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ABSTRACT 
Large-scale simulation codes typically execute for extended 
periods of time, often on distributed computational resources. 
Because these simulations can run for hours, or even days, 
scientists would like to get feedback about the state of the 
computation and the validity of its results as it continues to run. It 
is also important that these capabilities be made available with 
little impact on the performance and stability of the simulation. 
Visualizing and exploring data in the early stages of the 
simulation can help scientists identify problems early, potentially 
avoiding a situation where a simulation runs for several days, only 
to discover an error with an input parameter caused both time and 
resources to be wasted. 

We describe an application that aids in the monitoring and 
analysis of a simulation of the human arterial tree. The application 
provides researchers with high-level feedback about the state of 
the on-going simulation and enables them to investigate particular 
areas of interest in greater detail. The application also offers 
monitoring information about the amount of data produced and 
data transfer performance between the various components of the 
application. 
 
CR Categories: I.3.2 [Computer Graphics]: Graphics Systems - 
Distributed/network graphics; I.6.6 [Simulation and Modelling]: 
Simulation Output Analysis; 
 
Keywords: Real-time visualization, flow visualization 

1 INTRODUCTION 
Simulation-driven science is increasingly being used to initiate 
scientific discovery. As the accuracy and complexity of scientific 
simulations continue to rise, the computational resources required 

to execute these simulations also increase. Even with the 
advancement of Grid-enabling technologies [1, 2] allowing 
scientists to simultaneously utilize multiple distributed resources, 
large-scale simulation codes often run for days at a time. As the 
Department of Energy Office of Science Data-Management 
Challenge report points out “Long-running simulations can 
become vastly more productive if some information can be 
visualized in real time, allowing decisions to abort or steer the 
simulation. [3]” Enabling researchers both to monitor the progress 
of the running simulation and to validate its results can enable 
these types of decisions to be made, thereby saving valuable time 
and resources.  

Equally important to providing these visualization capabilities 
is doing so with little or no impact on the performance and 
stability of the running simulation. Failures in the visualization, as 
a result of software or hardware malfunction for example, should 
not cause the simulation to fail as well. The ability to stop and 
start the visualization at arbitrary points while the simulation 
continues to run is also valuable. 

We present here an application developed to provide 
visualization support for the Human Arterial Tree Simulation 
Project [4]. A distributed visualization pipeline was designed and 
developed that both archives data produced by these simulations 
and is capable of visualizing it in near-real time, with little impact 
on the performance and stability of the running simulation. 
Section 2 discusses related work performed in this area. Section 3 
provides information about the human arterial tree simulation. 
Sections 4-8 give an overview of the visualization application and 
describe the various components, including the Data Archiver, the 
Low Resolution Client, and the High Resolution Client. Section 9 
describes additional capabilities of the application. The paper 
concludes with a discussion of proposed future work. 

2 RELATED WORK 
Particle Flurries, described in [5], is an example of synoptic 3D 
flow visualization, which gives viewers a synopsis of all flow 
features simultaneously. Motion-blurred linestrips surrounded by 
a black halo are used to represent particles as they follow 
pathlines from the inflow to the outflow of an artery. While this 
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Figure 1: Three instances of the High Resolution Client, each displaying isosurfaces of the blood flow pressure and vectors of the velocity 

within a different 3D bifurcation mesh of the human arterial tree model. 



method is well suited to the data produced in the human arterial 
tree simulation, it requires the precomputing of particle paths.  

Forsberg et al. [6], have also developed an application that uses 
isosurfaces to help expose the gross features within the flow 
region. This application also follows a policy that a common data 
format is maintained between the simulation and the visualization 
software. This eliminates the burden of transforming the data 
between the two components. 

Uintah [7] is a problem solving environment that enables the 
visualization and computational steering of complex simulations. 
It uses common component architecture to integrate the various 
components into an integrated environment and manage 
communication between them. It uses Nexus (now known as 
Globus XIO) for wide-area communication and MPI between 
colocated components.  

3 THE HUMAN ARTERIAL TREE SIMULATION 
Motivated by a grand-challenge problem in biomechanics, we are 
striving to simulate blood flow in the entire human arterial tree. 
The problem originates from the widely accepted causal 
relationship between blood flow and the formation of arterial 
disease such as atherosclerotic plaques. These disease conditions 
preferentially develop in separated and recirculating flow regions 
such as arterial branches and bifurcations. Modeling these types of 
interactions requires significant compute resources to calculate the 
three-dimensional unsteady fluid dynamics in the sites of interest. 
Waveform coupling between the bifurcations, however, can be 
reasonably modeled by a reduced set of one-dimensional 
equations that capture the cross-sectional area and sectional 
velocity properties [8]. One can therefore simulate the entire 
arterial tree using a hybrid approach based on a reduced set of 
one-dimensional equations for the overall system and detailed 3D 
Navier-Stokes equations at arterial branches and bifurcations. 

