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Abstract— A challenging issue facing Grid communities is that 
while Grids can provide access to many heterogeneous resources, 
the resources to which access is provided often do not match the 
needs of a specific application or service. In an environment in 
which both resource availability and software requirements 
evolve rapidly, this disconnect can lead to resource 
underutilization, user frustration, and much wasted effort spent 
on bridging the gap between applications and resources. We show 
here how these issues can be overcome by allowing authorized 
Grid clients to negotiate the creation of virtual clusters made up of 
virtual machines configured to suit client requirements for 
software environment and hardware allocation. We introduce 
descriptions and methods that allow us to deploy flexibly 
configured virtual cluster workspaces. We describe their 
configuration, implementation, and evaluate them in the context 
of a virtual cluster representing the environment in production 
use by the Open Science Grid. Our performance evaluation 
results show that virtual clusters representing current Grid 
production environments can be deployed and managed 
efficiently, and thus can provide an acceptable platform for Grid 
applications. 
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I. INTRODUCTION 
any significant Grid deployments today, such as Open 
Science Grid [1, 2] and TeraGrid [3], rely on clusters to 

provide a powerful computation platform for their user 
communities. Sharing such clusters between different virtual 
organizations (VOs) [4] is not always easy. Problems arise 
when the requirements of different VOs that want to use the 
same resources conflict or are incompatible with site policies. 
Furthermore, the software available on clusters today does not 
provide the capabilities needed to implement isolation of 
different communities and guarantee resource availability 
while also ensuring good utilization of site resources. Both 
issues can result in user dissatisfaction (as resources with 
suitable hardware and software configuration cannot be 
guaranteed or even obtained on a best-effort basis), hardware 
under-utilization (as available resources do not match the 
current demand), and significant overhead to ensure software 
compliance and portability.  

To overcome these problems, the use of virtual machines 

(VMs) in Grid computing has been proposed [5, 6]. Virtual 
machines offer the ability to instantiate a new, independently 
configured guest environment on a host resource; multiple, 
different such guest environments can be deployed on one 
resource at the same time. In addition to providing convenience 
to a resouce’s users, this arrangement can also increase 
resource utilization as more flexible, but strongly enforceable, 
sharing mechanisms can be put in place. Furthermore, the 
ability to serialize and migrate the state of a VM opens new 
opportunities for better load balancing and improved reliability 
that are not possible with traditional resources. Modern VM 
implementations, such as Xen [7] and VMware [8] also provide 
outstanding isolation and enforcement properties, as well as 
excellent performance making the use of virtual machines 
cost-effective.  

 
 

While the combining of Grid and virtualization technology 
has generated much interest, relatively little attention has been 
paid to evaluating to what extent the VM technology can be 
applied to the most common Grid fabric – clusters. Deploying 
generic virtual clusters of diverse topologies requires the ability 
to deploy many VMs in a coordinated fashion so that sharing of 
infrastructure, such as disks and networking, can be properly 
orchestrated. Due to the need for deployment and configuration 
of many VMs, cluster deployments can be more costly than the 
deployment of single VMs [9]. Furthermore, many Grid 
applications are composed of interdependent tasks requiring 
frequent I/O calls, a workload that is typically hard for virtual 
machines to execute efficiently.  

In this paper, we first describe how to efficiently represent 
and implement a generic infrastructure for virtual cluster 
deployment. This infrastructure extends our Workspace 
Service [10]. We then evaluate our implementation in the 
context of a virtual cluster modeled on Grid clusters currently 
in production use by one of the leading Grid communities: the 
Open Science Grid (OSG) [2]. We complete our investigation 
by evaluating the performance of an OSG application on the 
virtual cluster.  

We first provide our work context by describing the related 
work. We proceed to describe how generic virtual clusters of 
diverse topologies can be represented to ensure deployment 
with the required characteristics. We follow with a description 
of extensions to the Workspace Service required to deploy such 
clusters, and the implementation that goes with it. We then 
describe the structure and operation of a typical OSG cluster. 
We use the described infrastructure to model an OSG virtual 
cluster and evaluate its deployment and management using the 
Workspace Service. Finally, we evaluate OSG application 
performance on the virtual cluster and conclude.  

