
 1

Virtual Clusters for Grid Communities
T. Freeman,** K. Keahey,* B. Sotomayor,** X. Zhang,* I. Foster,* and D. Scheftner**

!
*Argonne National Laboratory
**The University of Chicago

Abstract— A challenging issue facing Grid communities is that
while Grids can provide access to many heterogeneous resources,
the resources to which access is provided often do not match the
needs of a specific application or service. In an environment in
which both resource availability and software requirements
evolve rapidly, this disconnect can lead to resource
underutilization, user frustration, and much wasted effort spent
on bridging the gap between applications and resources. We show
here how these issues can be overcome by allowing authorized
Grid clients to negotiate the creation of virtual clusters made up of
virtual machines configured to suit client requirements for
software environment and hardware allocation. We introduce
descriptions and methods that allow us to deploy flexibly
configured virtual cluster workspaces. We describe their
configuration, implementation, and evaluate them in the context
of a virtual cluster representing the environment in production
use by the Open Science Grid. Our performance evaluation
results show that virtual clusters representing current Grid
production environments can be deployed and managed
efficiently, and thus can provide an acceptable platform for Grid
applications.

" Key Words—Grid computing, virtualization, clusters,

virtual machines

I. INTRODUCTION
any significant Grid deployments today, such as Open
Science Grid [1, 2] and TeraGrid [3], rely on clusters to

provide a powerful computation platform for their user
communities. Sharing such clusters between different virtual
organizations (VOs) [4] is not always easy. Problems arise
when the requirements of different VOs that want to use the
same resources conflict or are incompatible with site policies.
Furthermore, the software available on clusters today does not
provide the capabilities needed to implement isolation of
different communities and guarantee resource availability
while also ensuring good utilization of site resources. Both
issues can result in user dissatisfaction (as resources with
suitable hardware and software configuration cannot be
guaranteed or even obtained on a best-effort basis), hardware
under-utilization (as available resources do not match the
current demand), and significant overhead to ensure software
compliance and portability.

To overcome these problems, the use of virtual machines

(VMs) in Grid computing has been proposed [5, 6]. Virtual
machines offer the ability to instantiate a new, independently
configured guest environment on a host resource; multiple,
different such guest environments can be deployed on one
resource at the same time. In addition to providing convenience
to a resouce’s users, this arrangement can also increase
resource utilization as more flexible, but strongly enforceable,
sharing mechanisms can be put in place. Furthermore, the
ability to serialize and migrate the state of a VM opens new
opportunities for better load balancing and improved reliability
that are not possible with traditional resources. Modern VM
implementations, such as Xen [7] and VMware [8] also provide
outstanding isolation and enforcement properties, as well as
excellent performance making the use of virtual machines
cost-effective.

While the combining of Grid and virtualization technology
has generated much interest, relatively little attention has been
paid to evaluating to what extent the VM technology can be
applied to the most common Grid fabric – clusters. Deploying
generic virtual clusters of diverse topologies requires the ability
to deploy many VMs in a coordinated fashion so that sharing of
infrastructure, such as disks and networking, can be properly
orchestrated. Due to the need for deployment and configuration
of many VMs, cluster deployments can be more costly than the
deployment of single VMs [9]. Furthermore, many Grid
applications are composed of interdependent tasks requiring
frequent I/O calls, a workload that is typically hard for virtual
machines to execute efficiently.

In this paper, we first describe how to efficiently represent
and implement a generic infrastructure for virtual cluster
deployment. This infrastructure extends our Workspace
Service [10]. We then evaluate our implementation in the
context of a virtual cluster modeled on Grid clusters currently
in production use by one of the leading Grid communities: the
Open Science Grid (OSG) [2]. We complete our investigation
by evaluating the performance of an OSG application on the
virtual cluster.

