redundant. At the same time, R2 increases
since more information is available to model the
application performance. However, when the threshold
value reaches 1, dependent system metrics are left as
potential predictors in the multiple regression model
and we obtain confusing and unreasonable results. The
regression fails, and no unrelated system metrics are
reduced. This problem is called multicollinearity [19].
The reduction degree decreases dramatically to as low
as 40%, and no R2 value is calculated. Thus, before we
begin the BE stepwise to delete unrelated predictors,
we must identify and reduce the dependent predictors
to avoid the multicollinearity problem.

When the threshold value is equal to 0.95, our
strategy produces a reduction degree equal to 0.78 and
R2 as high as 0.98. In other words, 78% of the 628
metrics has been eliminated and a total of 141 system
metrics that remain on the six machines (i.e., about 24
per machine on average) can explain 98% of the

variation in the application performance metric. Each
of these metrics is related linearly to Cactus
performance. An example of the system metrics
selected on one machine is provided online [21]. We
have observed that in addition to CPU, network and
memory capability measurements, which are
commonly used to model application performance (as
selected by MAIN strategy), cache, system page, and
signal measurements are also important for modeling
Cactus performance.

Although we choose the subset of 141 system
metrics for further verification in the next step, we
could further increase the reduction degree of our
strategy by decreasing the threshold value. For
example, the total system metrics can be reduced to 44
on the six machines, with about 7 system metrics per
machine on average, when the threshold value is equal
to 0.70. The R2 value decreases to 0.90 in this case, but
it is still acceptable. It indicates that 90% of the
variation in the application performance metric can be
explained by the 44 system metrics selected. We
choose the result set that achieves the highest R2 value
because we prefer to keep as many as possible the
meaningful event characteristics for our anomaly
detection purpose in the future. In the case that the
number of system metrics selected is the main concern,
we could increase the reduction degree by sacrificing
the R2 value.

0
0. 2
0. 4
0. 6
0. 8

1

1 2 3 4 5 6 7 8 9 10 11
Runs

R
2

SDR
RAND
MAI N

Fig. 3: R2 values when regressing Cactus

performance on the system metrics selected
by three strategies

In the second step of our experiment, we validated
our strategy by comparing its result to those of other
two strategies, MAIN and RAND, using the
verification data. The coefficient of determination (R2)
was calculated for every strategy, as shown in Figure 3.
We see from Figure 3 that over the 11 chunks of data,
our statistical data reduction strategy exhibited an
average R2 value of 0.907, with a range of 0.831 to
0.957. This result is 55.0% and 98.5% higher than
those of RAND and MAIN, which have an average R2
value of 0.585 and 0.457, respectively. We conclude
that the system metrics selected by our strategy are
significantly more efficient than the alternatives for
predicting Cactus performance. We also observed that
in many cases, the RAND strategy outperforms MAIN.
One possible explanation is that the MAIN metric
commonly used to model the performance of Cactus

application is far from complete. Thus, it achieves even
worse results than randomly picked metrics when to
predict the performance of Cactus in a dynamic
environment during a relatively long period.

4.4. GridFTP Data Transfer
We ran GridFTP experiments on PlanetLab [4],

transferring files ranging from 10MB to 200MB. We
ran the server on a node at Harvard University and ran
the 25 clients on nodes located in 18 different countries.
All nodes are connected via a 100Mb/s network and
have processor speeds exceeding 1.0 GHz IA32 PIII
class processor and at least 1 GB RAM. Each data
point includes values for 217 system metrics on one
pair of server and client machines and one transfer rate.
All transfers were made with TCP buffers size of 1MB
and one TCP socket. A list of the name of the machines
used is available on line [21].

We first ran GridFTP using one client at North
Carolina State University for one-day period and
partitioned the data into 12 roughly equal-sized chunks.
We used the first two chunks of data as the training
data to select the subset of system metrics, while
changing the threshold value from 0 to 1 as we did for
Cactus. However, the highest R2 achieved was only
0.77. This low R2 value indicates that we lacked some
information when modeling GridFTP performance.
Thus, we extended the linear model to include
quadratic items, as described in Section 3.2.

We redid the experiment using the new model
including quadratic items for the GridFTP data. The
results are shown in Figure 4. We now obtain far better
results. As with Cactus, the reduction degree decreases
and the R2 value increases as the threshold value
increases, except that when the threshold value reaches
1, the BE regression fails because of multicollinearity.

