
Runtime Visualization of the Human Arterial Tree

Joseph A. Insley*, Michael E. Papka*, Suchuan Dong†, George Karniadakis†, and Nicholas T. Karonis‡

*Computation Institute
Argonne National Laboratory

The University of Chicago

†Division of Applied Mathematics,
Brown University

‡Department of Computer Science
Northern Illinois University

ABSTRACT
Large-scale simulation codes typically execute for extended
periods of time, often on distributed computational resources.
Because these simulations can run for hours, or even days,
scientists would like to get feedback about the state of the
computation and the validity of its results as it continues to run. It
is also important that these capabilities be made available with
little impact on the performance and stability of the simulation.
Visualizing and exploring data in the early stages of the
simulation can help scientists identify problems early, potentially
avoiding a situation where a simulation runs for several days, only
to discover an error with an input parameter caused both time and
resources to be wasted.

We describe an application that aids in the monitoring and
analysis of a simulation of the human arterial tree. The application
provides researchers with high-level feedback about the state of
the on-going simulation and enables them to investigate particular
areas of interest in greater detail. The application also offers
monitoring information about the amount of data produced and
data transfer performance between the various components of the
application.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems -
Distributed/network graphics; I.6.6 [Simulation and Modelling]:
Simulation Output Analysis;

Keywords: Real-time visualization, flow visualization

1 INTRODUCTION
Simulation-driven science is increasingly being used to initiate
scientific discovery. As the accuracy and complexity of scientific
simulations continue to rise, the computational resources required

to execute these simulations also increase. Even with the
advancement of Grid-enabling technologies [1, 2] allowing
scientists to simultaneously utilize multiple distributed resources,
large-scale simulation codes often run for days at a time. As the
Department of Energy Office of Science Data-Management
Challenge report points out “Long-running simulations can
become vastly more productive if some information can be
visualized in real time, allowing decisions to abort or steer the
simulation. [3]” Enabling researchers both to monitor the progress
of the running simulation and to validate its results can enable
these types of decisions to be made, thereby saving valuable time
and resources.

Equally important to providing these visualization capabilities
is doing so with little or no impact on the performance and
stability of the running simulation. Failures in the visualization, as
a result of software or hardware malfunction for example, should
not cause the simulation to fail as well. The ability to stop and
start the visualization at arbitrary points while the simulation
continues to run is also valuable.

We present here an application developed to provide
visualization support for the Human Arterial Tree Simulation
Project [4]. A distributed visualization pipeline was designed and
developed that both archives data produced by these simulations
and is capable of visualizing it in near-real time, with little impact
on the performance and stability of the running simulation.
Section 2 discusses related work performed in this area. Section 3
provides information about the human arterial tree simulation.
Sections 4-8 give an overview of the visualization application and
describe the various components, including the Data Archiver, the
Low Resolution Client, and the High Resolution Client. Section 9
describes additional capabilities of the application. The paper
concludes with a discussion of proposed future work.

2 RELATED WORK
Particle Flurries, described in [5], is an example of synoptic 3D
flow visualization, which gives viewers a synopsis of all flow
features simultaneously. Motion-blurred linestrips surrounded by
a black halo are used to represent particles as they follow
pathlines from the inflow to the outflow of an artery. While this

*email: {insley,papka}@ci.uchicago.edu

Figure 1: Three instances of the High Resolution Client, each displaying isosurfaces of the blood flow pressure and vectors of the velocity

within a different 3D bifurcation mesh of the human arterial tree model.

method is well suited to the data produced in the human arterial
tree simulation, it requires the precomputing of particle paths.

Forsberg et al. [6], have also developed an application that uses
isosurfaces to help expose the gross features within the flow
region. This application also follows a policy that a common data
format is maintained between the simulation and the visualization
software. This eliminates the burden of transforming the data
between the two components.

Uintah [7] is a problem solving environment that enables the
visualization and computational steering of complex simulations.
It uses common component architecture to integrate the various
components into an integrated environment and manage
communication between them. It uses Nexus (now known as
Globus XIO) for wide-area communication and MPI between
colocated components.

3 THE HUMAN ARTERIAL TREE SIMULATION
Motivated by a grand-challenge problem in biomechanics, we are
striving to simulate blood flow in the entire human arterial tree.
The problem originates from the widely accepted causal
relationship between blood flow and the formation of arterial
disease such as atherosclerotic plaques. These disease conditions
preferentially develop in separated and recirculating flow regions
such as arterial branches and bifurcations. Modeling these types of
interactions requires significant compute resources to calculate the
three-dimensional unsteady fluid dynamics in the sites of interest.
Waveform coupling between the bifurcations, however, can be
reasonably modeled by a reduced set of one-dimensional
equations that capture the cross-sectional area and sectional
velocity properties [8]. One can therefore simulate the entire
arterial tree using a hybrid approach based on a reduced set of
one-dimensional equations for the overall system and detailed 3D
Navier-Stokes equations at arterial branches and bifurcations.

