
XIOPerf : A Tool For Evaluating Network Protocols
John Bresnahan, Rajkumar Kettimuthu and Ian Foster

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Illinois 60439

Email: {bresnaha,kettimut,foster}@mcs.anl.gov

Abstract—The nature of Grid and distributed computing
implies network communication between heterogeneous systems
over a wide and ever-changing variety of network environments.
Often times large amounts of data is stored in remote locations
and must be transmitted in bulk. It is desirable to have the bulk
data transfers be as fast as possible, however due to the dynamic
networks involved it is often hard to predict what protocol will
provide the fastest service for a given situation. In this paper
we present XIOPerf, a network protocol testing and evaluation
tool. XIOPerf is a command line program written on top of
GlobusXIO with a simple and well defined interface to many
different protocol implementations. XIOPerf was created to give
users a way to quickly and easily experiment with an open
ended set of protocols over real networks to determine which will
best suit their needs. We present a brief study of the overhead
introduced by XIOPerf and the performance of it when using a
variety of protocols.

I. INTRODUCTION

The nature of Grid [1]–[4] and Distributed computing
implies an inherent need for communication. Resources that
need to interact are distributed across many networks. An
important type of communication in these environments is
that of bulk data transfers. Often this means sending a file
from one resource to another, but it can also mean streaming
large data sets from a scientific instrument or that result from
some computation. The important aspect of bulk transfers is
that they involve very large data sets. Because of the size
to be transferred, it is important that the protocols used are
as efficient as possible. The quest to find the most efficient
transfer protocols is a large and ongoing area of research.
Many protocols [5]–[10] have been developed and continue

to evolve. Researchers strive to solve the problem of efficient
bulk data transfer in better and faster ways. Their solutions
are usually targeted at solving a specific part of the problem.
Some protocols are designed for dedicated networks and are
aimed at the greedy acquisition of bandwidth while others are
designed to nicely coexist with the traffic of multiple users in a
shared network. Sometimes the problem is looked at by throttle
the send rate, and other times how fast the user consumes
data is the dominating factor. However, no matter what the
thought process the protocol designer goes through, the end

user typically has one simple question. What protocol is best
for my needs?
Answering that question on paper can be a difficult task.

Many factors must be identified and considered. Every proto-
col has its strengths and could be a potential candidate. There
is no single fastest protocol for every situation. The best choice
most often depends on the environment in which the users
application exists. The user must consider at a minimum the
following parameters:

Network type: Is it a dedicated link, or does some
quality of service guarantee that a portion of the
bandwidth is dedicated to the user?
Network activity: Is the network typically over-
utilized or under-utilized? How congested is it? How
much packet loss is expected? Does the protocol
need to be fair to other users?
Endpoints: Are the endpoint machines fast enough
to keep up with the network, or are they the bottle
neck in the pipeline?
Application: How does the application consume the
data? Does it write to disk? If so what is the disk
speed? Are many memory copies made? How will
the applications consumption of data affect data
sending rates or data packet loss.

Unfortunately determining these categories is not an easy
thing to do. Many of the factors are not known, and some,
like network activity, are always changing. Additionally, there
are factors too subtle to even categorize that can have dramatic
results on the achieved performance. Even if a valid conclusion
can be drawn on paper it may not actually be the best solution
in practice due to things like errors in (or liberties taken with)
the actual implementations of the protocol stack.
The easiest, and most practical way for a user to determine

what protocol is best is to actually try them. If the user were
able to experiment with all of the bulk data transfer protocols
available they could empirically determine which works the
best for their environment. This, of course, brings up another
problem, how can a user tests out every protocol proposed
in research? Clearly this is not realistic. However by defining



standard interfaces for test applications to use and creating
a framework for assisting protocol implementation it may be
feasible to try a large number of them.
If the effort required to transform a proof of concept im-

plementation or a proprietary reference implementation into a
standard interface were minimized a situation could be created
where protocol authors were willing to do so. In cases where
they did not, application developers interested in experiment-
ing with the protocols may be motivated to spend the small
amount of effort required to morph the implementation into the
standard framework. Once the implementation is accessible via
the standard interface a common testing tool can perform fair
and accurate evaluation of protocols over real world networks.
This is exactly what XIOPerf strives to accomplish.
This paper introduces XIOPerf and proposes that it be this

