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Abstract

Automatic differentiation is a technique for the rule-based transformation of a subprogram

that computes some mathematical function into a subprogram that computes the derivatives

of that function. Automatic differentiation algorithms are typically expressed as operat-

ing on a weighted term graph called a linearized computational graph. Constructing this

weighted term graph for imperative programming languages such as C/C++ and Fortran

introduces several challenges. Alias and definition-use information is needed to construct

term graphs for individual statements and then combine them into one graph for a collec-

tion of statements. Furthermore, the resulting weighted term graph must be represented

in a language-independent fashion to enable the use of AD algorithms in tools for various

languages. We describe the construction and representation of weighted term graphs for

C/C++ and Fortran, as implemented in the ADIC 2.0 and OpenAD/F tools for automatic

differentiation.
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a = cos(x); // statement 1

b = sin(y)*y*y; // statement 2

f = exp(a*b); // statement 3

Fig. 1. Pseudocode for a simple example.

1 Introduction

Automatic differentiation is a technique for the rule-based transformation of a sub-

program that computes some mathematical function into a subprogram that com-

putes the derivatives of that function [3,4]. Derivatives have a variety of uses in sci-

entific computing, including the solution of nonlinear partial differential equations,

function minimization, parameter identification, data assimilation, sensitivity anal-

ysis, and uncertainty quantification. Automatic differentiation algorithms typically

operate on a directed acyclic graph referred to as a computational graph or, af-

ter edge weights corresponding to partial derivatives have been added, a linearized

computational graph.

The computation graph represents each value in a computation as a vertex and

represents value dependences between values as directed edges. Formally, the com-

putation graph is a graph G(V,E), where V is the set of vertices and E is the set

of edges. Each vertex represents a value val(v) and is either labeled with the vari-
able that contains the value store(v) and/or the operation that generates the value
op(v). If a vertex is labeled with an operation, then the vertex has incoming edges
indicating the values that are inputs to the operation. For example, Fig. 2 shows

the linearized computational graph for the simple function defined by the program

segment in Fig. 1. Note that the computation in the first statement is modeled with

the vertices labeled x and cos with a dependence edge from the value stored in x

to the operation cos.

The linearized computational graph can be interpreted as a weighted, acyclic

term graph. Construction of the linearized computational graph starts from the

computational graph and then associates partial derivatives with the dependence

edges. Formally, each edge e is associated with a partial derivative p(e), where e =
(u, v) and p(e) = ∂val(v)/∂val(u). For example in Figure 2, the partial derivative
of cos(x) with respect to x is -sin(x). Given this linearized computational

graph, the derivative of a dependent variable vj with respect to an independent

variable vi is the sum over all paths from vi to vj of the product of the edge weights

along that path [1].

To generate derivative code, the linearized computational graph is transformed

via a sequence of vertex or edge eliminations into a bipartite graph whose edge

weights correspond to these derivatives. Each elimination leads to the generation

of code. A vertex is eliminated by multiplying the weight of each input edge by

that of each output edge and adding the product to the edge whose source is that

of the input edge and whose sink is that of the output edge, creating new edges

from predecessor vertices to successor vertices where necessary. More formally, a

vertex v0 is eliminated using the rule: ∀vi ∈ Pred(v0), vj ∈ Succ(v0), if eij ∈ E
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Fig. 2. Linearized computational graph for the simple example.

!y

!x !
cos

!sin

!*
!*

! exp
!

!""""""#

$
$

$
$$%

&&&'
(

(
()&&&&&&'

""""""#

-sin(x)

sin(y)*y

cos(y)
y

y

b*f

a*f

Fig. 3. Linearized computational graph of Fig. 2, after elimination of vertex a*b.

then eij = eij + ei0e0j else E = E ∪ eij and eij = ei0e0j , where E is the set

of all edges, eij denotes the edge from vertex vi to vertex vj , Pred(vi) denotes the
set of all predecessors to vertex vi, and Succ(vi) denotes the set of all successors
to vertex vi. Figure 3 shows the computational graph after eliminating the vertex

corresponding to a*b. The associativity of the chain rule of differential calculus

implies that vertices may be eliminated in any order. Because of fill-in, the elimi-

nation order impacts the computational cost. Finding an order that minimizes the

number of multiplications is conjectured to be NP-hard. Many heuristics are used,

however, including topological order (called the forward mode), reverse topologi-

cal order (called the reverse mode), minimum Markowitz degree 5 [6], and relative

Markowitz degree [4,8]. The number of multiplications can be further reduced by

eliminating individual edges [8] or pairs of edges [9], rather than entire vertices,

but such techniques are beyond the scope of this paper.