We first provide our work context by describing the related
work. We proceed to describe how generic virtual clusters of
diverse topologies can be represented to ensure deployment
with the required characteristics. We follow with a description
of extensions to the Workspace Service required to deploy such
clusters, and the implementation that goes with it. We then
describe the structure and operation of a typical OSG cluster.
We use the described infrastructure to model an OSG virtual
cluster and evaluate its deployment and management using the
Workspace Service. Finally, we evaluate OSG application
performance on the virtual cluster and conclude.

M

 2

II. RELATED WORK
With superior isolation properties, fine-grained resource

management, and the ability to instantiate independently
configured guest environments on a host resource, virtual
machines provide a good platform for Grid computing [5, 6].
The Xenoserver project [11] is building a distributed
infrastructure as an extension of the Xen virtual machine effort
[7]. The In-Vigo project [12, 13] proposed a distributed Grid
infrastructure based on virtual machines, while the Virtuoso
[14] and Violin [15] projects explore relevant networking
issues.

Atomic workspaces, described previously [9], can be
combined to form virtual clusters. The key extension proposed
in this work is thus an aggregate workspace that contains one
or more workspace sets: sets of atomic workspaces with the
same configuration. A combination of such sets can be used to
define complex heterogeneous clusters. For example, a typical
OSG cluster, described in Section

Our approach differs in that it focuses on the workspace
abstraction [10], treating virtual machines as one potential
implementation. Thus, we focus on developing workspace
descriptions and interfaces, that could fit a variety of
approaches, and that clearly define the required resource
allocation abstractions and enable their secure provisioning.

In addition, driven by community requirements, we also
focus on clusters, rather than single resources, as a primary
Grid platform. The idea of providing customized clusters “on
demand” (albeit not based on virtual machines) based on some
form of Grid credential has been pioneered by the Cluster on
Demand (COD) project [16]. This effort is complementary to
our work: workspaces provisioned by COD could be used to
deploy virtual clusters as described here.

III. VIRTUAL CLUSTERS
Virtual workspaces (VWs) [10] provide an metadata-defined

abstraction of an execution environment that can be made
available dynamically to authorized clients by using
well-defined protocols. We briefly summarize this abstraction
here, and then describe how we extended the workspace
metadata schema to support a virtual cluster and explain how
the schema was used to support its deployment. We also
describe changes to Workspace Service interfaces and
implementation. We provide a comprehensive description of
both metadata schema and interfaces elsewhere [10].

A. The Virtual Workspace
Workspaces are described by workspace metadata, which

contains all the information needed to deploy a workspace in
various contexts. An atomic workspace, representing a single
execution environment, specifies the data (e.g., VM images)
that must be obtained and deployment information (such as
networking setup) that must be configured on deployment. At
deployment time, a workspace is associated with a resource
allocation, which describes how much resource (CPU,
memory, etc.) is assigned to the workspace.

We have implemented workspace deployment in the
Workspace Service, a Globus Toolkit 4 (GT4) [22] based
service used to deploy workspaces. The Workspace Service
implements a WSRF-based protocol allowing remote clients to
start, stop, manage and inspect workspaces. All client actions
are authorized using the Grid Security Infrastructure (GSI).

B. Virtual Cluster Representation

IV, is composed of two
workspace sets: a first set containing one “service node” (with
service node configuration) and a second set of “worker nodes”
(all with the same worker node configuration). This cluster
specification can be easily redefined to include, for example,
multiple service nodes of the same or different configurations
or different sets of worker nodes. All information about a
cluster workspace is composed from the metadata of the atomic
workspaces describing those nodes. A virtual cluster’s
networking is described to reflect the potentially different
configurations of its atomic components: each atomic
workspace can have a number of differently configured
network connections [10]. Continuing with our OSG cluster
example, each worker node has one NIC element configured to
obtain an IP on a private network – this could be done by
DHCP, pre-arranged, obtained from an external service, or (as
in our experiments) allocated by the Workspace Service. The
service node is described by two NIC elements, one of them
sharing the subnet of the worker nodes, the other using the
pre-arranged option, giving the service node a static, public IP
address.

