
A Multipolicy Authorization Framework for Grid Security
Bo Lang,1,2 Ian Foster,1,3 Frank Siebenlist,1,3 Rachana Ananthakrishnan,1Tim Freeman1,3

1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
2 Beihang University, Beijing, China
3 University of Chicago, Chicago, IL

Abstract

A Grid system is a Virtual Organization that is composed of several autonomous

domains. Authorization in such a system needs to be flexible and scalable to support

multiple security policies. Basing on the Web Services security specifications such as

XACML, SAML, and the special security needs of the Grid computing, we have

constructed an authorization framework in the Globus Toolkit 4 that can support

multiple policies. This paper describes the concepts of our design and introduces the

structure and the components of the authorization framework. To show the flexibility

and scalability of the framework, we introduce a new blacklist/whitelist-based

authorization mechanism that can be seamlessly integrated into the framework.

Keywords Authorization Framework, Grid Computing, Globus Toolkit,

Blacklist/Whitelist-based Authorization

1.Introduction

Grid is a new kind of distributed computing technology. A Grid system is a

virtual organization comprising several independent autonomous domains.[1] The

security of the Grid system should provide the same protection that conventional

 1

systems provide, including establishing the identity of users or services

(authentication), protecting communications (encryption/decryption), determining

who is allowed to perform what actions (authorization), and recording the important

operations processed by the systems(auditing). At the same time, it needs to meet the

special security requirements of Grid systems.[2] Authorization is an important part of

Grid systems, in which every domain may have its own policy and may change its

policy dynamically. Hence, the authorization mechanism of Grid computing platform

needs to support multiple security policies and needs to have the flexibility to support

dynamic changes in security policies.

The Globus Toolkit is a fundamental enabling technology of the Grid. The

security functionality of Globus is called the Grid Security Infrastructure (GSI).[2,3]

From version 1 in 1998 to the 2 release in 2002 and now the 4 release based on new

open-standard Grid services, GSI has been developing rapidly. In GT1, GSI mainly

provided message protection and authentication; it used public key cryptography and

was based on the authentication protocol defined by the Secure Socket Layer (SSL). [4]

In GT2, GSI introduced X.509 proxy certificates to support dynamic creation of

computing entities and provided Community Authorization Service (CAS) to

implement access control in dynamic created overlaid trust domains.[3,5] In GT3, the

Grid technology worked with the emerging Web services technology; the result was

the OGSA (Open Grid Services Architecture).[6] In GT3, GSI3 uses the powerful

features of OGSA and Web Services security. Security functionalities are defined as

OGSA services to allow them to be located and used as needed by applications. Some

 2

of the Web Services security specifications are used to allow security messages and

secured messages to be transported, understood, and manipulated by standard Web

Services tools and software. In GT4, additional Web Services security specifications

are implemented, and distinct WS and pre-WS authentication and authorization

capabilities are provided.[7] GT4 implements the WS-Security standard and the

WS-SecureConversation specification to provide protection for SOAP messages; it

constructs an authorization framework that allows for a variety of authorization

policies, and supports a callout to an external authorization service via the SAML

protocol. The authorization mechanism of GT4 is constructed based on the security

requirements of Grid systems and the Web Services security standards—the OASIS

XACML (eXtensible Access Control Markup Language) and SAML (Security

Assertion Markup Language). The framework is flexible, enabling dynamic

supporting of multiple security policies and thus satisfying Grid computing

authorization requirements.

 Section 2 of this paper introduces the XACML specification, which is the basis of

our authorization framework. Section 3 describes the design concepts, the structure,

and the components of the authorization framework. Section 4 discusses the design

and implementation of the blacklist/whitelist-based authorization mechanism that can

be integrated into the framework. Section 5 summarizes our work and the advantages

of the new framework.

2. Theoretical Basis of the GT4 Authorization Framework

GT4 implements the WSRF specification, a convergence of Grid and Web

 3

Services technology. The Web services security specifications include WS-Policy and

XACML, which express the Web services security policy; WS-Security and SAML,

which define standard formats for security token exchange; and

WS-SecureConversation and WS-Trust, which define standard methods for

authentication and establishment of security contexts and trust relationships. GT4 uses

the XACML authorization model, an important Web services access control

standard.[8]

XACML defines an access control framework and the data flow model of the

framework components, as shown in Fig. 1.