Limited computational resources are required for the 1D
model; therefore it can run on a single compute node. In order to
capture the flow dynamics in an artery bifurcation reasonably
well, however, the grid resolution typically requires a mesh of
70,000 to 200,000 finite elements of high order; here spectral
elements with a spectral polynomial order of 10 to 12 on each
element are used [9]. These 3D models clearly require
considerably more compute power to calculate.

The human arterial tree model used here contains the largest 55
arteries in the human body with 27 artery bifurcations. Because
many of the bifurcations are close together, some of the 3D
meshes contain multiple bifurcations. The primary compute
environment for this simulation is the National Science
Foundation’s TeraGrid [10]. Several of the largest runs took place
during demonstrations at SC|05. In order to reduce the simulation
times during these demonstrations, the spectral elements were
calculated with a polynomial order of 7, rather than 10 to 12.
Depending on the complexity of the particular mesh, anywhere
from 64 to 128 processors were used for each 3D mesh. These
arterial tree model simulations utilized compute resources at four
TeraGrid resource provider sites: National Center for
Supercomputing Applications (NCSA), San Diego Supercomputer
Center (SDSC), Pittsburgh Supercomputing Center (PCS), and
Texas Advanced Computing Center (TACC), along with a site in
the UK, Computer Services for Academic Research (CSAR). This
Compute power was coupled with visualization resources at The
University of Chicago/Argonne National Laboratory TeraGrid
resource provider site.

The runs consisted of 17 bifurcations contained in 11 3D
meshes distributed across the five-compute sites. The multi-job
submission mechanism enabled with Globus and MPICH-G2 was

used to submit the calculation of each of the 3D bifurcation
meshes as a separate subjob of a single MPI application, to be
executed across the five different resources. MPICH-G2 takes
care of the details of submitting the subjobs to the separate
resources and establishing the communication paths between
them. Once all of the processes are running, they are part of the
same MPI_Communicator and can exchange information via
standard message passing mechanisms.

Several types of data are associated with the simulations of this
arterial tree model. The input data comprises the three
dimensional unstructured mesh that defines the arterial
bifurcations. This data does not change over the course of the
simulation. The output data is of three types. First is the data from
the 1D simulation. This consists of 55 float values for each time
step of the simulation, which represent the pressure at the inlet of
each of the 55 arteries. Because this is a small amount of data, it is
output at each time step of the simulation. The output data of the
3D simulations comprises one scalar value, representing the
pressure, and three values, for the vector representing the blood
flow velocity, for each point on the unstructured mesh. Since this
can be a large amount of data, and because these values change
relatively little from one time step to the next, it is not practical to
output these values for every time step, as this would negatively
impact the simulation. Instead they are output at regular intervals,
typically every fifth time step. During the demonstrations at SC|05
this data was reduced to a polynomial order of 3 before being
output. While performing this reduction did have some impact on
the performance of the simulation, it was relatively minor. Also,
the trade-off of having the ability to visualize the data in near-real
time made the performance hit well worthwhile. In order to
provide feedback about the simulation more frequently, another
reduced set of data is output every third time step. This reduced
set consists of the pressure scalars and the velocity vectors for
only those points on the boundary of the mesh, typically a
reduction on the order of 98%. While this is a greater reduction in
the amount of data, it is less computationally intensive to perform
and can therefore be done more often with less impact on the
simulation.

4 VISUALIZATION OVERVIEW
The visualization application was designed with several goals in
mind and builds from previous visualization work [11, 12]. The
goals of the application were to:
! provide high-level feedback about the state of the on-going

simulation in as close to real time as possible,
! enable users to investigate particular areas of interest in

greater detail, and
! have little impact on the performance and stability of the

running simulation, which is to say, any failure in the
visualization should not cause the simulation to fail as well.

These three goals layout the major contributions as a visualization
application, specifically:
! visual feedback of the state of a complex simulation

distributed across many sites is extremely helpful,
! the use of multiple views of data is beneficial (i.e. rapid

display of low-resolution representation with high-resolution
version to follow), and

! the use of middleware solutions for the connection,
management, and separation of the visualization application
from the simulation.

The application consists of three separate, yet integrated
components, as seen in Figure 2. First is the Data Archiver. This
is the input to the visualization pipeline and is the only component
directly tied to the running simulation. The Data Archiver receives

data from the simulation and is responsible for writing that data to
disk, along with associated metadata. There are two visualization
clients, one high resolution, the other low resolution. These clients
have Data Loaders, which are colocated with the Data Archiver,
and Displays, which can be at a remote location. The clients use
the metadata written by the Data Archiver and interactions with
each other to determine the data to be visualized. These three
components are described in greater detail in the following
sections.