ubiquitous network performance testing tool. XIOPerf is a
command line tool that presents the user with a familiar inter-
face and set of options for performing bulk data transfers over
a network. The tool measures the performance characteristics
of a transfer and reports them to the user. XIOPerf is written
on top of GlobusXIO [?] so it has all of the dynamically
loadable transport driver functionality allowing it to address
the concerns we have outlined.
The remainder of this paper is organized in the following

way. We first present related work. We then introduce the
reader to the XIOPerf program, its architecture, and how to use
its basic functionality. We next describe the wrapblock func-
tionality which makes driver creation much easier. Wrapblock
has been added to GlobusXIO as part of this work. Finally we
evaluate the testing tool by measuring the amount of overhead
the abstraction layer adds and the performance achieved using
XIOPerf with real protocols over real networks.

II. RELATED WORK

A. IPerf
Presently IPerf is the defacto standard for measuring and

optimizing bulk transfer performance. IPerf is a command line
tool written in C++ by NLANR [11]. IPerf allows a user to
send messages via either TCP [12] or UDP [?]. A user can
choose to either send a file and have the receiver write the file
to disk, or remove the disk from the equation and only send
data to and from memory in its process space. In addition
to measuring bandwidth, IPerf also measures jitter. This is
an important aspect that XIOPerf does not yet address. IPerf
has proved to be an exceptionally useful tool. A typical IPerf
session involves a user running IPerf as a server on one side of
the network and as a client which connects to that server on the
other. The client then sends either a set amount of bytes, or a
sends for a set amount of time and completes by reporting the
throughput and other stats to the user. The main difference
between IPerf and XIOPerf is that while IPerf is limited to

-i # sets the reporting interval. Every # seconds a throughput
report will be written to stdout.

-bs # set the length of the read/write buffer and thereby controls
the amount of data to post at one time.

-w # A TCP specific option. This sets the TCP window size and
maintains interface compatibility with IPerf

-n # Sets the number of bytes to transfer to #.
-F <path> filename for input if sending, and output if receiving.

By default transfers are memory to memory.
-S Be a sender
-R Be a receiver
-P # The number of parallel transfer to conduct at 1 time.
-s run in server mode
-c <contact>run in client mode and connect to the given contact string.
-D <name> The name of the next driver to add to the stack.

Fig. 1. Some command line options to XIOPerf.

TCP and UDP, XIOPerf is written on a framework that allows
the user to plug in arbitrary protocol implementations.

B. TTCP
Test TCP (TTCP) is a predecessor of IPerf. They offer much

of the same functionality. Both measure the performance of
TCP over a network. TTCP was originally created for the BSD
operating system, since that time some ports of it have been
made to be more user friendly and to run on more operating
systems, like Microsoft Windows.

C. Others
There is a bunch of other network measurement and network

testing tools [?]. While these tools are often used in conjunc-
tion with iperf, they are not aimed at end-to-end bandwidth
testing. One exception to that is pathrate. But none of these
tools provide a feature to test the performance of different
protocols on a network.

III. XIOPERF
XIOPerf presents a similar interface to that of IPerf. It is

a command line tool with many of the same options and
behaviors. Just as with IPerf, XIOPerf runs as a server on
one side of the network and a client on the other. The client
connects to the server and a bulk data transfer occurs according
to the parameters given. The user is given many runtime
options including the amount of data to transfer, which side
sends and which receives, buffer sizes to use, whether or not
to perform disk IO, etc. Some of the options can be found in
figure 1.
The option that is most important, and that makes XIOPerf

unique among applications of its kind is -D. This allows the
user to specify what protocol will drive the bulk transfer. The
protocol must be implemented as a GlobusXIO driver (how
this is done will be discussed later). For example if the user
wishes to measure the achieved bandwidth of the network
using TCP they would run the XIOPerf on the server:

% globus-xioperf -s -D tcp
---------------------------------------------------------------
server listening on: localhost:50002
---------------------------------------------------------------



Fig. 2. XIOPerf Architecture

and on the client:
% globus-xioperf -D tcp -c localhost:50002

---------------------------------------------------------------
Connection established
---------------------------------------------------------------
Time exceeded. Terminating.