Further configuration options, such as information about
shared disk partitions, are also recorded in the definition
sections of the workspace metadata for all atomic descriptions.
This information is extracted by the Workspace Service and
passed as a kernel option when the corresponding node is
propagated. When a virtual node is booted, an OS boot script is
executed to customize the NFS sharing configuration and
update the necessary configuration files.

C. Workspace Service Interfaces for Virtual Cluster
Performing operations on the virtual cluster requires

allocating resources to a group of VMs as well as deploying and
managing them as a group. Thus, we extended the Workspace
Service operations to handle aggregate workspaces. To match
the resource needs of aggregate workspace, we have defined a
corresponding type for resource allocation allowing the user to
specify resource allocation for groups of workspaces. The
resource properties reflect the aggregate structure of the
workspace and allow the client to operate on it.

An aggregate resource allocation is a set of homogeneous
sets of atomic resource allocations (CPU, memory, etc.). For
example, an aggregate resource allocation for an OSG cluster
might variously (i) be a set of identical resource allocations (if
the service node and all worker nodes have the same
requirements), (ii) reflect a different resource allocation for the
service node and identical ones for the worker nodes, or (iii) be
yet another configuration. The structure of the aggregate

 3

workspace type and the aggregate resource allocation need not
be the same – differently configured workspaces may require
the same type of resource allocation, and vice versa. For the
purpose of matching workspaces to resource allocations, an
ordering is imposed on both sets. In addition, our current
implementation assumes that the resource allocation will match
the workspace exactly; in the future, we plan to extend this
functionality to work with bulk allocations (such as represented
by WS-Agreement [17]).

D. Workspace Service Implementation
In our implementation we assume that the Workspace

Service executes on a service node of a physical cluster and
provides a secure gateway to a set of resources that can support
the deployment of virtual machines. We further assume that all
data necessary for deployment (such as VM images) has
already been staged to a node in the trusted computing base
(TCB). The service node of the physical cluster runs a GT4
container and the Workspace Service. The hosts are configured
with the Xen hypervisor, Workspace Service back-end scripts
and a means to invoke them such as SLURM [18], as well as
some means of transferring image files and other data relevant
to the workspace from within the TCB.

Our current implementation accepts workspace creation
requests based on resource availability. The Workspace
Service maintains a database of information about physical
hosts available for workspace deployment. For each physical
host it records availability, CPU type, total/available memory
size, total/available disk size, and system information. When
the Workspace Service receives the cluster workspace creation
request, it searches the database for a set of resources matching
the resource allocation request, defines a matching set, marks it
as reserved, and maps the resource allocation onto it. When the
workspace is terminated, the resources are reclaimed and the
database is modified accordingly. Our implementation does not
yet support advance reservations, but the database can support
the time dimension. In addition to allocating resources, the
Workspace Service also handles local IP address allocation.

Workspace creation results in the creation of a workspace
WSRF resource as well as workspace deployment up to a
specified state [10]. A workspace is deployed through the
invocation of workspace back-end scripts via local schedulers;
our current implementation works with SLURM [18] and PBS
[19]. The first step of workspace deployment involves
propagating the images to the target nodes: workspace scripts
executing on each node download the images from a specified
location. This step is separate to create an opportunity for
pre-staging of the images without actually starting the VMs. To
deploy a workspace, the back-end scripts work with the Xen
hypervisor and complete the configuration of the workspace.
Configuration information that cannot be processed by Xen
(such as networking) is set up by calling an OS boot script
preinstalled in the VM images. After a workspace is deployed,
it can be managed by invoking start and stop operations with
different parameters to pause/unpause or shut down a
workspace. These operations are broadcast to all participating

nodes.

IV. OSG CLUSTERS AND INFRASTRUCTURE

The Open Science Grid (OSG) [2, 20] is a U.S.
production-quality Grid for large-scale science, enabling
scientists to access shared resources using common Grid
infrastructure tools. The OSG software stack is based on the
NSF Middleware Initiative distribution, which includes Condor
[21] and Globus [22] technologies, as well as additional utilities
provided by the Virtual Data System (VDS) [23].