0
0. 2
0. 4
0. 6
0. 8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

t hr eshol d

R2
RD

Fig.4: R2 and RD as function of threshold on
GridFTP data

When the threshold value is equal to 0.95, our data
reduction strategy achieved a data reduction degree of
0.783 and an R2 value as high as 0.920, which indicates
that 92.0% of the variation in GridFTP performance is
explained by the system metrics selected on linear
and/or quadratic relations. Of the 217 metrics, 78.3%
has been reduced by our strategy and only 47 system
metrics in total are left on server and client machines,
about 23 system metrics per machine on average. An
example of the system metrics selected on server

machine is presented online [21]. We have observed in
the GridFTP server case that in addition to CPU,
network, and disk capability measurements (system
metrics selected by MAIN strategy), the memory page,
buffer, and cache measurements are important
predictors of GridFTP transfer rate. In addition, we
note that the memory related system metrics
(kbmemfree, kbbuffers, kbcached, frmpg/s, etc.) are
quadratic in the regression model. This result may
indicate that memory capability is quadratically related
to GridFTP transfer rate.

Although we choose the subset of 46 system
metrics for further study, we could further reduce the
number of system metric selected by decreasing the
threshold value. As seen in Figure 4, when the
threshold value is equal to 0.75, our data reduction
strategy can achieve a reduction degree as high as 0.88
and a R2 value still equal to 0.898. This result indicates
that about 90% of the variation in GridFTP
performance can be explained by only 26 system
metrics selected.

We then verified the stability of this result in two
steps. First, we compared the results of three strategies
using the remaining 10 chunks of verification data
collected from one client. Then we ran GridFTP using
24 different clients distributed all over the world, and
collected two hours of data for each client. At any time,
only one client was transferring data. We also verified
that the results were consistent for different clients. The
coefficient of determination (R2) of three data
reduction strategies were calculated, in both steps, as
shown in Figure 5 and Figure 6, respectively.

0
0. 2
0. 4
0. 6
0. 8

1

1 2 3 4 5 6 7 8 9 10
Runs

R
2

SDR
RAND
MAI N

Fig. 5: R2 value when regressing the transfer
rate of GridFTP on the system metrics
selected by three strategies on one client data

The linear and quadratic items of every system
metric selected were treated as a potential predictor
when modeling the GridFTP transfer rate. The results
in Figures 5 and 6 show that our statistical data

reduction strategy achieves better results than do the
other strategies considered for GridFTP transfer data.
Over 10 chunks of data collected on one client, our
statistical data reduction strategy achieved a mean R2
value of 0.947 (from 0.884 to 0.982). This result is
92.5% and 28.1% higher than those of the RAND and
MAIN strategies, which have average R2 values of
0.492 and 0.739, respectively. Over 24 chucks of data
collected from 24 different clients, our statistic data
reduction strategy achieves a mean R2 value of 0.935.
The result is 93.2% and 35.1% higher than those of the
RAND and MAIN strategies, which have average R2
value of 0.484 and 0.692 respectively. This consistent
result with different clients indicates that the set of
system metrics selected by our data reduction strategy
is fairly stable with the machines if all machines have
the same configurations.

5. Related Work
Data management and reduction have been widely

studied in many areas. In the area of application
performance monitoring and analysis, event throttling
[14] can replace event tracing with less invasive
measures like counts. Although throttling prevents
generation of large data volumes, it sacrifices the
consistent behavior view.

Duesterwald et. al studied the time-varying
behavior of programs using metrics derived from
hardware counters [5]. However, they focused on
several system metrics and assume all system metrics
studied were related to the targeted applications. Our
work, instead, aims at selecting a subset of related
system metrics among a larger set.

Zhang et. al showed how to predict compliance
with service-level objectives in a dynamic environment
by managing an ensemble of Bayesian network models
[22]. Their strategy includes a process called feature
selection, for selecting the subset of metrics that are
most relevant to modeling the relations in the data.

Dynamic clustering [13] and statistical sampling
[11] allow the analysis to focus on subsets of
processors or metrics, thus reducing the data to be
collected. But their usage is limited to simple cases,
such as finding free nodes and estimating average load.

0
0. 2
0. 4
0. 6
0. 8

1

c1 c2 c3 c4 c5 c6 c7 c8 c9 c1
0

c1
1

c1
2

c1
3

c1
4

c1
5

c1
6

c1
7

c1
8

c1
9

c2
0

c2
1

c2
2

c2
3

c2
4

Cl i ent s

R
2

SDR

RAND

MAI N

Fig. 6: R2 value when regressing the transfer rate of GridFTP on the system metrics selected by

three strategies on data collected from 24 different clients

Two approaches that are similar to the work
described in this paper are correlation elimination [8]
and projection pursuit [18], both of which identify a
relevant, statistically interesting subset of system
metrics. Correlation elimination [8] diminishes the
volume of performance data by grouping metrics with
high correlation coefficient into clusters and picking
only one as a representative. However, that work
assumes that all metrics collected are related to the
performance metrics. Thus, only redundant metrics are
reduced by using the correlation elimination technique,
as in the first step of our data reduction strategy. Our
strategy further improves the correlation elimination
technique by using a statistical Z-test instead of a pure
mathematical comparison when trying to group two
metrics into one cluster.