1

0..1

1
1 1

0..*

0..*
1

1
1 11 11

0..*

0..*

0..*

0..*

1

0..*

0..*1 1 1

1
1

Rule Combining
algorithm

Policy Combining
algorithm

1
0..*

1

1

Effect Condition

Rule

Environment

Resource

Action

Subject

ObligationPolicy Ttarget

Policy Set

8.Obligations

5c.Environment
Attributes

5b.Resource
Attributes

5a.Subject
Attributes

4.Attribute
query

6.Attribute

3.Policy

7.Response 2.Request

1.Access Request

EnvironmentResource Subject

Obligation service

PIP

PAP

PDP

PEP

Fig. 1 XACML Data-Flow Diagram Fig. 2 XACML Policy Language Model

The access control framework mainly contains PEP (Policy Enforcement Point),

PDP (Policy Decision Point), PIP (Policy Information Point), and PAP (Policy

Administration Point). The PEP intercepts the access requests from users and sends

the requests to the PDP. The PDP makes access decisions according to the security

 4

policy or policy set written by PAP and, using attributes of the subjects, the resource,

and the environment obtained by querying the PIP. The access decision given by the

PDP is sent to the PEP. The PEP fulfills the obligations and either permits or denies

the access request according to the decision of PDP.

XACML also defines a policy language. The policy model is shown in Fig. 2.

The main components of the model are the rule, the policy, and the policy set. A rule

is the most elementary unit of the policy and can be evaluated on the basis of its

contents. The main components of a rule are as follows:

!"A target that defines the set of resources, subjects, actions and environment

!"An effect that indicates the consequence of the satisfied rule

!"A condition that further refines the applicability of the rule

Rules are combined into a policy, which comprises four main components: a

target, a rule-combining algorithm, a set of rules, and obligations. A policy set

comprises four main components: a target, a policy-combining algorithm, a set of

policies, and obligations. The rule-combining algorithm specifies the procedure by

which the results of evaluating the component rules are combined when evaluating the

policy. The policy-combining algorithm has a function similar to that of the

rule-combining algorithm. Obligations are the actions that must be performed by the

PEP in conjunction with the enforcement of an authorization decision; obligations are

the mechanism for achieving finer-level access control.

3. The GT4 Authorization Framework

 The convergence of Grid and Web services introduces both new opportunities and

 5

new challenges for Grid security. On the one hand, these specifications have provided

standard and interoperable methods for Grid security. On the other hand, in order to

establish an authorization mechanism suitable for Grid computing, these

specifications may also need to be extended or changed to some extent, since Grid has

its own special application requirements.

 In a Grid system, each domain has its own security policy, such as the grid-mapfile,

ACL (Access Control List), CAS, SAML authorization decision assertions, and

XACML policy statements. Hence, the GT4 authorization framework needs to

support multiple security policies and also needs to be flexible, so that it can be

changed easily for different application environments. These special authorization

requirements are not addressed in the XACML specification.

 Based on the XACML specification and the Grid access control requirements, we

designed and implemented the GT4 authorization framework.

3.1 GT4 Authorization Framework Architecture

The GT4 authorization framework implements SAML and uses the XACML model,

as shown in Fig. 3. It is composed of a PEP, PDPs, and PIPs:

!"For each existing authorization policy, the framework constructs a PDP for

evaluating that kind of policy. Four types of decision may be returned by

each PDP: permit, deny, not applicable, and indeterminate. The Master PDP

is responsible for coordinating the PDPs to render a final decision. It

combines the decisions returned by each PDP through a combining

algorithm.

 6

!"The PEP intercepts the user’s request and executes the authorization decision

received from the master PDP. The Master PDP and the PEP are collectively

called the authorization engine of the framework.

!"The PIPs are information collection points that collect attributes about

various entities related to the authorization evaluation. A subset of PIP,

referred to as Bootstrap PIPs, collect information only about the request,

such as the peer subject, the requested action, and the resource. An example

of one such PIP, is the X509BootstrapPIP, which extracts the subject DN of

the peer from the X509 certificate.

PDPs

PIPs

Access Control List

… …

… …

X509BootstrapPIP

SAMLAuthzAssertionPIP

SAMLAuthorizationCallout PDP

AccessControlList PDP

GridMapAuthorizaion PDP

Security Configuration file

Authorization
Engine

Decision
Result

Decision
Request

PEP

Request

Client

Grid Service

Identity-based
policy

Request

Gridmap File

IdentityAthorization PDPMasterPDP

Fig. 3 GT4 Authorization Framework

In the authorization framework, the collection of Bootstrap PIPs, PIPs, and PDPs

is referred to as an authorization chain. An authorization chain can be configured

through the security configuration file or programmatically at the resource, service,

 7

and container level. The level of authorization chain to be used is determined in the

following order: the resource, the service, and the container: if the resource level is

not configured, the framework looks for a service level configuration and if that is not

configured it looks for a container level configuration.