The OSG Grid infrastructure is structured so that users with
work to do contact a submit host that organizes the work as a set
of inter-dependent tasks and orchestrates their execution on
OSG resources. To do this, the submit host uses tools provided
by VDS to express task workflow, planners such as Pegasus
[24] to translate it into an executable form, and Condor
DAGMan [25] as well as the Condor-G task manager [21] to
schedule them on OSG resources.

OSG resource are typically organized as clusters, consisting
of one or more service nodes that provide secure access to a
group of worker nodes on which application jobs are executed.
Worker nodes are sometimes configured to be accessible on a
site’s private network only, while service nodes can always be
accessed via both this private network and the public Internet.
Services executing on the service nodes implement various
management functions. For example, compute elements (CEs)
provide access to the cluster’s compute resources, while
storage elements (SEs) provide access to its storage resources.
In this paper, we focus on providing access to a cluster’s
computational resources.

A typical OSG cluster has the following configuration:
" There is at least one service node.
" The service node(s) and worker nodes run Debian

Linux.
" A local batch scheduler, such as Condor-C [26], PBS

[19], LSF [27], or SGE [28], is installed on the cluster
and used to manage it.

" All worker and service nodes have access to a shared file
system, such as NFS; thus, application executables, data
and other files placed on service nodes are available to
worker nodes.

" Grid infrastructure, in current deployments typically the
Globus GRAM [29] and GridFTP [30] services, run on
the service node to authenticate and authorize job
requests, stage required files, and submit jobs to the
local batch scheduler.

An OSG user first authenticates to an OSG submit host. If
the submission is authorized, executables and other data are
staged to a selected OSG cluster followed by a GRAM
submission (e.g., via Condor-G) of the requested tasks to the
cluster. The submission is orchestrated and managed through
the cluster’s service nodes.

 4

V. EXPERIMENTAL RESULTS
We conducted two sets of experiment to evaluate the

performance of an OSG virtual cluster. The first set measures
the cost of deploying and managing the cluster itself, and the
second the efficiency of the cluster for various application
classes.

We ran all experiments on a partition of the Chiba City
cluster at Argonne National Laboratory [31]. Each Chiba node
has two 500 MHz Intel PIII CPUs (with a 512 KB cache per
CPU), 512 MB main memory, and 9 GB of local disk. Nodes
are connected by a 100 Mbps LAN.

To host the virtual cluster, Chiba City nodes were configured
with Xen 2.0 testing distribution (both domain 0 and user
domain run port of Linux 2.6.11) and rebooted with XenLinux.
We chose domain 0 memory size to allow the best possible
performance: neither too large (so that as much memory as
possible can be given to the VM) nor too small (so that it does
not interfere with VM performance by skimping on buffering
space). We found that for I/O-intensive applications a memory
size of 96 MB works well, and we used this size in the
experiments described here. In the experiments described here,
SLURM was used to schedule VMs on Chiba City nodes.

The configuration of the OSG virtual cluster replicates in
detail the configuration of the OSG cluster described in section
IV. (We find that even seemingly irrelevant configuration
details may impact performance significantly.) Since the

images represent inactive VMs, the primary constituent of the
image is the VM’s disks. The service node file system is made
up of three disk partitions mounted from three disk images,
including a 600 MB root file system image containing a Debian
Sarge Linux installation, a 750 MB image required for the
Virtual Data Toolkit (VDT) v1.3.6 OSG middleware stack, and
a 1 GB image containing OSG application executables and
data. The latter two partitions are exported as an NFS volume
so that they can be shared by worker nodes. The worker node’s
root file system is built from a 600MB root file system image
containing Debian Sarge Linux installation, similar to the head
node. Worker nodes are configured to share the OSG
middleware partition exported by the head node when it is
booted.