Limited computational resources are required for the 1D 
model; therefore it can run on a single compute node. In order to 
capture the flow dynamics in an artery bifurcation reasonably 
well, however, the grid resolution typically requires a mesh of 
70,000 to 200,000 finite elements of high order; here spectral 
elements with a spectral polynomial order of 10 to 12 on each 
element are used [9]. These 3D models clearly require 
considerably more compute power to calculate. 

The human arterial tree model used here contains the largest 55 
arteries in the human body with 27 artery bifurcations. Because 
many of the bifurcations are close together, some of the 3D 
meshes contain multiple bifurcations. The primary compute 
environment for this simulation is the National Science 
Foundation’s TeraGrid [10]. Several of the largest runs took place 
during demonstrations at SC|05. In order to reduce the simulation 
times during these demonstrations, the spectral elements were 
calculated with a polynomial order of 7, rather than 10 to 12. 
Depending on the complexity of the particular mesh, anywhere 
from 64 to 128 processors were used for each 3D mesh. These 
arterial tree model simulations utilized compute resources at four 
TeraGrid resource provider sites: National Center for 
Supercomputing Applications (NCSA), San Diego Supercomputer 
Center (SDSC), Pittsburgh Supercomputing Center (PCS), and 
Texas Advanced Computing Center (TACC), along with a site in 
the UK, Computer Services for Academic Research (CSAR). This 
Compute power was coupled with visualization resources at The 
University of Chicago/Argonne National Laboratory TeraGrid 
resource provider site.  

The runs consisted of 17 bifurcations contained in 11 3D 
meshes distributed across the five-compute sites. The multi-job 
submission mechanism enabled with Globus and MPICH-G2 was 

used to submit the calculation of each of the 3D bifurcation 
meshes as a separate subjob of a single MPI application, to be 
executed across the five different resources. MPICH-G2 takes 
care of the details of submitting the subjobs to the separate 
resources and establishing the communication paths between 
them. Once all of the processes are running, they are part of the 
same MPI_Communicator and can exchange information via 
standard message passing mechanisms.  

Several types of data are associated with the simulations of this 
arterial tree model. The input data comprises the three 
dimensional unstructured mesh that defines the arterial 
bifurcations. This data does not change over the course of the 
simulation. The output data is of three types. First is the data from 
the 1D simulation. This consists of 55 float values for each time 
step of the simulation, which represent the pressure at the inlet of 
each of the 55 arteries. Because this is a small amount of data, it is 
output at each time step of the simulation. The output data of the 
3D simulations comprises one scalar value, representing the 
pressure, and three values, for the vector representing the blood 
flow velocity, for each point on the unstructured mesh. Since this 
can be a large amount of data, and because these values change 
relatively little from one time step to the next, it is not practical to 
output these values for every time step, as this would negatively 
impact the simulation. Instead they are output at regular intervals, 
typically every fifth time step. During the demonstrations at SC|05 
this data was reduced to a polynomial order of 3 before being 
output. While performing this reduction did have some impact on 
the performance of the simulation, it was relatively minor. Also, 
the trade-off of having the ability to visualize the data in near-real 
time made the performance hit well worthwhile. In order to 
provide feedback about the simulation more frequently, another 
reduced set of data is output every third time step. This reduced 
set consists of the pressure scalars and the velocity vectors for 
only those points on the boundary of the mesh, typically a 
reduction on the order of 98%. While this is a greater reduction in 
the amount of data, it is less computationally intensive to perform 
and can therefore be done more often with less impact on the 
simulation. 

4 VISUALIZATION OVERVIEW 
The visualization application was designed with several goals in 
mind and builds from previous visualization work [11, 12]. The 
goals of the application were to: 
! provide high-level feedback about the state of the on-going 

simulation in as close to real time as possible,  
! enable users to investigate particular areas of interest in 

greater detail, and 
! have little impact on the performance and stability of the 

running simulation, which is to say, any failure in the 
visualization should not cause the simulation to fail as well. 