 When a request of the Grid resource comes, the PEP in the authorization engine

intercepts it and sends a decision request to the master PDP. The master PDP collects

information needed by calling the Bootstrap PIPs and other PIPs and then invokes the

corresponding PDPs with the request and the information collected. The PIPs and the

PDPs used are all specified in the security configuration file. When the master PDP

receives the decisions returned by each PDP, it combines the decisions, using a policy

combination algorithm to render a final decision, and returns the decision to the PEP.

The PEP then executes the decision, either denying or permitting the request.

3.2 The PDP of the Authorization Framework

 The PDP is the core of the authorization framework. For GT4 we designed a

multipolicy framework to dynamically support multiple security policies and provide

several PDPs that implement specific policies.

3.2.1 The Multipolicy Framework

One main challenge of the GT4 authorization framework is to support multiple

policies. To achieve this goal, we built a multipolicy framework based on

object-oriented technology. The framework is shown in Fig. 4. Because every policy

essentially needs its own custom decision evaluator that understands the intrinsic

semantics of the policy expressions, it is necessary to encapsulate the policy into an

 8

independent PDP. At the same time, we abstract the common characteristic of the

policies and define an abstract PDP. The PDP abstraction (the PDP class in Fig. 4)

defines a common interface that can be used to interact with the PEP or with other

PDPs. This common interface uses the XACML request context interface, which

essentially presents the decision request as a collection of attribute values for the

subject, resource, and action. Each specific policy is a subclass of the PDP abstraction,

which implements the common interface inherited from PDP with its own policy and

evaluation mechanism.

…

AccessControlListPDP

CanAccess()

IdentityPDP

CanAccess()

SAMLCalloutPDP

CanAccess()

GridMapPDP

CanAccess()

PDP

CanAccess()

Fig. 4 GT4 Authorization Policy Framework

At run time, a separate Master PDP is used to create instances of the

mechanism-specific PDPs specified in the security configuration file. The PDP

instances construct a PDP chain. The Master PDP collects information about the

request and calls the PDPs in the chain, combines the decisions from all the different

PDP instances, and then renders a single decision reflecting the overall evaluated

policies.

Since the policy framework is object oriented, it is scalable and flexible, which

means that new policies can be added to the framework just by inheriting the PDP

 9

class and that the existing policies can be removed and modified at any time. Also,

since PDP instances are queried through the same interface and since the

mechanism-specific details of the PDPs are all hidden behind the public interface, a

change to the policy framework has no effect on the Master PDP: it can cooperate

with any specific PDPs designated by the security configuration files. This

multipolicy framework thus provides users of GT4 with an authorization mechanism

that is flexible and scalable and can support multiple different policies.

3.2.2 The PDPs in GT4

 In Grid systems, there are several frequently used simple authorization policies

or mechanisms, we provided PDPs that implement these existing policies. There are

also some authorization systems developed by others that can be used in a Grid

system, such as Shibboleth,[9] Virtual Organization Management Service (VOMS),[10]

and X.509 Role Based Privilege Management Infrastructure (PERMIS).[11] Therefore,

we established a PDP for integrating other authorization systems through the SAML

assertions. Some of the PDPs are as follows:

!"AccessControlList PDP: implementing the access control list mechanism,

which renders its decision by consulting a local user privilege file.

!"GridMapAuthorizaion PDP: Looking at a Gridmap file to determine whether

a requestor can access the service.

!"HostAuthorization PDP: Checking whether the requestor has the specific

host identity configured in the PDP.

!"IdentityAuthorization PDP: Checking whether the requestor has the specific

 10

identity configured in the PDP.

!"SAMLAuthorizationCallout PDP: Integrating third-party authorization

systems. It contacts an authorization service using the SAML authorization

assertions to express the requests and the responses. The request can be

permitted only when the authorization service returns a positive decision.

The Master PDP uses a combining algorithm to combine the decisions returned

by each PDP. The algorithm can be configured in various ways. The following are

examples of the algorithm:

!"Deny override

If a deny is returned by any PDP in the chain, the final decision will be deny.

If no PDP in chain returns deny, the decision will be permit.

!"Permit override

If a permit is returned by any PDP in the chain, the final decision will be

permit. If no permit decision chain is found, the decision will be deny.