Time: 00:10.0009
Bytes sent: 5474.50 M
Write BW: 4379.19 m/s
Time: 00:10.0000

To change the protocol used by XIOPerf to UDT [7], the
user need only change the string they run with from ’tcp’
to ’udt’. By specifying the -D option multiple times the user
can build a protocol stack over which the bulk transfer will
occur. For example, if the user wanted to measure how a TCP
transfer performed with GSI security they would run the above
command with an addition ’-D gsi’ argument appended to the
command line.

IV. GLOBUSXIO

XIOPerf achieves the multi-protocol abstraction because
it is built on top of GlobusXIO [?]. GlobusXIO is
the Extensible Input Output component of the Globus
Toolkit(tm) [?]. It is a framework that presents a single
standard open/close/read/write type interface to many different
protocol implementations. The protocol implementations are
called drivers. Creation of drivers is discussed later in this
paper. Once created, a drivers can be dynamically loaded and
stacked by any GlobusXIO application. XIOPerf takes full
advantage of this feature.
XIOPerf is a fairly simple application and gets most of its

power from the GlobusXIO library. The diagram in figure 2
illustrates how XIOPerf uses GlobusXIO. XIOPerf is linked
against GlobusXIO library. It uses the GlobusXIO API for
all of its IO needs. GlobusXIO then takes care of finding
and loading the specified protocol drivers, establishing the

connections using that driver stack, and passing the data
buffers down the chain of drivers.
Since the drivers are loaded dynamically and adhere to a

standard interface, they do not have to be linked or com-
piled into the application. New drivers can be added to the
LD_LIBRARY_PATH at any time after the binary XIOPerf
installation has taken place. This is an important aspect
which allows for growth as new protocols are developed by
researchers.

V. GLOBUS XIO DRIVER CREATION
The success of XIOPerf is hinged on the existence of

GlobusXIO drivers for many bulk transfer protocols. We
propose to achieve this in a couple of ways. The first is creating
drivers within the GlobusXIO community. There are a limited
set of resources within the community so we cannot expect to
create all drivers in this way. The second way we propose to
scale up on driver production is to make it very easy to write
wrapper code that can glue a prototype or reference imple-
mentation into a driver interface. This will allow protocols that
only exist in some unstable proof of concept implementation
and those that do have robust reference implementations to be
used.
In pursuit of this goal part we introduce the wrapblock

feature to GlobusXIO. This is a simple extension to the orig-
inal GlobusXIO driver interface that allows for much easier
creation of drivers. The stock GlobusXIO driver interface in
written on a asynchronous model. While this is the most
scalable and efficient model it is also the most difficult to code
against. The wrapblock functionality uses thread pooling and
event callback techniques to transform the asynchronous inter-
face to a blocking interface, thus presenting the implementer
with a much easier task. Some drivers such as TCP, UDP,
HTTP, File, Mode E [?], UDT, Telnet, Queuing, Ordering, GSI
and Multicast Transport [?] have been developed for Globus
XIO.
As an example we look at the udt_ref driver. This driver

uses the wrapblock feature to glue the standard UDT [13]
reference implementation into a GlobusXIO driver. We were
able to accomplish creating this driver and using it in the
XIOPerf program in less than one day of work. To illustrate
the ease in creation we look at the code required to implement
write functionality in figure 3.
As is shown, the implementation requires a simple pass

through call to the UDT library. The actual number of bytes
written is passed back to GlobusXIO by reference in the nbytes
parameter. The data structure xio_l_udt_ref_handle_t
is created in the open interface call and is passed to all other
interface calls as a generic void * memory pointer. This allows
the developer to maintain connection state across operations.
Similar code is written to handle reading data. In the open and



static
globus_result_t
globus_l_xio_udt_ref_write(

void * driver_specific_handle,
const globus_xio_iovec_t * iovec,
int iovec_count,
globus_size_t * nbytes)