5 DATA ARCHIVER
The Data Archiver communicates directly with the running
simulations. All of the simulations, while distributed among
several geographically distributed sites, are all part of a single
integrated job. However, there is one instance of the Data
Archiver for the 1D simulation and one for each of the 3D
bifurcation simulations. The simulations connect to the Data
Archivers via a connect/accept mechanism made available in the
MPICH-G2 implementation. Each of the bifurcation meshes is
given a numerical bifurcation ID. When each Data Archiver starts,
it is given the ID of the bifurcation that it will be responsible for
(0 is used for the 1D data simulation). Each Data Archiver then
calls MPI_Accept and publishes the host and port where it is
listening for a connection to a well-known location using a call to
wget and a php script. Each simulation then uses a reciprocal call
to wget and the php script to discover the host and port for the
appropriate Data Archiver, and calls MPI_Connect to connect to
it.

Once connected, the Data Archivers and the simulations are
members of the same MPI_Communicator and use standard
message passing routines to communicate with one another. After
exchanging some initial setup information, the simulations send
the 3D mesh information to the Data Archiver. This information
consists of the coordinates of each of the elements in the mesh,
which may be of varying resolutions. The communication is done
for both the full 3D mesh and the reduced boundary mesh. The
Data Archiver uses the Visualization Toolkit (VTK) [13] to create
an unstructured grid object from each of the meshes and write
them to a local shared file system. The data is written to a location
determined by several variables provided to the Data Archiver at
runtime and a letter that indicates whether the data is for the full
mesh, “a” for artery, or the reduced mesh, “b” for boundary.
These variables include a Base Directory, a Run ID (a unique

identifier for the current run of the simulation), and the
Bifurcation ID.

As the simulation proceeds and output data is produced, the
simulation sends this data to the Data Archiver. As mentioned
previously, the 1D data is quite small, 55 float values per time
step. This data, along with its time-step information, is sent after
each time step. The data for all time steps is written to a single
binary file. In addition, a metadata file is also written. This file,
named !D_latest.txt, stores the number of the latest time
step that was written to the data file, along with the corresponding
simulation time value.

Because the geometry of the mesh does not change over the
course of the simulation, only the data values associated with the
points on the mesh are transferred to the Data Archiver as the
simulation runs. This approach eliminates the transfer of
redundant data, thus reducing the impact on the performance of
the simulation, especially when sending data over wide-area
networks. Again, as indicated earlier, this data is sent at different
intervals. The data for the boundary mesh is sent every third time
step, and the data for the full 3D mesh is sent every fifth time step.
The pressure scalar values and the velocity vector values for each
mesh are written to separate binary files for each time step
received. Several metadata files are also written for the full mesh
and the boundary mesh for each bifurcation. Similar to the 1D
metadata, two files, called a_latest.txt and
b_latest.txt for the full and boundary meshes, respectively,
contain information about the last time step that has been
successfully written to disk for the corresponding mesh. Two
other files, named a_list.txt and b_list.txt, consist of
information about all of the time steps that have been written for
that mesh. The clients then use this metadata to determine which
time steps to display.

6 LOW RESOLUTION CLIENT
The Low Resolution Client comprises several components that
work together to provide a high-level overview about the state of
a running simulation in near-real time. It processes and visualizes
the 1D data and the 3D boundary data as it is written to disk,
providing the user with an overview of the current state of the
simulation and the ability to control which bifurcations are
examined in greater detail with the High Resolution Client.
Because none of these components are directly connected to the
simulation itself, or even to the Data Archiver, they cannot
negatively impact the stability of the simulation. The Low

Figure 2: Overview of the components of the arterial tree simulation and visualization.

Resolution Client can start and stop, whether intentionally or as
the result of a failure, without any effect on the simulation. This
feature becomes increasingly useful as the expected run time of
the calculation increases, enabling the scientist to periodically
check on the running simulation.

The components include Data Loader processes and a Display
process. Similar to the Data Archiver, there is one Data Loader for
the 1D data and one for each of the 3D bifurcation meshes. Unlike
the Data Archiver, however, these processes are all part of a
single instance of the application. The Display process is also part
of the same application instance. However, it is typically not
colocated with the Data Loaders. This arrangement enables
remote visualization of the data, allowing the researcher to
monitor the simulation and investigate the results using modest
local graphics hardware, without the need to transfer and store all
of the data locally. Just as with the simulation, MPICH-G2 is used
to submit the Data Readers and the Display as separate subjobs of
a single MPI application, to be executed on two different
resources. MPICH-G2 again handles the details of submitting the
subjobs to the separate resources and establishing the
communication paths between them.