!"First applicable

If a permit or deny is returned by any PDP, the decision is returned, and the

rest of the chain will not be evaluated.

3.3 Attributes Collection

The authorization framework of GT4 is a kind of attributes-based access

control.[12] Many policies use the attributes of the requestor, the service, the resource,

the action, and the environment. Hence, it is also important that the framework build

an effective mechanism to collect the attributes when making authorization decisions.

 11

The attributes-collecting process is shown in Fig. 5.

 The PDP Chain Attributes Set Per Entity

… …

AccessControlList PDP

GridMapAuthorizaion PDP

SAMLCallout PDP

Entity 1

Entity 2

Entity 3

Entity n

… …

Attributes Grouping

… …

SAML Authorization Assertion

Bootstrap PIP X509 Bootstrap PIP

Container PIP

PIP List

… …

Fig. 5 Attributes Collection in GT4

When collecting the authorization information, the Container PIP is first invoked

to collect attributes inherent to the framework, such as the service name and the

operation name. Next, the Bootstrap PIPs are invoked to collect information about the

request; usually the X509 Bootstrap PIP is invoked before any other Bootstrap PIP

configured. Then, other PIPs are invoked in the configured order.

Each PIP might return a normalized representation of the collected attributes.

The attributes then are grouped as a single set of attributes per entity and are stored,

so that the PDPs in the PDP chain can access them when evaluating their policies.

4. Blacklist/Whitelist and Its Integration with GT4 Authorization

 Blacklist and whitelist mechanisms are simple and well known in the security

area. A blacklist is a list of particular entities identified by domain names, email

addresses, or other attributes of the entity. The entities listed in a blacklist are

considered dangerous or damage causing and are denied entry to the infrastructure

they are trying to penetrate. Common examples of traditional blacklist solutions are

anti-virus, anti-spyware software and email spam-preventing modules.[13] Whitelists

 12

are the opposite, lists of entities that are allowed to use a system or service. The most

common examples of whitelist solutions are email systems in which users create a list

of authorized addresses from which they can receive mail.

The most obvious advantages of blacklist/whitelist technology are simplicity and

efficiency. They can also be introduced into the Grid services access control area, to

be used to establish a simple and effective authorization mechanism. A blacklist can

be a collection of requestors that are never allowed to access a Grid service. If the

authorization mechanism detects the requestor on the blacklist, it will always deny the

request immediately. A whitelist is a collection of requestors that are allowed to access

a Grid service. When the authorization mechanism detects the requestor on the

whitelist, it will give the access permission to the requestor immediately. Based on

this idea, we designed and implemented a prototype BlackListPDP and WhiteListPDP

under the GT4 authorization framework. The Blacklist/whitelist-based authorization

structure is shown in Fig. 6.

LDAP Server

WhiteListPDP
BlackList/WhiteList
 LDAP Server
 Location(URL)

Blacklist

Master PDP

 Blacklist/Whitelist Access Interface

Whitelist

 JNDI

BlackListPDP

Config File

 Fig. 6 Blacklist/Whitelist-based Authorization Structure

 13

The BlackListPDP and the WhiteListPDP are inherited from the PDP abstraction

introduced in Section 3.2.1. The implementation of these two PDPs has two layers:

the functional layer and the implementation layer, shown in Fig. 7.

Layer
Implementation

Functional Layer Blacklist/Whitelist Access Interface

Java Naming and Directory Interface(JNDI)

Implementations (LDAP, Handle,…)

Fig. 7 Blacklist and Whitelist Implementation Layers

The blacklist/whitelist access interface that provides operations is defined at an

abstract level and is independent of any implementation technology. We have defined

a BlackList class and a WhiteList class that provide an interface for blacklist/whitelist

member testing that is public boolean isMember().The implementation layer provides

blacklist/whitelist backend. JNDI is a well-formed naming and directory integration

platform. Through JNDI, we can easily use several naming and directory services to

implement the blacklist/whitelist. In our prototype we use an LDAP server to store

and manage the blacklist and the whitelist. The URL of the LDAP server is passed to

the BlackListPDP and WhiteListPDP through a configuration file.

 The blacklist and whitelist are composed of attributes of requestors, such as DN

(Distinguished Name, which can be abstracted from the requestor’s X.509 certificate),

name, and email address. Since the security of the Grid system is based on PKI and

the X.509 certificate is widely used in user authentication and authorization,[14] we

chose the DN as the identity attribute of the entities in the blacklist and whitelist. A

 14

Grid system can use other attributes such as username and group membership as the

identity attributes. This can be achieved by establishing a blacklist/whitelist PIP,

which obtains these identity attributes by querying an outside attribute authority using

the requestor’s DN, and then provides the identity attributes to the BlackListPDP or

WhiteListPDP. This will provides more flexibility for users in different application

environments.