The rest of this paper is organized as follows. The next section sketches the

construction of weighted term graphs for imperative programming languages. Sec-

tion 3 describes an XML representation for term graphs. Section 4 describes some

of the static analyses used in automatic differentiation tools. Section 5 discusses

a procedure for merging the term graphs for individual statements into larger term

graphs. We conclude with some thoughts about how ideas from term graphs could

benefit the automatic differentiation community (and vice versa).

5 The Markowitz degree is the product of the in degree and the out degree.
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operation cos sin * * * exp

input value 0 1.00 2.00 0.91 1.82 0.54 1.97

input value 1 – – 2.00 2.00 3.64 –

output value 0.54 0.91 1.82 3.64 1.97 7.17

input address 0 0 1 5 6 2 5

input address 1 – – 1 1 3 –

output address 2 5 6 3 5 4

Fig. 4. A possible tape for the simple example of Fig. 1.

2 Weighted Term Graphs for Imperative Programming Lan-

guages

Automatic differentiation is used primarily in the domain of scientific computing,

where the vast majority of programs are implemented in an imperative program-

ming language such as C/C++ or Fortran. Because automatic differentiation algo-

rithms operate on linearized computational graphs, mechanisms are needed for the

construction of these weighted term graphs from programs written in imperative

languages. We briefly describe two strategies, one suitable for the runtime con-

struction of a weighted term graph and one suitable for compile-time construction,

which requires static analysis and transformation of source code. The remainder of

this paper discusses the second strategy in greater detail.

2.1 Runtime Construction of Weighted Term Graphs

In programming languages that support operator overloading, including C++, one

can construct a term graph for a particular execution history by overloading the

operators and intrinsic functions to record (“tape”) the operation type as well as the

values and addresses of the input and output arguments. When subprogram execu-

tion completes, the computation graph is constructed from this “tape,” using each

definition of an address as a vertex in the computational graph. The vertex identifier

for any input address can be obtained by searching for the latest definition of that

address in the tape. Given the operation type and input values, partial derivatives

can be computed and assigned as edge weights to create a linearized computational

graph. Figure 4 shows one possible tape for our simple example, using input values

x=1.0 and y=2.0. Figure 5 shows the weighted term graph constructed from this

tape. Because the graph structure is not known until runtime, the vertex elimina-

tion order must be determined online, necessitating the use of simple, linear time

heuristics. The ADOL-C automatic differentiation tool [5] uses runtime taping to

construct weighted term graphs for C++ programs.

2.2 Static Construction of Weighted Term Graphs

One can also construct the term graph using static analysis of the source code. In

this case, the edge weights are not known until runtime, but the structure of the term
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Fig. 5. Linearized computational graph constructed from the tape of Fig. 4.

graph is known at compile time. Since the analysis is performed offline, polyno-

mial time algorithms can be used to select a vertex elimination order. Global search

algorithms such as simulated annealing are also tractable [10]. Static source trans-

formation offers several other opportunities for efficiency improvements in auto-

matic differentiation. However, it also presents many challenges: a robust compiler

infrastructure is needed for parsing and unparsing; many types of static analysis

are required; and a mechanism for handling control structures such as loops and

branches is essential.

For programs with complex control flow, static construction of the complete and

correct term graph is not possible. Instead, one typically constructs a term graph

for each basic block (a sequence of statements with no intervening control con-

structs) and applies arbitrary vertex elimination strategies only within individual

basic blocks. The derivatives of basic blocks are combined using either the forward

mode or reverse mode. The forward mode requires no additional runtime informa-

tion, since the derivative computation follows the same control flow as the original

function evaluation. The reverse mode must reverse the control flow. Therefore, at

runtime a record of control flow decisions (such as basic block identifiers or branch

conditions and loop bounds) must be stored.

Even constructing a single term graph for each basic block may not be possible.

Consider the simple example of Fig. 1. If a is aliased to b, then the computational

graph is the term graph shown in Fig. 6. If one cannot statically determine whether

a and b are aliased, separate term graphs are needed for each statement, as depicted

in Fig. 7. In practice, separate term graphs are used by default and these separate

graphs are merged into larger term graphs only when static analysis guarantees

correctness. This process, called flattening, is described in more detail in Section 5.