6.1 Data Loaders
The Data Loaders are colocated with the Data Archivers and
therefore can access data from the same shared file system. The
1D Data Loader reads from the 1D metadata file written by the
Data Archiver, using file locks to ensure that memory access by
the two processes is mutually exclusive. The loader keeps track of
the last time step that it has read and compares this to the current
value in the 1D#latest.txt file. If the value in the file is
newer, it reads the values for the corresponding time step from the
1D data file. Once read from disk, these new values are sent to the
Display process, along with the time step and simulation time
values, using MPI_Send.

The 3D Data Loaders for the Low Resolution Client are
responsible for reading the boundary data for their designated
bifurcation. Because the size and complexity of the 3D meshes
vary from one to the next, the simulations are executed on a
varying number of processors, in an attempt to keep their
completion times synchronized. However, it is not uncommon for
some bifurcation simulations to complete earlier than others. So,
in order to keep the 3D Data Loaders synchronized, they all read
the latest time step from the b#latest.txt file for their
assigned bifurcation. All of these latest time step values are then
compared, and the lowest one is determined. Collectively the
loaders all keep track of the last time step that was read from disk.
When the lowest value is greater than the previous time step that
has been loaded, all of the 3D Data Loaders read the data for their
respective bifurcations for this new time step. If this is the first
time step to be loaded, as at the beginning of the simulation, the
3D Data Loaders first read in the geometry data for the boundary
mesh for their designated bifurcation, creating a VTK
unstructured grid object. For all subsequent time steps only the
data values are read, and the unstructured grid object is updated to
reflect these new values. As each 3D Data Loader finishes reading
the data for the current time step it sends the updated unstructured
grid object, along with the time step information, to the Display
process. Because these boundary meshes are relatively small, just
over 2 MB for the largest one, there is no performance penalty for
sending the whole mesh, rather than just the data values.

6.2 Display
The Display process is responsible for providing visual
representations of the 1D and low-resolution (boundary) 3D data

produced by the simulations. Recall that the 1D data consists of a
single value for each of the 55 major arteries in the human body,
specifically the pressure on the arterial walls at the inlet of the
artery. Even when only a subset of the 3D bifurcations is
simulated, the 1D data is still calculated for all 55 arteries. To
visually represent these values, we borrowed from a popular 2D
diagram of the 55 major arteries. Using VTK objects, we
constructed a 3D model of this diagram. The model allows each of
the arteries to be easily addressed by name or by index. When the
simulation is started, the researcher knows the range of pressure
values expected to be produced by these 1D calculations. A color
lookup table based on this value range is used to color the
individual arteries in this model. When the Display process is
started, it loads the artery model and creates the lookup table.

Another VTK object is used to represent the boundary data of
each of the 3D bifurcations being simulated. This object, called
the bifurcation group, is initially empty and is populated with the
boundary meshes as they are received from the Data Loaders. The
expected range of the pressure values over the entire set of
bifurcations is similar to that of the 1D data. Therefore, the same
color lookup table is used to color the points on each 3D mesh.

Once both of these VTK objects have been instantiated, a
second thread is created. This thread is responsible for all
communication with the Data Loaders. After exchanging some
initial synchronization messages, it registers to receive data from
the 1D and each of the 3D Data Loaders. It then loops, checking
whether data has been received from any of the loaders.

The main thread of the Display process controls the graphics
window where the objects are rendered; see Figure 3. It is laid out
with two main regions, the artery model with the 1D data on the
right and the bifurcation model with the 3D data on the left. Each
region displays its respective models along with a label indicating
the current time step and simulation time being shown. Because
the models share a color lookup table, a scalar bar showing that
table and its associated values is displayed across the bottom of
the full window. Initially, before any data values have been
received, all of the arteries in the 1D model are colored white,
while no data objects get displayed on the 3D side, as all of the
bifurcations are hidden until data has been received for them.

The two threads of the Display process use shared memory to
exchange data and information. When the communication thread
receives 1D data, a lock is put on the artery model and the color of
each of the arteries is updated to reflect the new pressure values.
The time-step information is also updated. Once the lock is
released, the main thread updates the display window to reflect
the newly colored arteries and the updated time information.

Each time through the execution loop the communication
thread tests to see whether any new messages have been received
from any of the 3D Data Loaders. If any new messages have been
received, a lock is put on the bifurcation group object, and all new
messages are processed. The receiving thread knows which
bifurcation the data it received was intended for based on the ID
of the Data Loader that sent the message. If this is the first data
message received for a given bifurcation, the unstructured grid
that was received is added to the bifurcation group object, and its
status of “hidden” is changed to “display”. Otherwise, the
unstructured grid that was received replaces the existing one for
this bifurcation. If the time step information in this message is
greater than what is currently being displayed for the bifurcation
group, that information is updated as well. Once all new messages
received since the previous pass through the loop are processed,
the lock is released. The main thread can now update the display
window to reflect any new data that was received. The 3D
bifurcation objects are rendered on the left side of the display.