A. Evaluation of Cluster Deployment and Management
We report first on experiments that measure the time it takes

to (a) deploy and (b) manage the virtual cluster.
In our timings we assume that all the data to deploy the

cluster has already been staged to a known place within the
TCB. We split VM deployment into two major components: (1)
a virtual cluster scheduling and image propagation phase, in
which physical nodes are selected and VM images are copied to
those nodes, and (2) customizing and deploying the virtual
machines. The first phase takes by far the most time and can be
executed ahead of actual VM deployment.

Figure 1 shows timing results for the create operation when
using the “propagate only” option [10], as measured on the
server from the moment of receiving the request to the request’s
completion. The graph shows the request time as a sum of (1)
processing time, including the time required to find physical
resources for deployment, (2) broadcast time, and (3) image
propagation time, i.e., the time for the Workspace Service
backend to pull images to worker nodes. We see that the
broadcast time is negligible, but he operation processing time is
relatively high (on the order of seconds versus ~100ms for
operations shown in Figure 2) as it includes all of the
deployment overhead (i.e., the time required to map virtual
machines to resources). The deployment time is dominated by
image propagation. Although the workspace service backend
can be configured to use a variety of transport mechanisms for
image propagation, the data we show here is obtained when

0

100

200

300

400

500

600

700

800

900

2-node cluster 4-node cluster 8-node cluster 16-node cluster

Ti
m

e
(s

ec
)

Operation process time Operation broadcast time Operation execution time

Figure 1: Propagation operation timing results on four clusters.

0

2

4

6

8

10

12

14

Start-
running

Start-
unpause

Shutdow
n-pause

Shutdow
n-trash

Shutdow
n-normal

Start-
running

Start-
unpause

Shutdow
n-pause

Shutdow
n-trash

Shutdow
n-normal

Start-
running

Start-
unpause

Shutdow
n-pause

Shutdow
n-trash

Shutdow
n-normal

Start-
running

Start-
unpause

Shutdow
n-pause

Shutdow
n-trash

Shutdow
n-normal

Ti
m

e
(s

ec
)

Operation process time Operation broadcast time Operation execution time

2-node Cluster 4-node Cluster 8-node Cluster 16-node Cluster

Figure 2: Start and shutdown time as a function of virtual cluster size.

 5

using an NFScopy technique (using the Linux cp command to
copy files from a locally mounted NFS directory to a directory
on a local disk) on the shared file system (NFS v3) available on
the physical cluster. (Using GridFTP in the same scenario
yielded similar results.) As expected, the propagation time
increases with the size of the physical resource allocation to
which the cluster is assigned. This is because the 100Mbps
network link is easily saturated by the 600 MB image transfer
and each connection adds a fixed amount of time to the transfer.
Using Chiba City’s default NFS server, equipped with a
Gigabit Ethernet connection to the switch, the same operation
resulted in a significant speedup and flat transfer times for up to
10 transfers, after which the incoming connections to target
nodes get saturated.

Figure 2 show timing results for cluster management (start
and stop) operations in different contexts. Virtual cluster
operation requests are broadcast using cluster job submission
tools. All request information is broadcast to all the nodes; each
node then selects information relevant to it from the broadcast
data. This implementation results in flat broadcast time as
shown in the graph. The time spent in each operation is
dominated by the time it takes to perform the requested actions,
and thus varies little with the cluster size as the operations on
each node are independent from each other. The start/running
operation is slightly slower than start/unpause since in the latter
case the image is already in memory. Note that operation
processing time for start and shutdown operations (100 ms) is
significantly less than that for the propagation operation (a few
seconds). This is because the propagation operation timing
includes the create overhead, which includes matching to
resources as well as resource setup.

B. OSG Applications on Virtual Clusters
To assess the practicality and trade-offs involved in using a

virtual cluster, we ran experiments to evaluate the impact of
running on a virtual cluster for various OSG applications.