{
globus_result_t result;
xio_l_udt_ref_handle_t * handle;
GlobusXIOName(globus_l_xio_udt_ref_write);

handle = (xio_l_udt_ref_handle_t *) driver_specific_handle;

*nbytes = (globus_size_t) UDT::send(
handle->sock, (char*)iovec[0].iov_base, iovec[0].iov_len, 0);

if(*nbytes < 0)
{

result = GlobusXIOUdtError("UDT::send failed");
goto error;

}

return GLOBUS_SUCCESS;
error:

return result;
}

Fig. 3. A sample wrapblock write interface implementation for UDT.

close interface function the developer initializes and cleans
up resources as would be expected. The code inside the
driver looks very much like a simple program using the third
party API. There is little GlobusXIO specific code beyond
the interface function signatures. Additionally, there are driver
specific hooks that allow the user to directly interact with the
driver in order to provide it with optimization parameters.
This is handled via cntl functions that look much like the
standard UNIX ioctl(). Further discussion on this can be found
at http://www.globus.org/toolkit/docs/4.0/common/xio/

VI. EXPERIMENTS
The first set of experiments shows the overhead introduced

by the GlobusXIO framework. Since we are adding an abstrac-
tion layer between the application and the code that does the
actual work of shipping bits there will necessarily be some
overhead. In our first set of results we recorded the time
before we registered an event in the application space, and
then again when the event made its way to the drivers interface
function. This is the exact interval from the time the user
requests an operation to the time it can begin to be delivered
by the protocol implementation. This measurement is referred
to as “down the stack”. We also measure the time ’up the
stack’. This is the interval from immediately before the driver
signals it has completed its work to the time the application
is notified of the completion. These two measurements show
the exact overhead of the GlobusXIO abstraction. We took
the average of many hundreds of read and write operations
and averaged them together both separately and together. We
ran the experiment on a UC TeraGrid [14] node with Dual
1.5Ghz Itanium processors and the Linux 2.4.21 kernel. Table
1 shows the results of the average overhead per operation in
milliseconds.
The results show that much more overhead is introduced

up the stack than down the stack. The code path for each

Fig. 4. Measurement of overhead with noop drivers

is entirely different and therefore it is appropriate that we
see different times. However, the difference between the two
is somewhat dramatic. This is due to some convenience
functionality in GlobusXIO. Internally GlobusXIO does some
event synchronization on the way up the stack to ensure that
the user of the library receives events in a sane manner. For
example, there is a barrier between all data operation events
and close events. This gives users a guarantee that when the
close event is delivered they will receive no other events and
thus can safely cleanup their resources. Without this users
would have to reference count their events or track them
in some other way that would unnecessarily complicate the
application.

Operation Up Down Both
Read 0.014 0.001 0.007
Write 0.015 0.001 0.008
Both 0.015 0.001 0.008

TABLE I
OVERHEAD TIMES

To show how the overhead scaled in the presence of many
drivers we created the noop driver. This driver only forwards
requests down the stack and completion notifications up the
stack. It is intended to sit in the middle and do nothing but
add the overhead required for each additional driver. Many of
these were added to the stack to show how additional drivers
affect the performance. We measured the average overhead
times up and down the stack, as we did above, but with an
increasing number of noop drivers. On the bottom of the stack
was the TCP driver which did a bulk data transfer across the
local gigabit network of the UC TeraGrid. To show how this
overhead affects performance we also measured the achieved
throughput of XIOPerf and IPerf. Figure 4 shows this.
Overhead increased linearly with the addition of more noop

drivers. This was expected. On average each driver adds



.125 microseconds of overhead on our test system. Both
reads and writes add roughly the same amount of overhead.
The achieved bandwidth was unaffected by the introduced
overhead. The achieved throughput is steadily maintained at
around 950 Megabits per second. Since the ping time between
the nodes in the transfer is approximately 0.372 milliseconds,
which is significantly higher than all of the latency added by
GlobusXIO between serial IO operations, the delay of buffer
delivery that is added does not affect the throughput.
IPerf achieves a steady 990 Mb/s, which is better than

XIOPerf. The performance differences are likely due to the
asynchronous implementation of the TCP driver. GlobusXIO
and IPerf are designed on different IO models. IPerf is
written with blocking socket code and threads. GlobusXIO
is designed for highly parallel and scalable systems so it is
on an asynchronous model. Because of this the performance
of GlobusXIO with applications displaying high levels of con-
current IO should be very steadily distributed across streams
and ultimately achieve the most scalable performance.