Their positions reflect where they would actually be located in the
body, relative to one another.

Seeing the 3D bifurcations side by side with the 1D artery
model, one can match the corresponding arteries from the two
representations, especially if one has an intimate understanding of
the arterial system. Having these two displays also gives the
scientist a better idea of what is happening in the simulation. For
instance, one can see that the pressure is initially greatest at the
first artery, that closest to the heart. As the simulation progresses,
this high pressure travels through the arterial tree toward the
extremities. Seeing the results of the 3D simulations on these
reduced boundary meshes both assures the scientist that the
simulation is progressing as expected and enables the viewer to
discover areas of interest to explore in greater detail. This in-depth
investigation is done through the High Resolution Client,
described in the following section.

7 HIGH RESOLUTION CLIENT
The High Resolution Client enables exploration of a full 3D
bifurcation mesh. Its architecture is similar to that of the Low
Resolution Client, but with some notable differences. Like the
Low Resolution Client, it comprises several components that
work together to enable the visualization of data from a running
simulation. There again are Data Loader processes and a Display
process, which execute as a single application while on separate,
usually distributed, resources, enabling remote visualization of the
simulation data. Likewise, MPICH-G2 is used to start the
processes and establish communication between them. They also
have no direct interaction with the simulation or the Data
Archiver, and thus cannot negatively impact the performance or

stability. This feature again enables the Client to be stopped and
started with no effect on the simulation.

Unlike the Low Resolution Client, the High Resolution Client
visualizes only a single 3D mesh at a time. However, in addition
to providing a simple view of the boundary data, it applies other
visualization methods to the data of the full 3D mesh. Multiple
instances of this client can be run simultaneously in order to view
multiple bifurcations at the same time.

7.1 Data Loaders
The Data Loaders are again colocated with the Data Archivers and
access data and metadata from the same shared file system, using
file locks to ensure data integrity. Two methods are used for
selecting which time step of the simulation data to display. In
“Latest Step” mode the Data Loader looks in the
a_latest.txt file to discover the last time step that has been
successfully written to disk. If this is a later time step than the one
currently being displayed, the data for this new time step is
loaded. In “Playback” mode the Data Loader reads through the
a_list.txt file and sequentially loads the data for each time
step, one at a time. When the end of file is reached, it rewinds
back to the beginning and starts over.

There are two Data Loader processes. Both processes read the
same bifurcation mesh. The bifurcation ID for this mesh is
initially given as an input parameter but can later be changed, as
described in the following section. Both of the Data Loader
processes read the pressure scalar values and the velocity vector
data. Once read, the unstructured grid is updated with these new
values. One process then generates ten isosurfaces using values
evenly distributed across the range of pressure values in the

Figure 3: The Low Resolution Client displaying the 1D data for the 55 major arteries on the right, and the boundary data of 11 of the 3D

bifurcation meshes on the left.

current time step. The geometry for these isosurfaces is then
transferred to the Display process by using a call to MPI_Send.
The other Data Loader process uses a glyph filter to generate
arrows that depict the direction and magnitude of the velocity of
the blood flow over a random sampling of the elements in the
mesh. These arrows may be colored by either the pressures values,
or the magnitude of the velocity vectors. The geometry of the
arrows is then transferred to the Display process, again by using a
call to MPI_Send. Both processes also send information about the
current time step along with their data. While each of the Data
Loaders is currently only a single process, each could be
parallelized to take advantage of multiple processors for
calculating the glyphs and isosurfaces.

7.2 Display
As in the Low Resolution Client, the Display process for the High
Resolution Client is responsible for rendering the visual
representations of the data. When the Display process is started, it
is given the ID of the initial bifurcation that it will visualize. It
reads a local copy of the boundary data for this bifurcation,
without any data values, and renders it in the graphics window.
The boundary data is given a neutral grey translucent color and is
used to give a frame of reference for the shape of the bifurcation
being simulated. VTK objects that will be used to display the
isosurfaces and glyphs generated by the Data Loaders are also
created. Also added to the display are the color lookup table and
its associated values, and a label indicating the current time step
and simulation time being shown, initially set to zero.

As with the Low Resolution Client, here again a second thread
is created that is responsible for communicating with the Data
Loaders. Again the threads use shared memory to exchange data
and locks to ensure mutually exclusive access to the data. The
communication thread registers to receive data from each of the
Data Loaders. Because both of the Data Loaders will be sending
data for the same time step, the communication thread waits until
it receives the data from both before processing the data. Once all
of the data for the time step is received, the VTK objects are
locked, and the isosurface and glyph objects are updated with the
new data. When the lock is released, the main thread updates the
display with the newly received data.