M 
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II. RELATED WORK 
With superior isolation properties, fine-grained resource 

management, and the ability to instantiate independently 
configured guest environments on a host resource, virtual      
machines provide a good platform for Grid computing [5, 6]. 
The Xenoserver project [11] is building a distributed 
infrastructure as an extension of the Xen virtual machine effort 
[7]. The In-Vigo project [12, 13] proposed a distributed Grid 
infrastructure based on virtual machines, while the Virtuoso 
[14] and Violin [15] projects explore relevant networking 
issues. 

                                                          

Atomic workspaces, described previously [9], can be 
combined to form virtual clusters. The key extension proposed 
in this work is thus an aggregate workspace that contains one 
or more workspace sets: sets of atomic workspaces with the 
same configuration. A combination of such sets can be used to 
define complex heterogeneous clusters. For example, a typical 
OSG cluster, described in Section 

Our approach differs in that it focuses on the workspace 
abstraction [10], treating virtual machines as one potential 
implementation. Thus, we focus on developing workspace 
descriptions and interfaces, that could fit a variety of 
approaches, and that clearly define the required resource 
allocation abstractions and enable their secure provisioning.  

In addition, driven by community requirements, we also 
focus on clusters, rather than single resources, as a primary 
Grid platform. The idea of providing customized clusters “on 
demand” (albeit not based on virtual machines) based on some 
form of Grid credential has been pioneered by the Cluster on 
Demand (COD) project [16]. This effort is complementary to 
our work: workspaces provisioned by COD could be used to 
deploy virtual clusters as described here. 

III. VIRTUAL CLUSTERS 
Virtual workspaces (VWs) [10] provide an metadata-defined 

abstraction of an execution environment that can be made 
available dynamically to authorized clients by using 
well-defined protocols. We briefly summarize this abstraction 
here, and then describe how we extended the workspace 
metadata schema to support a virtual cluster and explain how 
the schema was used to support its deployment. We also 
describe changes to Workspace Service interfaces and 
implementation. We provide a comprehensive description of 
both metadata schema and interfaces elsewhere [10]. 

A. The Virtual Workspace  
Workspaces are described by workspace metadata, which 

contains all the information needed to deploy a workspace in 
various contexts. An atomic workspace, representing a single 
execution environment, specifies the data (e.g., VM images) 
that must be obtained and deployment information (such as 
networking setup) that must be configured on deployment. At 
deployment time, a workspace is associated with a resource 
allocation, which describes how much resource (CPU, 
memory, etc.) is assigned to the workspace.  

We have implemented workspace deployment in the 
Workspace Service, a Globus Toolkit 4 (GT4) [22] based 
service used to deploy workspaces. The Workspace Service 
implements a WSRF-based protocol allowing remote clients to 
start, stop, manage and inspect workspaces. All client actions 
are authorized using the Grid Security Infrastructure (GSI). 

B. Virtual Cluster Representation 

IV, is composed of two 
workspace sets: a first set containing one “service node” (with 
service node configuration) and a second set of “worker nodes” 
(all with the same worker node configuration). This cluster 
specification can be easily redefined to include, for example, 
multiple service nodes of the same or different configurations 
or different sets of worker nodes. All information about a 
cluster workspace is composed from the metadata of the atomic 
workspaces describing those nodes. A virtual cluster’s 
networking is described to reflect the potentially different 
configurations of its atomic components: each atomic 
workspace can have a number of differently configured 
network connections [10]. Continuing with our OSG cluster 
example, each worker node has one NIC element configured to 
obtain an IP on a private network – this could be done by 
DHCP, pre-arranged, obtained from an external service, or (as 
in our experiments) allocated by the Workspace Service. The 
service node is described by two NIC elements, one of them 
sharing the subnet of the worker nodes, the other using the 
pre-arranged option, giving the service node a static, public IP 
address.  