VII. DRIVER EXPERIMENTS
In an effort to show the need for XIOPerf we familiarize

the reader with various distinctly optimized and commonly
cited bulk transfer protocols. We look at TCP, UDT, and
GridFTP (Mode E). To show the effectiveness of XIOPerf
when evaluating protocols we have compared the performance
inside of XIOPerf against the reference implementation for
each protocol. Bulk transfers of increasing sizes were run over
the UC TeraGrid LAN and on the wide area network between
UC TeraGrid nodes and SDSC TeraGrid nodes. No disk IO
was done in this study.

A. TCP
TCP [12], [15], [16] is a well known and ubiquitous

protocol. We will therefore only touch on a few aspects of
it here. TCP is targeted at the Internet at large. It has done
an impressive job scaling as the Internet has gone through a
boom in terms of users as well as transfer rates. It provides
reliable and fair access to many users of a network. For its
targeted audience it is a very good protocol. However, for
lambda networks [17] and LFNs [18] it is not ideal.
TCP is window based. A window size constitutes a certain

number of bytes that can be in flight at a given time. In
flight refers to the bytes that the receiver has not yet ac-
knowledged as having received. Various algorithms which will
not be discussed here determine how and when the receiver
acknowledges bytes received. The size of this window and the
latency on the network greatly affects the rate at which data
can flow. The ideal size of the window is calculated by the
bandwidth delay product:

bwdp = rtt ∗ bw

Where rtt is the round trip time, and bw is the available
bandwidth. The rtt is used because it takes into account the
time for a byte of payload to move from the sender to the
receiver and the time it takes for the acknowledgment to move
from the receiver to the sender. BW reflects the number of
bytes that can be sent in a given time slice.
A user of TCP can select the maximum window size,

however TCP scales up and down the percentage of the
window that it will use at any particular time. The algorithms
that TCP uses to decide on the current window size are well
documented elsewhere. Here we only want to point out two
aspects that greatly affect its effectiveness in LFNs and lambda
networks.
The first is TCP slow start. TCP starts with a very small

window size and exponentially increases it as it receives
acknowledgments. Slow Start may sound like a bit of a
misnomer when the growth is exponential but it really does
make for a slow start. While linear growth would be much
worse, this still makes for many round trips before the window
can be fully open. In LFNs where the optimal window is large
and the time it takes to receive acknowledgments is large, it
may take the entire lifetime of the transfer or more to increase
to an optimal window size. This is a performance killer.
The next issue in TCP is how it handles congestion events.

Since TCP is designed to be multi-stream friendly if it detects
that one stream is moving too fast and thus causing congestion,
it will decrease this streams window size. The problem enters
with how drastically the window size is decreased and how
slowly it is rebuilt. When TCP detects a congestion event
it divides the window size by two. However, it will only
increase the window by the size of one segment, which is
typically around 1500 bytes, per acknowledgment received.
When the ideal window size is many megabytes this obviously
makes a dropped packet very costly in terms of performance.
This algorithm is commonly referred to as Additive Increase
Multiplicative Decrease (AIMD).
The GlobusXIO TCP driver is written on top of the standard

BSD socket interface available on all UNIX platforms. The
actual protocol is implemented inside of the kernel.