Projection pursuit [18] focuses performance
analysis on interesting performance metrics. However,
projection pursuit selects those metrics from all
smoothed input data at some discrete point in time, and
thus captures only transient relationships between data.
The cited work presented only data reduction results
using a total of 12 system metrics, while our strategy
tries to capture inherent relationships between data and
the system metrics selected by our strategy are able to
capture the application performance variation over a
longer time and for a much larger metrics set.

6. Conclusions
The work described in this paper comprises two

steps. First, we show how to reduce redundant system
metrics using correlation elimination and a Z-test. The
result of this step is a set of independent system metrics.
Then, we show how to identify system metrics that are
related to an application performance metric by a
stepwise regression-based technique. We have applied
our data reduction strategy to data collected from two
applications. We find that our strategy reduces about
80% of total system metrics and that the remaining
system metrics can explain application performance
variation as high as 90%, 35% to 98% more than
metrics selected by other strategies.

Acknowledgements
This work was supported in part by the U.S.

Dept. of Energy under Contract W-31-109-Eng-38.

References
[1] SYSSTAT utilities home page
http://perso.wanadoo.fr/sebastien.godard/.
[2] Allcock, B., Foster, I., Nefedova, V., et al., High-
Performance Remote Access to Climate Simulation Data: A
Challenge Problem for Data Grid Technologies. SC'01, 2001.
[3] Allen, G., Benger, W., Dramlitsch, T., et al., Cactus Tools
for Grid Applications, Cluster Computing, 4 (2001) 179-188.

[4] Bavier, A., Bowman, M., Chun, B., et al., Operating
System Support for Planetary-Scale Network Services. 1st
Symp. on Network System Design and Implementation, 2004.
[5] Duesterwald, E., Cascaval, C. and Dwarkads, S.,
Characterizing and Predicting Program Behavior and its
Variability. 12th International Conference on Parallel
Architecture and Compilation Techniques, 2003.
[6] Foster, I. and Kesselman, C., The Globus Project: A
Status Report. Proc. IPPS/SPDP '98 Heterogeneous
Computing Workshop, 1998.
[7] Jain, A.K., A Guideline to statistical approaches in
computer performance evaluation studies, ACM
SIGMETRICS Performance Evaluation Review, 7 (1978) 18-
32.
[8] Knop, M.W., Schopf, J.M. and Dinda, P.A., Windows
Performance Monitoring and Data Reduction Using
WatchTower. SHAMAN, 2002.
[9] Liu, C., Yang, L., Foster, I., et al., Design and Evaluation
of a Resource Selection Framework for Grid Applications.
HPDC 11, 2002.
[10] Malony, A.D., Reed, D.A. and Wijshoff, H.A.G.,
Performance Measurement Intrusion and Perturbation
Analysis, IEEE Trans. Parallel and Distributed System, 3
(1992) 433-450.
[11] Mendes, C.L. and Reed, D.A., Monitoring Larger
Systems Via Statistical Sampling. LACSI Symposium, 2002.
[12] Nabrzyski, J., Schopf, J.M. and Weglarz, J., Grid
Resource Management:State of the Art and Future Trends,
Kluwer Publishing, 2003.
[13] Nickolayev, O.Y., Roth, P.C. and Reed, D.A., Real-
Time Statistical Clustering For Event Trace Reduction, The
International Journal of Supercomputer Applications and
High Performance Computing, 11 (1997) 144-159.
[14] Reed, D.A., Aydt, R.A., Noe, R.J., et al., Scalable
Performance Analysis: The pablo Performance Analysis
Environment. Scalable Parallel Libraries Conference, 1993.
[15] Ripeanu, M., Iamnitchi, A. and Foster, I., Performance
Predictions for a Numerical Relativity Package in Grid
Environments, International Journal of High Performance
Computing Applications, 15 (2001).
[16] Stockburger, D.W., Introductory Statistics: Concepts,
Models, and Applications, 1996.
[17] Vazhkudai, S. and Schopf, J.M., Using Disk Throughput
Data in Predictions of End-to-End Grid Data Transfers.
Grids2002, 2002.
[18] Vetter, J.S. and Reed, D.A., Managing Performance
Analysis with Dynamic Statistical Projection Pursuit. SC'99,
Portland, OR, 1999.
[19] Weisberg, S., Applied Linear Regression, 2 edn., John
Wiley &Sons, 1985.
[20] Wolski, R., Dynamically Forecasting Network
Performance Using the Network Weather Service, Journal of
Cluster Computing (1998).
[21] Yang, L., Document:
http://www.cs.uchicago.edu/~lyang/work/MetricsList.doc
[22] Zhang, S., Cohen, I., Goldszmidt, M., et al., Ensembles
of Models for Automated Diagnosis of System Performance
Problems. IEEE Conference on Dependable Systems and
Networks (DSN), 2005.

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National
Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government. This government license should not be published with the
paper.