Users can interact with the Display to change the position and
orientation of the bifurcation data. They can also zoom in to get a
closer look at a particular region of interest, or out to see the entire
bifurcation. By pressing a key on the keyboard the users can also

easily switch between “Latest Step” mode, where the display is
updated to show the latest time step of the simulation to be
completed, and “Playback” mode, which animates through all of
the time steps that have been completed so far. When the key is
pressed, the main thread captures this event and determines
whether a change of mode should be triggered. If so, it
communicates this change to the communication thread via shared
memory. The communication thread then uses MPI_Send calls to
notify the Data Loaders of the change in mode. The Data Loaders
can then switch from reading the a"latest.txt file to the
a"list.txt file, or vice versa, depending on the current mode.

8 TYING IT ALL TOGETHER
As mentioned earlier, the Low Resolution and High Resolution
Clients work together to both provide a high-level overview and
enable detailed exploration of the arterial tree simulation data. The
Display components of the clients are intended to run on the same
resource. For the SC|05 demonstrations a tiled display was used to
display the Low Resolution Client and multiple instances of the
High Resolution Client, each on a different tile of the display; see
Figure 4. In order to simplify the startup process of all of these
clients, including the Data Loader components running on the
UC/ANL TeraGrid visualization resource, a script and
configuration file are used. The configuration file includes
information such as what resource manager each subjob should be
submitted to, the path to the application executables on the
different resources, directory paths to where the data should be
written, the bifurcation IDs that will be included in the current
run, and the number of High Resolution Clients that should be
started. MPICH-G2 makes use of RSL (Resource Specification
Language) [14] to describe the job requests that it submits. The
startup script reads the configuration file, creates the appropriate
RSL expression, and calls MPICH-G2’s mpirun to submit a job
request for the each of the clients to be started.

When each of the High Resolution Clients is started, it is given
the initial bifurcation ID that it will be responsible for. The Low
Resolution Client is also given this information, so it knows how
many High Resolution Clients are running and which bifurcation
each will be displaying. Because the Display components of all of
the clients are running on the same resource, in this case a 9-node
cluster, they share a common file system. Thus the clients can
communicate through the use of shared files, again using locks to
ensure exclusive access. In the display of the Low Resolution
Client some of the 3D bifurcations have colored bounding boxes
around them. The bounding boxes indicate that these bifurcations
are being displayed in one of the High Resolution Clients. The
color of the bounding box matches the color of a label that is
drawn in the display of the corresponding High Resolution Client.
The user can select a different bifurcation to be displayed in one
of the High Resolution Clients by simply picking one of the
bifurcations in the Low Resolution Client that does not have a
bounding box. Keys on the keyboard are used to select the High
Resolution Client for which picking is currently active. The index
and color of the active High Resolution Client are displayed in the
lower left corner of the Low Resolution Client. When a new
bifurcation is picked, the Low Resolution Client writes its
bifurcation ID to a file for the active High Resolution Client.
When the High Resolution Client checks the file and discovers a
new bifurcation ID, it uses MPI_Send to notify its Data Loaders
of the new value. The loaders then discard the unstructured grid
that they are currently using, load that of the new bifurcation ID,
and start reading data and metadata from the corresponding
location.

Figure 4: Components of the arterial tree visualization application

running on a tiled display at SC|05.

9 ADDITIONAL FEATURES
In addition to enabling the real-time remote visualization of the
simulation data, this application provides several other features
including performance monitoring, playback, and improved
network performance.

9.1 Performance Monitoring
As the compute environment that simulations are executed in
becomes more complex, providing users with feedback about the
progress of long-running computations becomes increasingly
important. To enable the users of our application to monitor its
performance, as well as that of some aspects of the simulation, we
have instrumented several of the components. Specifically, we
used geeViz [15], a previously developed system for visualizing
Grid-enabled environments. It provides an API that can be used to
easily log events of interest, and an application that is used to
visualize those events.

The first component to be instrumented is the Data Archiver.
Whenever it receives data from the simulation, it calculates the
bandwidth between the simulation and itself. It does so using a
timestamp that was sent with the data, the local time when the
data was received, synchronization information that was
exchanged when the two processes first connected, and the size of
the data buffer that was received. The Data Archiver then logs a
transfer event, which includes the source and destination of the
transfer, the bandwidth, and the amount of data received. The
geeViz application displays an image of a world map. It plots the
location of the source and destination of the transfer event on the
map and draws a link between them. Spheres are moved along the
link in the direction of the transfer, at a speed based on the
bandwidth. Also displayed are labels of the locations of the
endpoints and the amount of data that was either sent or received.
Other events are used to indicate the number of bifurcations being
calculated at a given site. This information is added to the display.