B. UDT
UDT is a UDP based reliable protocol and like TCP it is

targeted at shared networks. However, UDTs main audience is
under used networks with a small number of UDT streams. It
is designed to be able to coexist fairly with TCP streams, but
also be able to achieve high throughput faster and have less
of a penalty for a congestion event. Beyond being a protocol
UDT is a framework that allows users to plug in their own
congestion control algorithms.
Like TCP, UDT uses a window and an AIMD strategy for

congestion control. The difference is that UDT determines



the factors to use by a much more sophisticated strategy.
To determine these factors UDT must estimate the available
bandwidth on the link. It does this by sending two probe
packets for every sixteen data packets. The probe packets are
sent sequentially without any regard for rate limiting. Based on
the time apart that they arrive a bandwidth estimate is made.
This bandwidth estimate is used to calculated the additive
increase factor.
The decrease factor is much less severe than TCP. UDT

only decreases the window size when a NAK is received. This
occurs less often then a TCP congestion event. Additionally,
when the NAK is received, instead of cutting the window in
half, the window is set to 8/9ths of its previous size. This is
still a multiplicative decrease, and a back off of sending rate,
but it is a much less severe penalty. The increase factor is
determined by looking at the greater of the following:

• 10!(log10((B−C)∗MTU))$ ∗ β/MTU
• 1/MTU

Where B is the bandwidth estimate, C is the current
sending rate. β is a constant value of 0.0000015. MTU is the
maximum transmission unit for the network. The UDT driver
is implemented using the previously discussed wrapblock
feature newly added to GlobusXIO. We have wrapped the
reference implementation provided by Grossman et al. [13]
into a GlobusXIO driver.

C. GridFTP
GridFTP [19] is a protocol for file transfers. GridFTP is

commonly misunderstood to be a single protocol for bulk
transfer. This is not exactly true. It is not itself a single
protocol, but rather is a collection of protocols. Much like the
standard well know FTP protocol documented in RFC959, it
has two channels. There is a control channel specification that
allows users to execute shell-like commands such as mkdir,
rename, delete, etc, and most importantly request files for
transfer. The control channel protocol is specified on top of
telnet and TCP. This protocol is not optimized for efficiency
and is thus not intended to be fast. It is simply a reliable means
of establishing data channels pathways. The data channel is the
pathway of which the bulk data transfer flows.
The protocol used for the data channel is open ended.

The authors of RFC959 had much foresight in realizing that
different users may prefer a different means of transferring
the bulk data. To allow for this they defined the data channel
protocol to be a Mode and then created a control channel
command that allows the client to select what mode they wish
to use. This gives the user the ability to decide what bulk
protocol they will use to send their file at transfer time.
The commonly used mode in GridFTP is called ModeE.

Since Mode E is the bulk data transfer protocol in GridFTP it
is therefore what we will be exploring. Mode E is a parallel

TCP protocol. A set of TCP connection are established and
the data is transferred equally across them. As the transfer
is in progress TCP streams can be added or removed. When
the transfer completes the establish TCP connections can be
cached for use with a later transfer.
Categorically parallel TCP protocols all have the same

advantages and disadvantages. The difference between them
are largely based on implementation. GridFTP is different in
that it does not stop at using parallel streams for endpoint
to endpoint performance gain. It has extended the concept
parallel TCP streams so that many different endpoints can
participate in a single coordinated transfer in a M to N fashion.
This has the obvious advantage of summing the collective
bandwidth available at all endpoint pairs.
The general advantage to using multiple streams is that it

proportionally reduces the disadvantages associated with TCP
by the number of parallel streams. For clarity we will refer
to the number of parallel streams as P. The bandwidth delay
product for each stream in a transfer is bw*latency/P which
is 1/P smaller than the optimal window size of a single TCP
stream. Therefor each individual window can be fully opened
faster. And since all streams are used in parallel the slow start
of TCP is theoretically reduced by 1/P. Similarly, the penalty
associated with a congestion event is also reduced by 1/P.
As stated above, TCP is most efficient when a properly set
window is fully open. When a congestion event occurs window
is closed and slowly rebuilt. This constitutes a large penalty
in a bulk transfer. However if many streams are used a single
congestion event only affects one stream, and therefore affects
only 1/P of the overall transfer.
The target network of Mode E is similar to that of UDT. It

is aimed at underused networks. If too many parallel streams
are used the protocol becomes unfair to other streams and can
potentially choke itself by causing too may congestion events.
The Mode E driver was written using the native GlobusXIO

driver API. This is the best solution for creating scalable and
efficient protocol drivers. GlobusXIO provides an assistance
API for creating drivers in this way.