These three goals layout the major contributions as a visualization 
application, specifically: 
! visual feedback of the state of a complex simulation 

distributed across many sites is extremely helpful, 
! the use of multiple views of data is beneficial (i.e. rapid 

display of low-resolution representation with high-resolution 
version to follow), and 

! the use of middleware solutions for the connection, 
management, and separation of the visualization application 
from the simulation. 

The application consists of three separate, yet integrated 
components, as seen in Figure 2. First is the Data Archiver. This 
is the input to the visualization pipeline and is the only component 
directly tied to the running simulation. The Data Archiver receives 



data from the simulation and is responsible for writing that data to 
disk, along with associated metadata. There are two visualization 
clients, one high resolution, the other low resolution. These clients 
have Data Loaders, which are colocated with the Data Archiver, 
and Displays, which can be at a remote location. The clients use 
the metadata written by the Data Archiver and interactions with 
each other to determine the data to be visualized. These three 
components are described in greater detail in the following 
sections. 

5 DATA ARCHIVER 
The Data Archiver communicates directly with the running 
simulations. All of the simulations, while distributed among 
several geographically distributed sites, are all part of a single 
integrated job. However, there is one instance of the Data 
Archiver for the 1D simulation and one for each of the 3D 
bifurcation simulations. The simulations connect to the Data 
Archivers via a connect/accept mechanism made available in the 
MPICH-G2 implementation. Each of the bifurcation meshes is 
given a numerical bifurcation ID. When each Data Archiver starts, 
it is given the ID of the bifurcation that it will be responsible for 
(0 is used for the 1D data simulation). Each Data Archiver then 
calls MPI_Accept and publishes the host and port where it is 
listening for a connection to a well-known location using a call to 
wget and a php script. Each simulation then uses a reciprocal call 
to wget and the php script to discover the host and port for the 
appropriate Data Archiver, and calls MPI_Connect to connect to 
it.  

Once connected, the Data Archivers and the simulations are 
members of the same MPI_Communicator and use standard 
message passing routines to communicate with one another. After 
exchanging some initial setup information, the simulations send 
the 3D mesh information to the Data Archiver. This information 
consists of the coordinates of each of the elements in the mesh, 
which may be of varying resolutions. The communication is done 
for both the full 3D mesh and the reduced boundary mesh. The 
Data Archiver uses the Visualization Toolkit (VTK) [13] to create 
an unstructured grid object from each of the meshes and write 
them to a local shared file system. The data is written to a location 
determined by several variables provided to the Data Archiver at 
runtime and a letter that indicates whether the data is for the full 
mesh, “a” for artery, or the reduced mesh, “b” for boundary. 
These variables include a Base Directory, a Run ID (a unique 

identifier for the current run of the simulation), and the 
Bifurcation ID.  

As the simulation proceeds and output data is produced, the 
simulation sends this data to the Data Archiver. As mentioned 
previously, the 1D data is quite small, 55 float values per time 
step. This data, along with its time-step information, is sent after 
each time step. The data for all time steps is written to a single 
binary file. In addition, a metadata file is also written. This file, 
named !D_latest.txt, stores the number of the latest time 
step that was written to the data file, along with the corresponding 
simulation time value. 

Because the geometry of the mesh does not change over the 
course of the simulation, only the data values associated with the 
points on the mesh are transferred to the Data Archiver as the 
simulation runs. This approach eliminates the transfer of 
redundant data, thus reducing the impact on the performance of 
the simulation, especially when sending data over wide-area 
networks. Again, as indicated earlier, this data is sent at different 
intervals. The data for the boundary mesh is sent every third time 
step, and the data for the full 3D mesh is sent every fifth time step. 
The pressure scalar values and the velocity vector values for each 
mesh are written to separate binary files for each time step 
received. Several metadata files are also written for the full mesh 
and the boundary mesh for each bifurcation. Similar to the 1D 
metadata, two files, called a_latest.txt and 
b_latest.txt for the full and boundary meshes, respectively, 
contain information about the last time step that has been 
successfully written to disk for the corresponding mesh. Two 
other files, named a_list.txt and b_list.txt, consist of 
information about all of the time steps that have been written for 
that mesh. The clients then use this metadata to determine which 
time steps to display.  