In these tests, we compared the execution time of an
application instance on clusters made up of physical Chiba
nodes to the execution time of the same application instance on
a virtual cluster running on physical Chiba nodes. Unlike
Barham et al. [7], we did not replicate the exact hardware
conditions for virtual and physical nodes. Thus, the virtual
machines deployed on the cluster had access to fewer resources
(memory and CPU), as some resources had to be assigned to
hypervisor functions (domain 0). We believe that these tests
give a better measure of how well an application running in a
VM can perform in practice on a given resource, because we
thus include the overhead of running a virtual machine.

For our evaluation we use the Fast Ocean Atmosphere Model
(FOAM) [32], a climate science application that uses coupled
climate modeling techniques to address questions that require
many simulated years of interaction. FOAM is an MPI-based
data-parallel application organized into three components:
atmosphere, land/sea-ice, and ocean. The first two are
collocated data-parallel programs that use MPI for
intra-component communication and shared memory for

inter-component communication on each node. The third
component executes on a distinct set of processors and uses
MPI to communicate with the other two. Altogether, the
communication makes up about 10% of run time. Other I/O
requests issued by the application consist of using GridFTP to
transfer the input data files from a storage node (in our
experiment, located on the same LAN as the execution cluster)
at the beginning of the computation. The size of the data files is
less than 22MB. Figure 3 presents the execution time of the
FOAM 1.5 workflow running on both physical and virtual
clusters. The time measured is from the submission of the
mpirun command to its completion. Although our benchmark
study of MPI behavior under Xen [33] indicates that certain
patterns of MPI communication over Ethernet may be
potentially expensive in Xen, we observe the workflow has
close execution time performance on both clusters. Table 1
shows the performance difference between them to be overall
less than 5%. This is due to the fact that the overall proportion
of time spent on communication within the application is small.

In practice, applications that are heavily communication-bound
tend to scale poorly and are not a good match for clusters thus
making it likely that applications of this type will respond
favorably to virtual clusters.

C. Analysis
While much faster than node re-imaging, virtual cluster

deployment can be costly—taking on the order of
minutes—due to the necessity of copying images to target
nodes. Where NFS is present, in principle nodes could be
loaded directly from the sources. However, we find that NFS is
not always capable of supporting the network traffic that results
as some images need to be frequently written to. A more
practical optimization is to ensure that images are staged to
advantageous locations (e.g., an NFS server with high speed
location). We are also investigating schemes that would

0

50

100
150

200

250

300

350
400

450

500

4 8 16
Cluster Size (# of WN)

 E
xe

cu
tio

n
Ti

m
e

(S
ec

)

Virtual OSG cluster Physical OSG cluster

Figure 3: Comparison of FOAM execution time on virtual and

physical clusters.

TABLE 1
FOAM PERFORMANCE LOSS ON VIRTUAL CLUSTER

RELATIVE TO PHYSICAL CLUSTER.

4 Nodes 8 Nodes 16 Nodes
4.55% 4.05% 4.10%

 6

optimize propagation by pre-staging the most commonly used
images, or their parts, to the worker nodes or by containing less
used read-only OS libraries to separate partitions that could be
mounted via NFS with acceptable performance. The potentially
relatively high cost of image propagation makes it imperative
that a client, or a scheduler, be given the opportunity to execute
this operation before the virtual machine is started. We
incorporated this observation into our interface design by
allowing for the workspace to progress through the deployment
states only up to a specific state. This approach gives a client
the opportunity to halt the workspace deployment at
well-defined points, image propagation being one of them.
Even given this flexibility, when using medium to large sized
images virtual cluster deployment is potentially expensive; it is
therefore most suitable for scenarios that can offset this
relatively high deployment cost, such as either hosting several
applications or hosting a long-running application.