D. Results
The results of the performance evaluation are shown in

figures 5 through 10. We measured the achieved throughput
of each protocol with increasing bulk transfer lengths. The
important difference between the two networks over which
we tested is the latency between endpoints. On the LAN study
the latency was about 0.372 microseconds and the WAN was
about 58.140 milliseconds. The networks were not congested
so some of the aspects of each protocol were not tested.
Along with the throughput results, each graph also shows

the percentage by which the reference implementation out-
performed the XIOPerf implementation. In all cases this



Fig. 5. Comparison of Mode E protocol’s performance on a local area
network as observed with XIOPerf and the actual run of the Reference
implementation of the protocol.

Fig. 6. Comparison of Mode E protocol’s performance on a wide area
network as observed with XIOPerf and the actual run of the Reference
implementation of the protocol.

Fig. 7. Comparison of TCP protocol’s performance on a local area network
as observed with XIOPerf and Iperf.

Fig. 8. Comparison of TCP protocol’s performance on a wide area network
as observed with XIOPerf and Iperf.

Fig. 9. Comparison of UDT protocol’s performance on a local area network
as observed with XIOPerf and the actual run of the reference implementation
of the protocol.

Fig. 10. Comparison of UDT protocol’s performance on a wide area network
as observed with XIOPerf and the actual run of the reference implementation
of the protocol.



percentage is less than five percent, which means that XIOPerf
was always within 95% of achieved throughput. As we stated
above, each of the drivers studied here were written on differ-
ent models. The variance in percent throughput difference is
accounted for the differences in the different implementations.
Mode E has the lowest percentage. It is written using the
native GlobusXIO driver library therefore it is used in the
most efficient way possible.
TCP has the highest percentage difference in throughput.

We believe this to be an anomaly due to how efficiently IPerf
uses the kernel’s TCP stack. While we hope to increase the
throughput of the GlobusXIO TCP driver, IPerf is strictly a
performance measurement tool and XIOPerf is much closer
to a real application. Therefore IPerf has an advantage in
achieving very high throughput, but XIOPerf is likely to be
closer to what an actually application will achieve, especially
if the application uses GlobusXIO,
In future work we hope to decrease the performance gaps

substantially, especially in the case of TCP. However, even
with this performance gap XIOPerf is an useful tool. The
purpose of it is to determine which protocol is best to use.
Since the achieved throughput inside of XIOPerf is very close
to that of the reference implementation all protocols are on
level ground and can be fairly compared. As part of the
comparison the way the driver was created and the results
shown here can also be taken into account.

ACKNOWLEDGMENTS
This work was supported by the Mathematical, Informa-

tion, and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract W-31-109-ENG-38.

LICENSE
The submitted manuscript has been created by the Univer-

sity of Chicago as Operator of Argonne National Laboratory
(”Argonne”) under Contract No. W-31-109-ENG-38 with the
U.S. Department of Energy. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

REFERENCES
[1] I. Foster, “The Anatomy of the Grid: Enabling Scalable Virtual Organi-

zations,” in Proceedings of the 7th International Euro-Par Conference
Manchester on Parallel Processing. Springer-Verlag, 2001, pp. 1–4.

[2] I. Foster and C. Kesselman, “Computational Grids,” in Selected Papers
and Invited Talks from the 4th International Conference on Vector and
Parallel Processing. Springer-Verlag, 2001, pp. 3–37.

[3] ——, “Computational Grids: On-Demand Computing in Science and
Engineering,” Computers in Physics, vol. 12, no. 2, p. 109, 1998.

[4] ——, “Computational grids,” pp. 15–51, 1999.
[5] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high

bandwidth-delay product networks,” in Proceedings of the 2002 con-
ference on Applications, technologies, architectures, and protocols for
computer communications. ACM Press, 2002, pp. 89–102.