The SC|05 demonstration involved multiple compute sites,
some simulating multiple bifurcations. Figure 5 shows the geeViz
display with the locations of compute sites (NCSA, SDSC,
TACC, PSC, and CSAR) plotted on the map. Each is labeled and
indicates how many bifurcations it is simulating, as well as how
much data it has produced so far. Links connect each of these sites
with UC/ANL, where the Data Archivers are running. Displayed
here is the total amount of data received, for all five computation
sites combined. When multiple transfers are sent along the same
link, such as the boundary data and the full 3D mesh data coming

from the same site, they are represented by different colored
spheres moving along the link.

The High Resolution and Low Resolution Clients are also
instrumented. Using a formula similar to the one in the Data
Archiver, the Display processes calculate the bandwidth from the
Data Loaders whenever they receive data. Transfer events are
again logged and visualized in the geeViz display. Figure 5 shows
a link between UC/ANL, where all of the Data Loaders are
running, and the SC|05 exhibit floor in Seattle, WA, where all of
the Displays are running.

Placing the mouse over any of the sites on the map will bring
up a graph showing the bandwidth performance into and out of
that site over time. The user can also interact with the geeViz
display to pan and zoom to focus on particular areas of interest.
Using this information on the geeViz display, the scientist can
monitor the progress of the simulation. This feature proved to be
particularly useful at the beginning of the simulation, to see when
sites were starting to send data. The fact that some sites were not
yet reporting results, while others had been for some time,
indicated a potential problem and prompted further investigation.

9.2 Playback of Archived Data
In addition to visualizing the results of the arterial tree simulations
in real time, the data is also archived and can be viewed at a later
time. Because the clients do not communicate with the simulation
directly, they are not dependent on it. They determine which time
steps to load and visualize based on the metadata in the
!"latest.txt files. Rather than relying on the Data Archivers
to update these files, a script can be used to update them instead.
The script takes a configuration file, which indicates the rate at
which each of the files should be updated. This should be the
same rate at which the simulation output its data. In the examples
we’ve discussed, the 1D was updated every step, the 3D boundary
data every three steps, and the full 3D artery data every five steps,
but these rates may vary. For instance, if the elements in the mesh
are calculated to a polynomial order of 12, it may make more
sense to output the data less often. The configuration file can also
contain a delay value, which is used to determine how long the
script should wait between simulation time steps.

9.3 Network Performance Boost
Poor network performance when communicating over wide-area
networks, such as when the Data Loaders of the High Resolution
Client send data to the Display process, has been identified as a
major bottleneck in the performance of the visualization
application. By default MPICH-G2 uses TCP over the wide area.

Figure 5: Image of geeViz displaying monitoring information of human arterial tree simulation and visualization demonstration during SC|05.

The high bandwidth and high latency found in the networks used
here result in the TCP protocol entering congestion avoidance
mode, where the sender-side congestion window becomes too
small. In an attempt to overcome this obstacle, MPICH-G2
employs a technique that uses UDT [16], a reliable UDP-based
protocol that does automatic optimization, including congestion
avoidance. By setting a few attributes on both the sending and
receiving sides of a transfer, MPI_Send can be configured to use
the UDT-based protocol. This was done in the High Resolution
Client, for data transfers between the Data Loaders and the
Display process. While monitoring transfers between these two
components using the information provided by geeViz, network
bandwidth performance was observed to increase by an order of
magnitude. Thus, enabling UDT clearly eliminated the network as
the performance bottleneck.

10 CONCLUSIONS AND FUTURE WORK
We have articulated the value of visualizing simulation data early
and often, while the simulation is still running. In particular, the
productivity of long-running simulations can benefit from this
capability. Equally important is the ability to do this with little
impact on the performance and stability of the simulation. We
described an application we developed to provide these
capabilities to a human arterial tree simulation. The various
components of the application, including the Data Archivers and
the High Resolution and Low Resolution Clients and their
elements, the Data Loaders and Displays, were described in great
detail. This effort, while focused on a single application, has
illustrated the benefits that a flexible, low-impact runtime
visualization application can have on demonstrating, monitoring,
and debugging a large distributed simulation. The benefit of the
use of low- and high-resolution renderings for immediate
feedback to users was also demonstrated. Finally, it showed that
the visualization community can greatly benefit from advances
within the Grid community for the integration of visualization into
running simulations and as part of the analysis pipeline.

We have identified the following areas in which future work
can increase the usefulness and robustness of the application. The
way that the simulations currently discover the contact
information of the Data Archivers is through the use of wget and a
php script. While this method works, there are more robust ways
in which this information discovery could be done. The use of a
services-oriented architecture with an index service may be a
more appropriate approach.

In the previous section we described performance gains that
were obtained by enabling the use of UDT over wide area
networks. Adding this functionality to transfers between the
components of the Low Resolution Client, and between the
simulation and the Data Archiver, could be done with little effort
and would likely result in similar increased performance.