Further configuration options, such as information about 
shared disk partitions, are also recorded in the definition 
sections of the workspace metadata for all atomic descriptions. 
This information is extracted by the Workspace Service and 
passed as a kernel option when the corresponding node is 
propagated. When a virtual node is booted, an OS boot script is 
executed to customize the NFS sharing configuration and 
update the necessary configuration files. 

C. Workspace Service Interfaces for Virtual Cluster 
Performing operations on the virtual cluster requires 

allocating resources to a group of VMs as well as deploying and 
managing them as a group. Thus, we extended the Workspace 
Service operations to handle aggregate workspaces. To match 
the resource needs of aggregate workspace, we have defined a 
corresponding type for resource allocation allowing the user to 
specify resource allocation for groups of workspaces. The 
resource properties reflect the aggregate structure of the 
workspace and allow the client to operate on it.  

An aggregate resource allocation is a set of homogeneous 
sets of atomic resource allocations (CPU, memory, etc.). For 
example, an aggregate resource allocation for an OSG cluster 
might variously (i) be a set of identical resource allocations (if 
the service node and all worker nodes have the same 
requirements), (ii) reflect a different resource allocation for the 
service node and identical ones for the worker nodes, or (iii) be 
yet another configuration. The structure of the aggregate 
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workspace type and the aggregate resource allocation need not 
be the same – differently configured workspaces may require 
the same type of resource allocation, and vice versa. For the 
purpose of matching workspaces to resource allocations, an 
ordering is imposed on both sets. In addition, our current 
implementation assumes that the resource allocation will match 
the workspace exactly; in the future, we plan to extend this 
functionality to work with bulk allocations (such as represented 
by WS-Agreement [17]).  

D. Workspace Service Implementation 
In our implementation we assume that the Workspace 

Service executes on a service node of a physical cluster and 
provides a secure gateway to a set of resources that can support 
the deployment of virtual machines. We further assume that all 
data necessary for deployment (such as VM images) has 
already been staged to a node in the trusted computing base 
(TCB). The service node of the physical cluster runs a GT4 
container and the Workspace Service. The hosts are configured 
with the Xen hypervisor, Workspace Service back-end scripts 
and a means to invoke them such as SLURM [18], as well as 
some means of transferring image files and other data relevant 
to the workspace from within the TCB.  

Our current implementation accepts workspace creation 
requests based on resource availability. The Workspace 
Service maintains a database of information about physical 
hosts available for workspace deployment. For each physical 
host it records availability, CPU type, total/available memory 
size, total/available disk size, and system information. When 
the Workspace Service receives the cluster workspace creation 
request, it searches the database for a set of resources matching 
the resource allocation request, defines a matching set, marks it 
as reserved, and maps the resource allocation onto it. When the 
workspace is terminated, the resources are reclaimed and the 
database is modified accordingly. Our implementation does not 
yet support advance reservations, but the database can support 
the time dimension. In addition to allocating resources, the 
Workspace Service also handles local IP address allocation.  

Workspace creation results in the creation of a workspace 
WSRF resource as well as workspace deployment up to a 
specified state [10]. A workspace is deployed through the 
invocation of workspace back-end scripts via local schedulers; 
our current implementation works with SLURM [18] and PBS 
[19]. The first step of workspace deployment involves 
propagating the images to the target nodes: workspace scripts 
executing on each node download the images from a specified 
location. This step is separate to create an opportunity for 
pre-staging of the images without actually starting the VMs. To 
deploy a workspace, the back-end scripts work with the Xen 
hypervisor and complete the configuration of the workspace. 
Configuration information that cannot be processed by Xen 
(such as networking) is set up by calling an OS boot script 
preinstalled in the VM images. After a workspace is deployed, 
it can be managed by invoking start and stop operations with 
different parameters to pause/unpause or shut down a 
workspace. These operations are broadcast to all participating 

nodes. 

IV. OSG CLUSTERS AND INFRASTRUCTURE 
 

The Open Science Grid (OSG) [2, 20] is a U.S. 
production-quality Grid for large-scale science, enabling 
scientists to access shared resources using common Grid 
infrastructure tools. The OSG software stack is based on the 
NSF Middleware Initiative distribution, which includes Condor 
[21] and Globus [22] technologies, as well as additional utilities 
provided by the Virtual Data System (VDS) [23].  