[6] W. T. Strayer, M. Lewis, and R. E. Cline, Jr., “XTP
as a transport protocol for distributed parallel processing,” in
Proceedings of the USENIX Symposium on High-Speed Networking,
oakland, CA, August 1994, pp. 91–101. [Online]. Available:
citeseer.nj.nec.com/strayer94xtp.html

[7] Y. Gu and R. Grossman, “UDT (UDP based Data Transfer Protocol): An
Application Level Transport Protocol for Grid Computing,” in Second
International Workshop on Protocols for Fast Long-Distance Networks,
Argonne, IL, 2004.

[8] H. Sivakumar, R. L. Grossman, M. Mazzucco, Y. Pan, and Q. Zhang,
“Simple available bandwidth utilization library for high-speed wide area
networks,” Journal of Supercomputing, 2004.

[9] D. Clark, M. Lambert, and L. Zhang, “NETBLT: A Bulk Data Transfer
Protocol. IETF, RFC 998,” March 1987.

[10] E. He, J. Leigh, O. Yu, and T. A. DeFanti, “Reliable blast udp:
Predictable high performance bulk data transfer,” in CLUSTER ’02: Pro-
ceedings of the IEEE International Conference on Cluster Computing.
Washington, DC, USA: IEEE Computer Society, 2002, p. 317.

[11] “Iperf web page,” http://dast.nlanr.net/Projects/Iperf/.
[12] J. Postel, “RFC 793: Transmission Control Protocol,” 1981.
[13] R. L. Grossman, Y. Gu, X. Hong, A. Antony, J. Blom, F. Dijkstra,

and C. de Laat, “Teraflows over gigabit wans with udt,” Future Gener.
Comput. Syst., vol. 21, no. 4, pp. 501–513, 2005.

[14] “Teragrid web page,” http://www.teragrid.org.
[15] V. Jacobson, R. Braden, and D. Borman, “RFC 1323: TCP Extensions

for High Performance,” 1992.
[16] M. Allman, V. Paxson, and W. Stevens, “RFC 2581: TCP Congestion

Control,” 1999.
[17] X. R. Wu, “Evaluation of rate-based transport protocols for lambda-

grids.” [Online]. Available: citeseer.ist.psu.edu/698560.html
[18] K. Kumazoe, Y. Hori, M. Tsuru, and Y. Oie, “Transport protocols for

fast long-distance networks: Comparison of their performances in jgn,”
saint-w, vol. 00, p. 645, 2004.

[19] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link, “The globus
striped gridftp framework and server,” in SC ’05: Proceedings of the
2005 ACM/IEEE conference on Supercomputing. Washington, DC,
USA: IEEE Computer Society, 2005, p. 54.

APPENDIX
GLOBUS XIO EXAMPLE.C



#include "globus_xio.h"

int
main(

int argc,
char * argv[])

{
globus_result_t res;
char * driver_name;
globus_xio_driver_t driver;
globus_xio_stack_t stack;
globus_xio_handle_t handle;
globus_size_t nbytes;
char * contact_string = NULL;
char buf[256];

contact_string = argv[1];
driver_name = argv[2];

globus_module_activate(GLOBUS_XIO_MODULE);
res = globus_xio_driver_load(

driver_name,
&driver);

assert(res == GLOBUS_SUCCESS);

res = globus_xio_stack_init(&stack, NULL);
assert(res == GLOBUS_SUCCESS);
res = globus_xio_stack_push_driver(stack, driver);
assert(res == GLOBUS_SUCCESS);

res = globus_xio_handle_create(&handle, stack);
assert(res == GLOBUS_SUCCESS);

res = globus_xio_open(handle, contact_string, NULL);
assert(res == GLOBUS_SUCCESS);

do
{

res = globus_xio_read(
handle, buf, sizeof(buf) - 1, 1, &nbytes, NULL);

if(nbytes > 0)
{

buf[nbytes] = ’\0’;
fprintf(stderr, "%s", buf);

}
} while(res == GLOBUS_SUCCESS);

globus_xio_close(handle, NULL);

globus_module_deactivate(GLOBUS_XIO_MODULE);

return 0;
}

Fig. 11. A example GlobusXIO user program