6 LOW RESOLUTION CLIENT 
The Low Resolution Client comprises several components that 
work together to provide a high-level overview about the state of 
a running simulation in near-real time. It processes and visualizes 
the 1D data and the 3D boundary data as it is written to disk, 
providing the user with an overview of the current state of the 
simulation and the ability to control which bifurcations are 
examined in greater detail with the High Resolution Client. 
Because none of these components are directly connected to the 
simulation itself, or even to the Data Archiver, they cannot 
negatively impact the stability of the simulation. The Low 

 
Figure 2: Overview of the components of the arterial tree simulation and visualization. 



Resolution Client can start and stop, whether intentionally or as 
the result of a failure, without any effect on the simulation. This 
feature becomes increasingly useful as the expected run time of 
the calculation increases, enabling the scientist to periodically 
check on the running simulation. 

The components include Data Loader processes and a Display 
process. Similar to the Data Archiver, there is one Data Loader for 
the 1D data and one for each of the 3D bifurcation meshes. Unlike 
the Data Archiver, however, these processes are all part of a 
single instance of the application. The Display process is also part 
of the same application instance. However, it is typically not 
colocated with the Data Loaders. This arrangement enables 
remote visualization of the data, allowing the researcher to 
monitor the simulation and investigate the results using modest 
local graphics hardware, without the need to transfer and store all 
of the data locally. Just as with the simulation, MPICH-G2 is used 
to submit the Data Readers and the Display as separate subjobs of 
a single MPI application, to be executed on two different 
resources. MPICH-G2 again handles the details of submitting the 
subjobs to the separate resources and establishing the 
communication paths between them.  

6.1 Data Loaders 
The Data Loaders are colocated with the Data Archivers and 
therefore can access data from the same shared file system. The 
1D Data Loader reads from the 1D metadata file written by the 
Data Archiver, using file locks to ensure that memory access by 
the two processes is mutually exclusive. The loader keeps track of 
the last time step that it has read and compares this to the current 
value in the 1D#latest.txt file. If the value in the file is 
newer, it reads the values for the corresponding time step from the 
1D data file. Once read from disk, these new values are sent to the 
Display process, along with the time step and simulation time 
values, using MPI_Send. 

The 3D Data Loaders for the Low Resolution Client are 
responsible for reading the boundary data for their designated 
bifurcation. Because the size and complexity of the 3D meshes 
vary from one to the next, the simulations are executed on a 
varying number of processors, in an attempt to keep their 
completion times synchronized. However, it is not uncommon for 
some bifurcation simulations to complete earlier than others. So, 
in order to keep the 3D Data Loaders synchronized, they all read 
the latest time step from the b#latest.txt file for their 
assigned bifurcation. All of these latest time step values are then 
compared, and the lowest one is determined. Collectively the 
loaders all keep track of the last time step that was read from disk. 
When the lowest value is greater than the previous time step that 
has been loaded, all of the 3D Data Loaders read the data for their 
respective bifurcations for this new time step. If this is the first 
time step to be loaded, as at the beginning of the simulation, the 
3D Data Loaders first read in the geometry data for the boundary 
mesh for their designated bifurcation, creating a VTK 
unstructured grid object. For all subsequent time steps only the 
data values are read, and the unstructured grid object is updated to 
reflect these new values. As each 3D Data Loader finishes reading 
the data for the current time step it sends the updated unstructured 
grid object, along with the time step information, to the Display 
process. Because these boundary meshes are relatively small, just 
over 2 MB for the largest one, there is no performance penalty for 
sending the whole mesh, rather than just the data values. 

6.2 Display 
The Display process is responsible for providing visual 
representations of the 1D and low-resolution (boundary) 3D data 

produced by the simulations. Recall that the 1D data consists of a 
single value for each of the 55 major arteries in the human body, 
specifically the pressure on the arterial walls at the inlet of the 
artery. Even when only a subset of the 3D bifurcations is 
simulated, the 1D data is still calculated for all 55 arteries. To 
visually represent these values, we borrowed from a popular 2D 
diagram of the 55 major arteries. Using VTK objects, we 
constructed a 3D model of this diagram. The model allows each of 
the arteries to be easily addressed by name or by index. When the 
simulation is started, the researcher knows the range of pressure 
values expected to be produced by these 1D calculations. A color 
lookup table based on this value range is used to color the 
individual arteries in this model. When the Display process is 
started, it loads the artery model and creates the lookup table. 

Another VTK object is used to represent the boundary data of 
each of the 3D bifurcations being simulated. This object, called 
the bifurcation group, is initially empty and is populated with the 
boundary meshes as they are received from the Data Loaders. The 
expected range of the pressure values over the entire set of 
bifurcations is similar to that of the 1D data. Therefore, the same 
color lookup table is used to color the points on each 3D mesh. 