The OSG Grid infrastructure is structured so that users with 
work to do contact a submit host that organizes the work as a set 
of inter-dependent tasks and orchestrates their execution on 
OSG resources. To do this, the submit host uses tools provided 
by VDS to express task workflow, planners such as Pegasus 
[24] to translate it into an executable form, and Condor 
DAGMan [25] as well as the Condor-G task manager [21] to 
schedule them on OSG resources.  

OSG resource are typically organized as clusters, consisting 
of one or more service nodes that provide secure access to a 
group of worker nodes on which application jobs are executed. 
Worker nodes are sometimes configured to be accessible on a 
site’s private network only, while service nodes can always be 
accessed via both this private network and the public Internet. 
Services executing on the service nodes implement various 
management functions. For example, compute elements (CEs) 
provide access to the cluster’s compute resources, while 
storage elements (SEs) provide access to its storage resources. 
In this paper, we focus on providing access to a cluster’s 
computational resources.  

A typical OSG cluster has the following configuration:  
" There is at least one service node. 
" The service node(s) and worker nodes run Debian 

Linux. 
" A local batch scheduler, such as Condor-C [26], PBS 

[19], LSF [27], or SGE [28], is installed on the cluster 
and used to manage it. 

" All worker and service nodes have access to a shared file 
system, such as NFS; thus, application executables, data 
and other files placed on service nodes are available to 
worker nodes.  

" Grid infrastructure, in current deployments typically the 
Globus GRAM [29] and GridFTP [30] services, run on 
the service node to authenticate and authorize job 
requests, stage required files, and submit jobs to the 
local batch scheduler.  

An OSG user first authenticates to an OSG submit host. If 
the submission is authorized, executables and other data are 
staged to a selected OSG cluster followed by a GRAM 
submission (e.g., via Condor-G) of the requested tasks to the 
cluster. The submission is orchestrated and managed through 
the cluster’s service nodes.  
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V. EXPERIMENTAL RESULTS 
We conducted two sets of experiment to evaluate the 

performance of an OSG virtual cluster. The first set measures 
the cost of deploying and managing the cluster itself, and the 
second the efficiency of the cluster for various application 
classes.  

We ran all experiments on a partition of the Chiba City 
cluster at Argonne National Laboratory [31]. Each Chiba node 
has two 500 MHz Intel PIII CPUs (with a 512 KB cache per 
CPU), 512 MB main memory, and 9 GB of local disk. Nodes 
are connected by a 100 Mbps LAN.  

To host the virtual cluster, Chiba City nodes were configured 
with Xen 2.0 testing distribution (both domain 0 and user 
domain run port of Linux 2.6.11) and rebooted with XenLinux. 
We chose domain 0 memory size to allow the best possible 
performance: neither too large (so that as much memory as 
possible can be given to the VM) nor too small (so that it does 
not interfere with VM performance by skimping on buffering 
space). We found that for I/O-intensive applications a memory 
size of 96 MB works well, and we used this size in the 
experiments described here. In the experiments described here, 
SLURM was used to schedule VMs on Chiba City nodes.  

The configuration of the OSG virtual cluster replicates in 
detail the configuration of the OSG cluster described in section 
IV. (We find that even seemingly irrelevant configuration 
details may impact performance significantly.) Since the 

images represent inactive VMs, the primary constituent of the 
image is the VM’s disks. The service node file system is made 
up of three disk partitions mounted from three disk images, 
including a 600 MB root file system image containing a Debian 
Sarge Linux installation, a 750 MB image required for the 
Virtual Data Toolkit (VDT) v1.3.6 OSG middleware stack, and 
a 1 GB image containing OSG application executables and 
data. The latter two partitions are exported as an NFS volume 
so that they can be shared by worker nodes. The worker node’s 
root file system is built from a 600MB root file system image 
containing Debian Sarge Linux installation, similar to the head 
node. Worker nodes are configured to share the OSG 
middleware partition exported by the head node when it is 
booted. 