3 An XML Schema for Term Graphs

To facilitate software reuse, the ADIC 2.0 and OpenAD/F [12] automatic differen-

tiation tools are constructed in a modular fashion, as depicted in Fig. 8. Language-

specific frontends communicate with a differentiation module using an XML repre-

sentation of the mathematically-relevant elements of a program. The XMLAbstract

Interface Form (XAIF) [7] provides a language-independent representation of con-
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Fig. 8. Schematic of the OpenAD/F architecture.

structs common in imperative languages, such as C, C++, and Fortran. The program

is represented as a sequence of nested graphs: a call graph that contains a scope tree

and one or more control flow graphs, whose vertices are basic blocks. Each basic

block contains assignment statements whose right-hand sides are expression term

graphs. At the assignment statement level, imperative languages are not very dif-

ferent from other types of languages, making the XAIF useful for representing term

graphs for expressions in non-imperative languages. The XAIF schemas are also

designed with extensibility in mind, allowing easy customization of the contents of
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<xaif:Assignment statement_id="139561992">

<xaif:AssignmentLHS>

<xaif:SymbolReference annotation="139557224" scope_id="4"

symbol_id="b" vertex_id="1"/>

</xaif:SymbolReference>

</xaif:AssignmentLHS>

<xaif:AssignmentRHS>

<xaif:VariableReference vertex_id="1">

<xaif:SymbolReference annotation="139554184" scope_id="3"

symbol_id="y" vertex_id="1"/>

</xaif:VariableReference>

<xaif:Intrinsic name="sin_scal" vertex_id="2"/>

<xaif:Intrinsic name="mul_scal_scal" vertex_id="3"/>

<xaif:Intrinsic name="mul_scal_scal" vertex_id="4"/>

<xaif:VariableReference vertex_id="2">

<xaif:SymbolReference annotation="139554184" scope_id="3"

symbol_id="y" vertex_id="1"/>

</xaif:VariableReference>

<xaif:ExpressionEdge edge_id="1" position="1" source="1" target="2"/>

<xaif:ExpressionEdge edge_id="2" position="1" source="2" target="3"/>

<xaif:ExpressionEdge edge_id="3" position="2" source="1" target="3"/>

<xaif:ExpressionEdge edge_id="4" position="1" source="3" target="4"/>

<xaif:ExpressionEdge edge_id="5" position="2" source="1" target="4"/>

</xaif:AssignmentRHS>

</xaif:Assignment>

Fig. 9. XAIF representation of the statement b=sin(y)*y*y.

graph, vertex, and edge elements.

Figure 9 shows an XAIF fragment describing the computational graph for the

second statement in the simple example in Fig. 1. Each assignment statement con-

sists of a AssignmentLHS and AssignmentRHS elements. The expression

graph in the AssignmentRHS element can contain vertices corresponding to vari-

able references, constants, binary, and unary operators, as illustrated in Fig. 7 (ex-

cluding the edge weights). In the automatic differentiation context, first the XAIF

representation of a program is generated by a language-specific frontend, then the

XAIF is transformed by a language-independent differentiation module, and finally

the resulting newXAIF is parsed by the language-specific backend andmerged with

the original language-specific AST representation.

In addition to acyclic term graphs for expressions, the XAIF representation in-

cludes elements for expressing scope hierarchies as trees whose vertices are the

symbol tables for each scope. Each symbol reference vertex contains scope id

and symbol id attributes, which refer to the scope and symbol element defini-

tions contained in the scope hierarchy. This provides the connection between the

abstract expression term graph representation and the actual program elements.

4 Representation-Independent Static Analysis

Implementation of efficient automatic differentiation tools requires various types of

static analysis. Rather than implement these analyses twice (once for the Open64/SL

infrastructure used by OpenAD/F and again for the ROSE/Sage infrastructure used

by ADIC 2.0), we have implemented themwithin the OpenAnalysis framework [11].

OpenAnalysis seeks to decouple compiler analyses from specific intermediate rep-
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resentations by introducing analysis-specific interfaces. This facilitates the use of

multiple analysis algorithms with a single compiler infrastructure as well as the use

of a single analysis implementation with multiple compiler infrastructures. Open-

Analysis provides algorithms for call graph construction, control flow graph con-

struction, alias analysis, and interprocedural data-flow analysis. We have imple-

mented OpenAnalysis interfaces for the Open64/SL (for Fortran) and ROSE/Sage

(for C/C++) infrastructures.

One of the most important analyses implemented in OpenAnalysis is alias anal-

ysis. Alias analysis is used to identify whether two inputs to a statement should

share a vertex or be treated as separate variables. In addition, alias analysis is

needed for other static analyses, including data-flow analyses such as reaching def-

initions. Reaching definitions is a static analysis used to determine which defini-

tions of a variable can possibly reach a particular use of a variable. It can be used

to construct the du- and ud-chains used in the flattening procedure described in

Section 5.

While the precise flow of information cannot always be determined statically,

one can often determine that certain variables, no matter what control path is taken,

will never lie along the paths between the independent variables and the dependent

variables of interest. Such variables are called passive and do not need to have their

derivatives computed. Thus, these variables can be ignored in the construction of

term graphs. The OpenAnalysis infrastructure implements an interprocedural data-

flow analysis called activity analysis to identify the set of passive variables.