Once both of these VTK objects have been instantiated, a 
second thread is created. This thread is responsible for all 
communication with the Data Loaders. After exchanging some 
initial synchronization messages, it registers to receive data from 
the 1D and each of the 3D Data Loaders. It then loops, checking 
whether data has been received from any of the loaders. 

The main thread of the Display process controls the graphics 
window where the objects are rendered; see Figure 3. It is laid out 
with two main regions, the artery model with the 1D data on the 
right and the bifurcation model with the 3D data on the left. Each 
region displays its respective models along with a label indicating 
the current time step and simulation time being shown. Because 
the models share a color lookup table, a scalar bar showing that 
table and its associated values is displayed across the bottom of 
the full window. Initially, before any data values have been 
received, all of the arteries in the 1D model are colored white, 
while no data objects get displayed on the 3D side, as all of the 
bifurcations are hidden until data has been received for them. 

The two threads of the Display process use shared memory to 
exchange data and information. When the communication thread 
receives 1D data, a lock is put on the artery model and the color of 
each of the arteries is updated to reflect the new pressure values. 
The time-step information is also updated. Once the lock is 
released, the main thread updates the display window to reflect 
the newly colored arteries and the updated time information. 

Each time through the execution loop the communication 
thread tests to see whether any new messages have been received 
from any of the 3D Data Loaders. If any new messages have been 
received, a lock is put on the bifurcation group object, and all new 
messages are processed. The receiving thread knows which 
bifurcation the data it received was intended for based on the ID 
of the Data Loader that sent the message. If this is the first data 
message received for a given bifurcation, the unstructured grid 
that was received is added to the bifurcation group object, and its 
status of “hidden” is changed to “display”. Otherwise, the 
unstructured grid that was received replaces the existing one for 
this bifurcation. If the time step information in this message is 
greater than what is currently being displayed for the bifurcation 
group, that information is updated as well. Once all new messages 
received since the previous pass through the loop are processed, 
the lock is released. The main thread can now update the display 
window to reflect any new data that was received. The 3D 
bifurcation objects are rendered on the left side of the display. 



Their positions reflect where they would actually be located in the 
body, relative to one another.  

Seeing the 3D bifurcations side by side with the 1D artery 
model, one can match the corresponding arteries from the two 
representations, especially if one has an intimate understanding of 
the arterial system. Having these two displays also gives the 
scientist a better idea of what is happening in the simulation. For 
instance, one can see that the pressure is initially greatest at the 
first artery, that closest to the heart. As the simulation progresses, 
this high pressure travels through the arterial tree toward the 
extremities. Seeing the results of the 3D simulations on these 
reduced boundary meshes both assures the scientist that the 
simulation is progressing as expected and enables the viewer to 
discover areas of interest to explore in greater detail. This in-depth 
investigation is done through the High Resolution Client, 
described in the following section.  

7 HIGH RESOLUTION CLIENT 
The High Resolution Client enables exploration of a full 3D 
bifurcation mesh. Its architecture is similar to that of the Low 
Resolution Client, but with some notable differences. Like the 
Low Resolution Client, it comprises several components that 
work together to enable the visualization of data from a running 
simulation. There again are Data Loader processes and a Display 
process, which execute as a single application while on separate, 
usually distributed, resources, enabling remote visualization of the 
simulation data. Likewise, MPICH-G2 is used to start the 
processes and establish communication between them. They also 
have no direct interaction with the simulation or the Data 
Archiver, and thus cannot negatively impact the performance or 

stability. This feature again enables the Client to be stopped and 
started with no effect on the simulation.  

Unlike the Low Resolution Client, the High Resolution Client 
visualizes only a single 3D mesh at a time. However, in addition 
to providing a simple view of the boundary data, it applies other 
visualization methods to the data of the full 3D mesh. Multiple 
instances of this client can be run simultaneously in order to view 
multiple bifurcations at the same time.  

7.1 Data Loaders 
The Data Loaders are again colocated with the Data Archivers and 
access data and metadata from the same shared file system, using 
file locks to ensure data integrity. Two methods are used for 
selecting which time step of the simulation data to display. In 
“Latest Step” mode the Data Loader looks in the 
a_latest.txt file to discover the last time step that has been 
successfully written to disk. If this is a later time step than the one 
currently being displayed, the data for this new time step is 
loaded. In “Playback” mode the Data Loader reads through the 
a_list.txt file and sequentially loads the data for each time 
step, one at a time. When the end of file is reached, it rewinds 
back to the beginning and starts over. 