The blacklist/whitelist-based authorization can be used together with other

authorization mechanisms to make an efficient and rigorous authorization system. The

BlackListPDP or the WhiteListPDP can form a PDP chain with other PDPs. The

Master PDP will first call the BlackListPDP or the WhiteListPDP; if the requestor is

not found here, the Master PDP will call other PDPs to do further decision making.

5. Conclusion

 We have built a flexible multipolicy authorization framework for GT4. The

framework is based on the XACML and SAML specifications. The blacklist/whitelist

authorization system established under the GT4 authorization framework can provide

a simple and efficient method for Grid service access control. Also, this work

illustrates that the GT4 authorization framework is open, scalable, and flexible. The

framework is still under development. We expect to provide a more stable version in

GT4.2 which will be published later this year.

Acknowledgments

Work on GT4 GSI has been funded in part by NSF, by IBM, and by the U.S.

 15

Department of Energy under Contract W-31-109-Eng-38. A number of individuals

have made contributions to GT4 authorization framework: Von Welch, Takuya Mori,

Karl Czajkowski, Jarek Gawor, Carl Kesselman, Sam Meder, Laura Pearlman, and

Steven Tuecke.

References

[1] I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. International J. Supercomputer Applications, 15(3), 2001.

[2] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Architecture for

Computational Grids. In Proc. 5th ACM Conference on Computer and

Communications Security Conference, pp. 83-92, 1998.

[3] Von Welch, Frank Siebenlist, Ian Foster, John Brresnahan, Karl Czajkowski, Jarek

Gawor, Carl Kesselman, Sam Meder, Laura Pearlman, and Steven Tuedke,

Security for Grid Services. Twelfth International Symposium on High

Performance Distributed Computing (HPDC-12), June 2003.

[4] I. Foster and C. Kesselman. The Globus Project: A Status Report. Proc.

IPPS/SPDP '98 Heterogeneous Computing Workshop, pp. 4-18, 1998.

[5] Ian Foster, Carl Kesselman, Laura Pearlman, Steven Tuecke, and Von Welch. The

Community Authorization Service: Status and Future. In Proc. Computing in High

Energy Physics 03 (CHEP '03), 2003.

[6] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration. Open Grid

 16

Service Infrastructure WG, Global Grid Forum, June 22, 2002.

[7] The Globus Security Team, Globus Toolkit Version 4 Grid Security Infrastructure:

A Standards Perspective, 2005.9

[8] OASIS, extensible Access Control Markup Language (XACML), V2.0, 2005.1

[9] Von Welch, Tom Barton, Kate Keahey, and Frank Siebenlist. Attributes,

Anonymity, and Access: Shibboleth and Globus Integration to Facilitate Grid

Collaboration. In 4th Annual PKI R&D Workshop, April 2005.

[10] EU DataGrid, VOMS Architecture v1.1. 2003.

http://gridauth.infn.it/docs/VOMS-v1_1.pdf.

[11] D. W. Chadwick, and A. Otenko, The PERMIS X.509 Role Based Privilege

Management Infrastructure. 7th ACM Symposium on Access Control Models and

Technologies, 2002.

[12] Tom Barton, Jim Basney, Tim Freeman, Tom Scavo, Frank Siebenlist, Von Welch,

Rachana Ananthakrishnan, Bill Baker, and Kate Keahey, Identity Federation and

Attribute-based Authorization through the Globus Toolkit, Shibboleth, Gridshib,

and MyProxy. In 5th Annual PKI R&D Workshop (To appear), October 2005.

[13] Faronics White paper, Blacklist Versus Whitelist Software Solutions, 2005.8

[14] V. Welch, I. Foster, C. Kesselman, O. Mulmo, Laura Pearlman, Frank Siebenlist,

Steven Tuecke, and Von Welch, X.509 Proxy Certificates for Dynamic

Delegation. 3rd Annual PKI R&D Workshop, 2004.

 17

The submitted manuscript has been created by the University of Chicago as Operator

of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38

with the U.S. Department of Energy. The U.S. Government retains for itself, and

others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in

said article to reproduce, prepare derivative works, distribute copies to the public, and

perform publicly and display publicly, by or on behalf of the Government.

 18