A. Evaluation of Cluster Deployment and Management 
We report first on experiments that measure the time it takes 

to (a) deploy and (b) manage the virtual cluster.  
In our timings we assume that all the data to deploy the 

cluster has already been staged to a known place within the 
TCB. We split VM deployment into two major components: (1) 
a virtual cluster scheduling and image propagation phase, in 
which physical nodes are selected and VM images are copied to 
those nodes, and (2) customizing and deploying the virtual 
machines. The first phase takes by far the most time and can be 
executed ahead of actual VM deployment.  

Figure 1 shows timing results for the create operation when 
using the “propagate only” option [10], as measured on the 
server from the moment of receiving the request to the request’s 
completion. The graph shows the request time as a sum of (1) 
processing time, including the time required to find physical 
resources for deployment, (2) broadcast time, and (3) image 
propagation time, i.e., the time for the Workspace Service 
backend to pull images to worker nodes. We see that the 
broadcast time is negligible, but he operation processing time is 
relatively high (on the order of seconds versus ~100ms for 
operations shown in Figure 2) as it includes all of the 
deployment overhead (i.e., the time required to map virtual 
machines to resources).  The deployment time is dominated by 
image propagation. Although the workspace service backend 
can be configured to use a variety of transport mechanisms for 
image propagation, the data we show here is obtained when 
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Figure 1: Propagation operation timing results on four clusters.
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using an NFScopy technique (using the Linux cp command to 
copy files from a locally mounted NFS directory to a directory 
on a local disk) on the shared file system (NFS v3) available on 
the physical cluster. (Using GridFTP in the same scenario 
yielded similar results.) As expected, the propagation time 
increases with the size of the physical resource allocation to 
which the cluster is assigned. This is because the 100Mbps 
network link is easily saturated by the 600 MB image transfer 
and each connection adds a fixed amount of time to the transfer. 
Using Chiba City’s default NFS server, equipped with a 
Gigabit Ethernet connection to the switch, the same operation 
resulted in a significant speedup and flat transfer times for up to 
10 transfers, after which the incoming connections to target 
nodes get saturated.  

Figure 2 show timing results for cluster management (start 
and stop) operations in different contexts. Virtual cluster 
operation requests are broadcast using cluster job submission 
tools. All request information is broadcast to all the nodes; each 
node then selects information relevant to it from the broadcast 
data. This implementation results in flat broadcast time as 
shown in the graph. The time spent in each operation is 
dominated by the time it takes to perform the requested actions, 
and thus varies little with the cluster size as the operations on 
each node are independent from each other. The start/running 
operation is slightly slower than start/unpause since in the latter 
case the image is already in memory. Note that operation 
processing time for start and shutdown operations (100 ms) is 
significantly less than that for the propagation operation (a few 
seconds). This is because the propagation operation timing 
includes the create overhead, which includes matching to 
resources as well as resource setup. 

B. OSG Applications on Virtual Clusters 
To assess the practicality and trade-offs involved in using a 

virtual cluster, we ran experiments to evaluate the impact of 
running on a virtual cluster for various OSG applications.  

In these tests, we compared the execution time of an 
application instance on clusters made up of physical Chiba 
nodes to the execution time of the same application instance on 
a virtual cluster running on physical Chiba nodes. Unlike 
Barham et al. [7], we did not replicate the exact hardware 
conditions for virtual and physical nodes. Thus, the virtual 
machines deployed on the cluster had access to fewer resources 
(memory and CPU), as some resources had to be assigned to 
hypervisor functions (domain 0). We believe that these tests 
give a better measure of how well an application running in a 
VM can perform in practice on a given resource, because we 
thus include the overhead of running a virtual machine. 