There are two Data Loader processes. Both processes read the 
same bifurcation mesh. The bifurcation ID for this mesh is 
initially given as an input parameter but can later be changed, as 
described in the following section. Both of the Data Loader 
processes read the pressure scalar values and the velocity vector 
data. Once read, the unstructured grid is updated with these new 
values. One process then generates ten isosurfaces using values 
evenly distributed across the range of pressure values in the 

 
Figure 3:  The Low Resolution Client displaying the 1D data for the 55 major arteries on the right, and the boundary data of 11 of the 3D 

bifurcation meshes on the left. 



current time step. The geometry for these isosurfaces is then 
transferred to the Display process by using a call to MPI_Send. 
The other Data Loader process uses a glyph filter to generate 
arrows that depict the direction and magnitude of the velocity of 
the blood flow over a random sampling of the elements in the 
mesh. These arrows may be colored by either the pressures values, 
or the magnitude of the velocity vectors. The geometry of the 
arrows is then transferred to the Display process, again by using a 
call to MPI_Send. Both processes also send information about the 
current time step along with their data. While each of the Data 
Loaders is currently only a single process, each could be 
parallelized to take advantage of multiple processors for 
calculating the glyphs and isosurfaces.  

7.2 Display 
As in the Low Resolution Client, the Display process for the High 
Resolution Client is responsible for rendering the visual 
representations of the data. When the Display process is started, it 
is given the ID of the initial bifurcation that it will visualize. It 
reads a local copy of the boundary data for this bifurcation, 
without any data values, and renders it in the graphics window. 
The boundary data is given a neutral grey translucent color and is 
used to give a frame of reference for the shape of the bifurcation 
being simulated. VTK objects that will be used to display the 
isosurfaces and glyphs generated by the Data Loaders are also 
created. Also added to the display are the color lookup table and 
its associated values, and a label indicating the current time step 
and simulation time being shown, initially set to zero. 

As with the Low Resolution Client, here again a second thread 
is created that is responsible for communicating with the Data 
Loaders. Again the threads use shared memory to exchange data 
and locks to ensure mutually exclusive access to the data. The 
communication thread registers to receive data from each of the 
Data Loaders. Because both of the Data Loaders will be sending 
data for the same time step, the communication thread waits until 
it receives the data from both before processing the data. Once all 
of the data for the time step is received, the VTK objects are 
locked, and the isosurface and glyph objects are updated with the 
new data. When the lock is released, the main thread updates the 
display with the newly received data. 

Users can interact with the Display to change the position and 
orientation of the bifurcation data. They can also zoom in to get a 
closer look at a particular region of interest, or out to see the entire 
bifurcation. By pressing a key on the keyboard the users can also 

easily switch between “Latest Step” mode, where the display is 
updated to show the latest time step of the simulation to be 
completed, and “Playback” mode, which animates through all of 
the time steps that have been completed so far. When the key is 
pressed, the main thread captures this event and determines 
whether a change of mode should be triggered. If so, it 
communicates this change to the communication thread via shared 
memory. The communication thread then uses MPI_Send calls to 
notify the Data Loaders of the change in mode. The Data Loaders 
can then switch from reading the a"latest.txt file to the 
a"list.txt file, or vice versa, depending on the current mode. 

8 TYING IT ALL TOGETHER 
As mentioned earlier, the Low Resolution and High Resolution 
Clients work together to both provide a high-level overview and 
enable detailed exploration of the arterial tree simulation data. The 
Display components of the clients are intended to run on the same 
resource. For the SC|05 demonstrations a tiled display was used to 
display the Low Resolution Client and multiple instances of the 
High Resolution Client, each on a different tile of the display; see 
Figure 4. In order to simplify the startup process of all of these 
clients, including the Data Loader components running on the 
UC/ANL TeraGrid visualization resource, a script and 
configuration file are used. The configuration file includes 
information such as what resource manager each subjob should be 
submitted to, the path to the application executables on the 
different resources, directory paths to where the data should be 
written, the bifurcation IDs that will be included in the current 
run, and the number of High Resolution Clients that should be 
started. MPICH-G2 makes use of RSL (Resource Specification 
Language) [14] to describe the job requests that it submits. The 
startup script reads the configuration file, creates the appropriate 
RSL expression, and calls MPICH-G2’s mpirun to submit a job 
request for the each of the clients to be started. 