OSG application results are promising. For our evaluation
we chose FOAM because its data-parallel nature makes it
potentially hard for virtual machines. The 5% performance
degradation shows that in practice where communication
constitutes a small part of an application the performance issues
observed in [34] are not significant. In fact, evaluating other
OSG applications we observed that some tasks appear to
execute faster on a virtual than on a physical machine—likely
due to double caching of I/O operations. We are currently
investigating these effects and their trade-offs in realistic
settings.

VI. CONCLUSION
We have described virtual clusters, groups of virtual

machines designed to execute, and share infrastructure, within
a trusted computing base. We showed how to define cluster
descriptions so that atomic workspaces can be composed
flexibly into more complex constructs, while organizing
infrastructure sharing among the virtual nodes. Cluster
deployment allows us to specify different resource allocations
for different members of aggregates defined in this way. We
also described how such clusters can be deployed, evaluated
their deployment, and integrated its results into our design.

Our application execution results are promising. The
slowdown suffered by the FOAM application from virtual
machine impact on execution as well as from the resource
overhead of using virtual machines was less than expected:
within 5%. Considering that virtual machines offer
unprecedented flexibility in terms of matching clients to
available resources, this performance impact can be viewed as
an acceptable trade-off. Preliminary results from investigating
other OSG applications of more complex dependency patterns
are equally promising and lead us to believe that virtual clusters
have the potential to be a popular solution in production
settings.

ACKNOWLEDGMENT
We acknowledge the help of Jens Voeckler, Mike Wilde,

and Robert Jacob with explanation of the configuration of an
OSG cluster as well as application setup. We also thank Rick
Bradshaw for assistance with the Chiba City cluster testbed at
Argonne. This work was supported in part by the
Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific
Computing Research, U.S. Dept. of Energy, under Contract
W-31-109-E ng-38.

REFERENCES
1. Foster, I. and others. The Grid2003 Production Grid: Principles and

Practice. in IEEE International Symposium on High Performance
Distributed Computing. 2004: IEEE Computer Science Press.

2. Open Science Grid (OSG). 2004: www.opensciencegrid.org.
3. TeraGrid: www.teragrid.org.
4. Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. International Journal of
Supercomputer Applications, 2001. 15(3): p. 200-222.

5. Figueiredo, R., P. Dinda, and J. Fortes. A Case for Grid Computing
on Virtual Machines. in 23rd International Conference on
Distributed Computing Systems. 2003.

6. Keahey, K., K. Doering, and I. Foster. From Sandbox to
Playground: Dynamic Virtual Environments in the Grid. in 5th
International Workshop in Grid Computing. 2004.

7. Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebar, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. in ACM Symposium on Operating Systems
Principles (SOSP).

8. VMware: www.vmware.com.
9. Keahey, K., I. Foster, T. Freeman, X. Zhang, and D. Galron. Virtual

Workspaces in the Grid. in Europar. 2005. Lisbon, Portugal.
10. Keahey, K., I. Foster, T. Freeman, and X. Zhang, Virtual

Workspaces: Achieving Quality of Service and Quality of Life in the
Grid. accepted for publication in the Scientific Progamming
Journal, 2005.

11. Reed, D., I. Pratt, P. Menage, S. Early, and N. Stratford.
Xenoservers: Accountable Execution of Untrusted Programs. in 7th
Workshop on Hot Topics in Operating Systems. 1999. Rio Rico, AZ:
IEEE Computer Society Press.

12. Adabala, S., V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I.
Krsul, A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, and
X. Zhu, From Virtualized Resources to Virtual Computing Grids:
The In-VIGO System. Future Generation Computer Systems, 2004.

13. Krsul, I., A. Ganguly, J. Zhang, J. Fortes, and R. Figueiredo.
VMPlants: Providing and Managing Virtual Machine Execution
Environments for Grid Computing. in SC04. 2004. Pittsburgh, PA.

14. Sundararaj, A. and P. Dinda. Towards Virtual Networks for Virtual
Machine Grid Computing. in 3rd USENIX Conference on Virtual
Machine Technology. 2004.