While the visualization capabilities provided by the High
Resolution Client are valuable, they are just a start. Additional
control over the parameters used in the visualizations is needed.
The ability to manage the values used in creating the isosurfaces,
for instance, would be helpful. Including more visualization
algorithms, such as cutting plane and streamlines, would also be
useful. As mentioned in an earlier section, parallelizing these
visualization algorithms in the Data Loaders would provide
enhanced performance.

ACKNOWLEDGMENTS
We wish to thank Peter Schmitt for his work on the 3D artery
model used for the 1D data visualization and Kelly Gaither for her

insightful comments on draft versions of this document. This
work was supported in part by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of
Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract W-31-109-ENG-38, and in
part by NSF under Grant OCI-0504086.
REFERENCES
[1] I. Foster and C. Kesselman, "Globus: A Toolkit-Based Grid

Architecture," in The Grid: Blueprint for a New Computing
Infrastructure, I. Foster and C. Kesselman, Eds.: Morgan Kaufmann,
1999, pp. 259-278.

[2] N. Karonis, B. Toonan, and I. Foster, "MPICH-G2: A Grid-Enabled
Implementation of the Message Passing Interface," Journal of
Parallel and Distributed Computing, vol. 63, 2003, pp. 551-563.

[3] "The Department of Energy Office of Science Data-Management
Challenge,” November 2004.

[4] S. Dong, L. Grinberg, A. Yakhot, S. Sherwin, and G. E. Karniadakis,
"Simulation of blood flow in human arterial tree on the TeraGrid," in
SIAM Conference on Parallel Processing for Scientific Computing.
San Francisco, CA, 2006

[5] J. Sobel, A. Forsberg, D. H. Laidlaw, R. Zeleznik, D. Keefe, I.
Pivkin, G. Karniadakis, P. Richardson, and S. Swartz, "Particle
Flurries: Synoptic 3D Pulsatile Flow Visualization," IEEE Computer
Graphics and Applications, vol. 24, 2004, pp. 76-85.

[6] A. S. Forsberg, D. H. Laidlaw, A. vanDam, R. M. Kirby, G. E.
Karniadakis, and J. L. Elion, "Immersive Virtual Reality for
Visualizing Flow Through an Artery," in IEEE Visualization. Salt
Lake City, Utah, 2000, pp. 457-460.

[7] J. D. de St. Germain, J. McCorquodale, S. G. Parker, and C. R.
Johnson, "Uintah: A Massively Parallel Problem Solving
Environment," in Ninth IEEE Internalional Symposium on High
Performance Distributed Computing (HPDC'00). Pittsburgh, PA:
IEEE Computer Society, 2000, pp. 33-41.

[8] S. J. Sherwin, L. Formaggia, J. Peiro, and V. Franke,
"Computational Modeling of 1D Blood Flow with Variable
Mechanical Properties in the Human Arterial System," International
Journal for Numerical Methods in Fluids, vol. 43, 2003, pp. 673-
700.

[9] G. E. Karniadakis and S. J. Sherwin, Spectral/HP Element Methods
for CFD: Oxford University Press, 1999.

[10] C. Catlett, The TeraGrid: A Primer, www.teragrid.org.
[11] G. von Laszewski, J. A. Insley, I. Foster, J. Bresnahan, C.

Kesselman, M. Su, M. Thiebaux, M. L. Rivers, S. Wang, B. Tieman,
and I. McNulty, "Real-time Analysis, Visualization and Steering of
Microtomography Experiments at Photon Sources," in Ninth SIAM
Conference on Parallel Processing for Scientific Computing, 1999.

[12] N. Karonis, M. E. Papka, J. Binns, J. Bresnahan, J. A. Insley, D.
Jones, and J. Link, "High-Resolution Remote Rendering of Large
Datasets in a Collaborative Environment," Future Generation of
Computer Systems, pp. 909-917, 2003.

[13] W. Schroeder, K. Martin, and B. Lorensen, The Visualization
Toolkit, An Object Oriented Approach to 3D Graphics: Kitware,
Inc., 2004.

[14] Resource Specification Language (RSL)
www.globus.org/gram/rsl_spec1.html.

[15] W. A. Allcock, J. Bester, J. Bresnahan, I. Foster, J. Gawor, J. A.
Insley, J. M. Link, and M. E. Papka, "A Tool for Visualizing the
Behavior of Large-Scale Distributed Systems," in IEEE
International Symposium on High Performance Distributed
Computing, 2002, pp. 179-187.

[16] Y. Gu and R. L. Grossman, "UDT: An Application Level Transport
Protocol for Grid Computing," presented at the Second International
Workshop on Protocols for Fast Long-Distance Networks, Argonne,
IL, 2004.

The submitted manuscript has been created by the University of
Chicago as Operator of Argonne National Laboratory ("Argonne")
under Contract No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government. This
government license should not be published with the paper.