When each of the High Resolution Clients is started, it is given 
the initial bifurcation ID that it will be responsible for. The Low 
Resolution Client is also given this information, so it knows how 
many High Resolution Clients are running and which bifurcation 
each will be displaying. Because the Display components of all of 
the clients are running on the same resource, in this case a 9-node 
cluster, they share a common file system. Thus the clients can 
communicate through the use of shared files, again using locks to 
ensure exclusive access. In the display of the Low Resolution 
Client some of the 3D bifurcations have colored bounding boxes 
around them. The bounding boxes indicate that these bifurcations 
are being displayed in one of the High Resolution Clients. The 
color of the bounding box matches the color of a label that is 
drawn in the display of the corresponding High Resolution Client. 
The user can select a different bifurcation to be displayed in one 
of the High Resolution Clients by simply picking one of the 
bifurcations in the Low Resolution Client that does not have a 
bounding box. Keys on the keyboard are used to select the High 
Resolution Client for which picking is currently active. The index 
and color of the active High Resolution Client are displayed in the 
lower left corner of the Low Resolution Client. When a new 
bifurcation is picked, the Low Resolution Client writes its 
bifurcation ID to a file for the active High Resolution Client. 
When the High Resolution Client checks the file and discovers a 
new bifurcation ID, it uses MPI_Send to notify its Data Loaders 
of the new value. The loaders then discard the unstructured grid 
that they are currently using, load that of the new bifurcation ID, 
and start reading data and metadata from the corresponding 
location. 

 
Figure 4: Components of the arterial tree visualization application 

running on a tiled display at SC|05. 



9 ADDITIONAL FEATURES 
In addition to enabling the real-time remote visualization of the 
simulation data, this application provides several other features 
including performance monitoring, playback, and improved 
network performance. 

9.1 Performance Monitoring 
As the compute environment that simulations are executed in 
becomes more complex, providing users with feedback about the 
progress of long-running computations becomes increasingly 
important. To enable the users of our application to monitor its 
performance, as well as that of some aspects of the simulation, we 
have instrumented several of the components. Specifically, we 
used geeViz [15], a previously developed system for visualizing 
Grid-enabled environments. It provides an API that can be used to 
easily log events of interest, and an application that is used to 
visualize those events.  

The first component to be instrumented is the Data Archiver. 
Whenever it receives data from the simulation, it calculates the 
bandwidth between the simulation and itself. It does so using a 
timestamp that was sent with the data, the local time when the 
data was received, synchronization information that was 
exchanged when the two processes first connected, and the size of 
the data buffer that was received. The Data Archiver then logs a 
transfer event, which includes the source and destination of the 
transfer, the bandwidth, and the amount of data received. The 
geeViz application displays an image of a world map. It plots the 
location of the source and destination of the transfer event on the 
map and draws a link between them. Spheres are moved along the 
link in the direction of the transfer, at a speed based on the 
bandwidth. Also displayed are labels of the locations of the 
endpoints and the amount of data that was either sent or received. 
Other events are used to indicate the number of bifurcations being 
calculated at a given site. This information is added to the display. 

The SC|05 demonstration involved multiple compute sites, 
some simulating multiple bifurcations. Figure 5 shows the geeViz 
display with the locations of compute sites (NCSA, SDSC, 
TACC, PSC, and CSAR) plotted on the map. Each is labeled and 
indicates how many bifurcations it is simulating, as well as how 
much data it has produced so far. Links connect each of these sites 
with UC/ANL, where the Data Archivers are running. Displayed 
here is the total amount of data received, for all five computation 
sites combined. When multiple transfers are sent along the same 
link, such as the boundary data and the full 3D mesh data coming 

from the same site, they are represented by different colored 
spheres moving along the link. 

The High Resolution and Low Resolution Clients are also 
instrumented. Using a formula similar to the one in the Data 
Archiver, the Display processes calculate the bandwidth from the 
Data Loaders whenever they receive data. Transfer events are 
again logged and visualized in the geeViz display. Figure 5 shows 
a link between UC/ANL, where all of the Data Loaders are 
running, and the SC|05 exhibit floor in Seattle, WA, where all of 
the Displays are running. 