For our evaluation we use the Fast Ocean Atmosphere Model 
(FOAM) [32], a climate science application that uses coupled 
climate modeling techniques to address questions that require 
many simulated years of interaction. FOAM is an MPI-based 
data-parallel application organized into three components: 
atmosphere, land/sea-ice, and ocean. The first two are 
collocated data-parallel programs that use MPI for 
intra-component communication and shared memory for 

inter-component communication on each node. The third 
component executes on a distinct set of processors and uses 
MPI to communicate with the other two. Altogether, the 
communication makes up about 10% of run time.  Other I/O 
requests issued by the application consist of using GridFTP to 
transfer the input data files from a storage node (in our 
experiment, located on the same LAN as the execution cluster) 
at the beginning of the computation. The size of the data files is 
less than 22MB. Figure 3 presents the execution time of the 
FOAM 1.5 workflow running on both physical and virtual 
clusters. The time measured is from the submission of the 
mpirun command to its completion. Although our benchmark 
study of MPI behavior under Xen [33] indicates that certain 
patterns of MPI communication over Ethernet may be 
potentially expensive in Xen, we observe the workflow has 
close execution time performance on both clusters. Table 1 
shows the performance difference between them to be overall 
less than 5%. This is due to the fact that the overall proportion 
of time spent on communication within the application is small. 

In practice, applications that are heavily communication-bound 
tend to scale poorly and are not a good match for clusters thus 
making it likely that applications of this type will respond 
favorably to virtual clusters.  

C.  Analysis  
While much faster than node re-imaging, virtual cluster 

deployment can be costly—taking on the order of 
minutes—due to the necessity of copying images to target 
nodes. Where NFS is present, in principle nodes could be 
loaded directly from the sources. However, we find that NFS is 
not always capable of supporting the network traffic that results 
as some images need to be frequently written to. A more 
practical optimization is to ensure that images are staged to 
advantageous locations (e.g., an NFS server with high speed 
location). We are also investigating schemes that would 
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TABLE 1 
FOAM PERFORMANCE LOSS ON VIRTUAL CLUSTER  

RELATIVE TO PHYSICAL CLUSTER. 

4 Nodes 8 Nodes 16 Nodes 
4.55% 4.05% 4.10%
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optimize propagation by pre-staging the most commonly used 
images, or their parts, to the worker nodes or by containing less 
used read-only OS libraries to separate partitions that could be 
mounted via NFS with acceptable performance. The potentially 
relatively high cost of image propagation makes it imperative 
that a client, or a scheduler, be given the opportunity to execute 
this operation before the virtual machine is started. We 
incorporated this observation into our interface design by 
allowing for the workspace to progress through the deployment 
states only up to a specific state. This approach gives a client 
the opportunity to halt the workspace deployment at 
well-defined points, image propagation being one of them. 
Even given this flexibility, when using medium to large sized 
images virtual cluster deployment is potentially expensive; it is 
therefore most suitable for scenarios that can offset this 
relatively high deployment cost, such as either hosting several 
applications or hosting a long-running application. 

OSG application results are promising. For our evaluation 
we chose FOAM because its data-parallel nature makes it 
potentially hard for virtual machines. The 5% performance 
degradation shows that in practice where communication 
constitutes a small part of an application the performance issues 
observed in [34] are not significant. In fact, evaluating other 
OSG applications we observed that some tasks appear to 
execute faster on a virtual than on a physical machine—likely 
due to double caching of I/O operations. We are currently 
investigating these effects and their trade-offs in realistic 
settings.  

 

VI. CONCLUSION 
We have described virtual clusters, groups of virtual 

machines designed to execute, and share infrastructure, within 
a trusted computing base. We showed how to define cluster 
descriptions so that atomic workspaces can be composed 
flexibly into more complex constructs, while organizing 
infrastructure sharing among the virtual nodes. Cluster 
deployment allows us to specify different resource allocations 
for different members of aggregates defined in this way. We 
also described how such clusters can be deployed, evaluated 
their deployment, and integrated its results into our design.  

Our application execution results are promising. The 
slowdown suffered by the FOAM application from virtual 
machine impact on execution as well as from the resource 
overhead of using virtual machines was less than expected: 
within 5%. Considering that virtual machines offer 
unprecedented flexibility in terms of matching clients to 
available resources, this performance impact can be viewed as 
an acceptable trade-off. Preliminary results from investigating 
other OSG applications of more complex dependency patterns 
are equally promising and lead us to believe that virtual clusters 
have the potential to be a popular solution in production 
settings.  
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