5 Merging Term Graphs by Flattening

In Section 1 we mentioned the possibility of minimizing the cost of computing

derivatives using automatic differentiation by searching for an optimal elimination

order in the term graphs. For many existing tools the default scope for constructing

term graphs is the assignment statement as explained in Section 2.2. It is clear that

this limits the improvements one can gain from optimizing the elimination order.

Consequently we prefer to construct term graphs that cover a larger scope. On

the other hand, due to the complexity of the optimization problem, we must avoid

graphs that grow proportionally with the run time of the program as done in Sec-

tion 2.1. The unrolling of loop bodies in this fashion is a good example of bloating

the term graph with repetitive structures that should be avoided. Furthermore, if the

control flow contains branches, a unified term graph for these branches requires a

transformation that makes the computations in the branches mutually independent.

Therefore, we consider consecutive sequences of assignment statements within

basic blocks to be reasonable scopes for constructing term graphs. The example in

Section 2.2 illustrates the principal problem that arises due to aliasing. The most

familiar form of aliasing occurs with arrays when for example we consider v[i]

and v[j] and we cannot tell at compile time if i and j will always or never be the

same, i.e. v[i] and v[j] refer to the same address in memory. We can use refined

code analyses for the purpose of constructing semantically correct term graphs in

8



Hovland, Norris, and Utke

! !

!!

!
!

! !

!,
,

,
,

,,-

,
,

,
,

,,-

!
.

.
.

.
../

(
(

(
(()0

0
0
0
001

&&&' !

sin

a
x

*

y

* exp

cos

*

b

Fig. 10. Merging vertices a and b

the presence of aliasing. The so called use/define- or ud-chains are a suitable rep-

resentation for the combined results of alias and dependency analysis. In essence,

each use of a variable in the code is associated with a ud-chain that contains a loca-

tion list of possible definitions. We start out with the term graphs of the individual

assignment statements. The left-hand side defined in the assignment is represented

by the maximal vertex (we assume side-effect-free expressions) in the term graph.

We iterate through all statements in execution order. For each statement we con-

sider each variable use in the right-hand side. If the ud-chain associated with that

use contains exactly one element then we can merge the vertex representing the use

with the vertex representing the definition. If there is no definition within the scope

of the merging process than we retain the vertex as is. If none of the variables from

the example in Figure 1 are aliased then the ud-chain for the use of a in statement

3 will contain only statement 1 as the definition point. Similarly, the ud-chain for

the use of b in statement 3 will point only to statement 2 as the definition point and

we merge the respective vertices as shown in Figure 10. If a is aliased to b then

their respective ud-chains both point to b defined by statement 2 and we obtain the

graph as shown in Figure 6.

We already mentioned that quite often the alias analysis does not yield such

clear cut results. If we replace b in statement 2 by b[i] and in statement 3 by

b[j] then in many cases the ud-chain for the use of b[j] in statement 3 will not

only point to statement 2 but also to some preceding statement 0, e.g. b[k]=2*x,

as possible point of definition. While the a vertices might still be merged the proper

definition point of b[j] will only be known at run time. The easiest (but not the

only) way to enforce semantical correctness is to organize the merging such that a

given statement term graph can either be merged completely or in the case of am-

biguous defines we start a new merge. This results in a sequence of merged graphs

and semantical correctness is ensured if the derivative accumulation is executed in

the order implied by the statement subsequences that make up the merged graphs.

In practical applications we observe graph sizes with a few hundred vertices which

is reasonable for the elimination heuristics we employ.
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6 Conclusions

While we have focused on static techniques in this paper, our automatic differ-

entiation tools often employ hybrid static-dynamic techniques. For example, the

determination of whether a variable is active or passive can be deferred until run-

time, at least for those variables where static analysis is inconclusive. Future work

will examine similar techniques for the situation where static alias analysis is am-

biguous.

We have only recently become aware of the connection between term graphs

and what the automatic differentiation community refers to as (linearized) compu-

tational graphs. It seems likely that the transformations used for vertex and edge

elimination in automatic differentiation can be recast as term graph rewrite rules.

Furthermore, while computational graphs are always acyclic, term graphs are not.

It may be possible to use techniques from term graph rewriting to handle cyclic

computational graphs, providing a mechanism to include loops and other control

flow constructs in linearized computational graphs.

Conversely, it appears that the automatic differentiation community may be

able to contribute technologies to the term graph rewriting community. While the

latter community focuses on functional and declarative programming languages,

automatic differentiation tools typically target imperative and object-oriented lan-

guages. It may be possible to use much of the existing infrastructure to implement

term graph rewrite techniques, thus making them available to a broader user com-

munity. Even if this sort of technology transfer proves impossible, it is our hope

that the automatic differentiation and term graph rewriting research communities

can learn from one another.
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