Placing the mouse over any of the sites on the map will bring 
up a graph showing the bandwidth performance into and out of 
that site over time. The user can also interact with the geeViz 
display to pan and zoom to focus on particular areas of interest. 
Using this information on the geeViz display, the scientist can 
monitor the progress of the simulation. This feature proved to be 
particularly useful at the beginning of the simulation, to see when 
sites were starting to send data. The fact that some sites were not 
yet reporting results, while others had been for some time, 
indicated a potential problem and prompted further investigation. 

9.2 Playback of Archived Data 
In addition to visualizing the results of the arterial tree simulations 
in real time, the data is also archived and can be viewed at a later 
time. Because the clients do not communicate with the simulation 
directly, they are not dependent on it. They determine which time 
steps to load and visualize based on the metadata in the 
!"latest.txt files. Rather than relying on the Data Archivers 
to update these files, a script can be used to update them instead. 
The script takes a configuration file, which indicates the rate at 
which each of the files should be updated. This should be the 
same rate at which the simulation output its data. In the examples 
we’ve discussed, the 1D was updated every step, the 3D boundary 
data every three steps, and the full 3D artery data every five steps, 
but these rates may vary. For instance, if the elements in the mesh 
are calculated to a polynomial order of 12, it may make more 
sense to output the data less often. The configuration file can also 
contain a delay value, which is used to determine how long the 
script should wait between simulation time steps.  

9.3 Network Performance Boost 
Poor network performance when communicating over wide-area 
networks, such as when the Data Loaders of the High Resolution 
Client send data to the Display process, has been identified as a 
major bottleneck in the performance of the visualization 
application. By default MPICH-G2 uses TCP over the wide area. 

 
Figure 5:  Image of geeViz displaying monitoring information of human arterial tree simulation and visualization demonstration during SC|05. 



The high bandwidth and high latency found in the networks used 
here result in the TCP protocol entering congestion avoidance 
mode, where the sender-side congestion window becomes too 
small. In an attempt to overcome this obstacle, MPICH-G2 
employs a technique that uses UDT [16], a reliable UDP-based 
protocol that does automatic optimization, including congestion 
avoidance. By setting a few attributes on both the sending and 
receiving sides of a transfer, MPI_Send can be configured to use 
the UDT-based protocol. This was done in the High Resolution 
Client, for data transfers between the Data Loaders and the 
Display process. While monitoring transfers between these two 
components using the information provided by geeViz, network 
bandwidth performance was observed to increase by an order of 
magnitude. Thus, enabling UDT clearly eliminated the network as 
the performance bottleneck. 

10 CONCLUSIONS AND FUTURE WORK 
We have articulated the value of visualizing simulation data early 
and often, while the simulation is still running. In particular, the 
productivity of long-running simulations can benefit from this 
capability. Equally important is the ability to do this with little 
impact on the performance and stability of the simulation. We 
described an application we developed to provide these 
capabilities to a human arterial tree simulation. The various 
components of the application, including the Data Archivers and 
the High Resolution and Low Resolution Clients and their 
elements, the Data Loaders and Displays, were described in great 
detail. This effort, while focused on a single application, has 
illustrated the benefits that a flexible, low-impact runtime 
visualization application can have on demonstrating, monitoring, 
and debugging a large distributed simulation. The benefit of the 
use of low- and high-resolution renderings for immediate 
feedback to users was also demonstrated. Finally, it showed that 
the visualization community can greatly benefit from advances 
within the Grid community for the integration of visualization into 
running simulations and as part of the analysis pipeline. 

We have identified the following areas in which future work 
can increase the usefulness and robustness of the application. The 
way that the simulations currently discover the contact 
information of the Data Archivers is through the use of wget and a 
php script. While this method works, there are more robust ways 
in which this information discovery could be done. The use of a 
services-oriented architecture with an index service may be a 
more appropriate approach. 

In the previous section we described performance gains that 
were obtained by enabling the use of UDT over wide area 
networks. Adding this functionality to transfers between the 
components of the Low Resolution Client, and between the 
simulation and the Data Archiver, could be done with little effort 
and would likely result in similar increased performance. 

While the visualization capabilities provided by the High 
Resolution Client are valuable, they are just a start. Additional 
control over the parameters used in the visualizations is needed. 
The ability to manage the values used in creating the isosurfaces, 
for instance, would be helpful. Including more visualization 
algorithms, such as cutting plane and streamlines, would also be 
useful. As mentioned in an earlier section, parallelizing these 
visualization algorithms in the Data Loaders would provide 
enhanced performance.  
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