15. Ruth, P., X. Jiang, D. Xu, and S. Goasguen, Towards Virtual
Distributed Environments in a Shared Infrastructure. IEEE
Computer, Special Issue on Virtualization Technologies, 2005.

16. Chase, J., L. Grit, D. Irwin, J. Moore, and S. Sprenkle, Dynamic
Virtual Clusters in a Grid Site Manager. accepted to the 12th
International Symposium on High Performance Distributed
Computing (HPDC-12), 2003.

17. Andrieux, A., K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J.
Pruyne, J. Rofrano, S. Tuecke, and M. Xu, Web Services Agreement
Specification (WS-Agreement) Draft 20. 2004:
https://forge.gridforum.org/projects/graap-wg/.

18. Yoo, A.B., M.A. Jette, and M. Grondona, SLURM: Simple Linux
Utility for Resource Management, in Job Scheduling Strategies for
Parallel Processing, L. Rudolph and U. Schwiegelshohn, Editors.
2003, SpringerVerlag. p. 44-60.

19. Portable Batch System. 2003: www.openpbs.org.

http://www.opensciencegrid.org
http://www.teragrid.org
http://www.openpbs.org

 7

20. Pordes, R., The Open Science Grid. Proceedings of the CHEP'04
Conference, 2004.

21. Frey, J., T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A Computation Management Agent for
Multi-Institutional Grids. in 10th IEEE International Symposium on
High Performance Distributed Computing. 2001: IEEE Computer
Society Press.

22. Foster, I., Globus Toolkit version 4: Software for Service-Oriented
Systems. IFIP International Conference on Network and Parallel
Computing, 2005.

23. Foster, I., J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A Virtual
Data System for Representing, Querying, and Automating Data
Derivation. in 14th Intl. Conf. on Scientific and Statistical Database
Management. 2002. Edinburgh, Scotland.

24. Deelman, E., J. Blythe, Y. Gil, C. Kesselman, G. Metha, S. Patil,
M.-H. Su, K. Vahi, and M. Livny, Pegasus: Mapping Scientific
Workflows onto the Grid. Proceedings of the 2nd Europena Across
Grids Conference, 2004.

25. Frey, J., Condor DAGMan: Handling Inter-Job Dependencies:
www.cs.wisc.edu/condor/dagman.

26. Litzkow, M.J., M. Livny, and M.W. Mutka, Condor - A Hunter of
Idle Workstations, in 8th International Conference on Distributed
Computing Systems. 1988. p. 104-111.

27. LSF Web Site: www.platform.com/products/wm/LSF/index.asp.
28. Gentzsch, W., Sun Grid Engine: Towards Creating a Compute

Power Grid. Proceedings of 1st International Symposion on Cluster
Computing and the Grid, 2001.

29. Czajkowski, K., I. Foster, and C. Kesselman, Resource and Service
Management, in The Grid: Blueprint for a New Computing
Infrastructure (2nd Edition). 2004.

30. Allcock, W., GridFTP: Protocol Extensions to FTP for the Grid.
2003, Global Grid Forum.

31. Chiba City Homepage: www.mcs.anl.gov/chiba.
32. Jacob, R., C. Schafer, I. Foster, M. Tobis, and J. Anderson.

Computational Design and Performance of the Fast Ocean
Atmosphere Model, Version One. in International Conference on
Computational Science. 2001: Springer-Verlag.

33. Zhang, X., The Effect of DomO Memory Size on the Performance of
DomU Applications:
people.cs.uchicago.edu/~hai/vcluster/find-dom0-sweetpoint.pdf.

34. Zhang, X., Evaluation of a Virtual Xen Cluster Using the Pallas
MPI Benchmarks Suite:
people.cs.uchicago.edu/~hai/vcluster/PMB/.

http://www.platform.com/products/wm/LSF/index.asp
http://www.mcs.anl.gov/chiba
http://people.cs.uchicago.edu/%7Ehai/vcluster/PMB/

