
Comparison of Two Activity Analyses for Automatic Differentiation:
Context-Sensitive Flow-Insensitive vs. Context-Insensitive Flow-Sensitive

Jaewook Shin and Paul D. Hovland
Mathematics and Computer Science Division

Argonne National Laboratory
9700 S. Cass Ave. Argonne, IL 60439

{jaewook,hovland}@mcs.anl.gov

Abstract

Automatic differentiation (AD) is a family of techniques to gen-
erate derivative code from a mathematical model expressed in a
programming language. AD computes partial derivatives for each
operation in the input code and combines them to produce the de-
sired derivative by applying the chain rule. Activity analysis is a
compiler analysis used to find active variables in automatic differ-
entiation. By lifting the burden of computing partial derivatives
for passive variables, activity analysis can reduce the memory re-
quirement and run time of the generated derivative code. This
paper compares a new context-sensitive flow-insensitive (CSFI)
activity analysis with an existing context-insensitive flow-sensitive
(CIFS) activity analysis in terms of execution time and the quality
of the analysis results. Our experiments with eight benchmarks
show that the new CSFI activity analysis runs up to 583 times
faster and overestimates up to 18.5 times fewer active variables
than does the existing CIFS activity analysis.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors - Compilers;
G.1.4 [Numerical Analysis]: Quadrature and Numerical Differ-
entiation - Automatic Differentiation

Keywords

automatic differentiation, activity analysis

1. Introduction
Automatic differentiation (AD) automatically performs the dif-

ferentiation of a given mathematical model expressed in a pro-

c©2007 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or coauthored by a contractor or affiliate of
the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
SAC’07 March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

gramming language. Since it retains the accuracy of the original
model and is easy to apply, AD has been widely used in scientific
and engineering applications for the past decade [8, 4]. For ex-
ample, AD can be used in physics modeling to study sensitivity
of the model’s behavior with respect to one of the input variables.
Another class of applications of AD is design optimization for an
engineering object such as aircraft.

subroutine head(x,y)
double ...,dimension(2)::x
double ...,dimension(1)::y

c$openad INDEPENDENT(x)
y(1)=x(1)*x(2)

c$openad DEPENDENT(y)
end subroutine

(a) Input

subroutine head(x,y)
type(active):: x(1:2)
type(active):: y(1:1)

y(1)%v = x(1)%v * x(2)%v
y(1)%d = x(1)%d * x(2)%v
y(1)%d += x(2)%d * x(1)%v
end subroutine

(b) Output

Figure 1. An example of automatic differenti-
ation.

From AD’s viewpoint, an input program is a sequence of dif-
ferentiable operations with a set of input and output variables. In
order to compute the derivative of an output variable with respect
to an input variable, AD computes a partial derivative for each
operation and applies the chain rule of calculus to combine them
into a final derivative. Computing derivatives for all output vari-
ables with respect to all input variables requires partial derivatives
to be computed for all intermediate variables with respect to all
input variables, thus requiring as much memory space and com-
pute cycles. Figure 1(a) shows a simple Fortran code example
to illustrate how automatic differentiation works. In this exam-
ple, we declare x as independent and y as dependent using com-
piler directives. In the output shown in (b), note that the types
of x and y are modified to active type, which is a structure of
two variables: v to represent the original value and d to represent
the derivative. The first statement computes the original function
as in (a), and the other two statements compute the gradient of y
grad(y) = dy

dx(1) × dx(1) + dy
dx(2) × dx(2).

Often, however, scientists are interested in the derivatives of a
subset of the output variables with respect to a subset of the in-
put variables. We call such input variables of interest independent
variables and the output variables of interest dependent variables.
Users provide the independent and dependent variable information
to AD tools by specifying them, for example, as compiler direc-

tives. We say a variable is varied if it (transitively) depends on any
independent variable and useful if any dependent variable (transi-
tively) depends on it. A variable is active if it is both varied and
useful at a program point. When the number of the specified in-
dependent variables is less than the input variables or the number
of the specified dependent variables is less than the output vari-
ables, some intermediate variables may be either not varied by
any independent variable or not useful in computing any depen-
dent variable. Such variables are said to be passive, or inactive.
Partial derivatives for passive variables need not be computed be-
cause, even though they are computed, the values will be zeros or
will not contribute to the desired derivatives. By not computing
partial derivatives for such intermediate variables, both the mem-
ory requirement and the run time of the generated program can be
reduced. Activity analysis finds active intermediate variables for
which partial derivatives need to be computed. Activity analysis
is flow-sensitive if it takes into account the order of statements and
the control flow structure of procedures, and context-sensitive if it
is an interprocedural analysis that considers only realizable call-
return paths.

Activity analysis has been known for some time [5], and sev-
eral implementations are used in AD tools. Until recently, we have
been using an implementation of an activity analysis algorithm,
which is based on an iterative dataflow analysis framework. Since
the implementation uses an interprocedural control flow graph (ICFG),
we call this implementation ICFGAA. The dataflow analysis frame-
work is simple and clean, but for activity analysis it does not scale
well when the input size is large. Also, the context-insensitive na-
ture of the algorithm undermines the quality of the output by over-
estimating active variables. In Section 2, we elaborate on these
aspects of ICFGAA.

We have therefore developed a new activity analysis algorithm,
called variable dependence graph activity analysis (VDGAA). The
key idea of VDGAA is intuitive. First, we generate a variable de-
pendence graph [12] to represent data flow between variables. An
edge is generated from node A to node B if there is a value flow
from variable A to B. Next, the nodes are colored in two sweeps,
forward, starting from the independent variable nodes while color-
ing the visited nodes with one color, and backward, starting from
the dependent variable nodes using another color. All variables
that are colored by both colors are selected as active. To support
context sensitivity, we maintain a call stack while navigating the
graph (Section 3). We have implemented the new activity analysis
algorithm and used it on a set of eight benchmarks, including the
large MIT General Circulation Model (GCM) [1]. From our exper-
iments, we observe that VDGAA runs up to 583 times faster and
improves the quality of the output by up to 18.5 times over ICF-
GAA. In other words, VDGAA overestimates significantly fewer
active variables, thereby reducing the memory requirement and the
run time of the derivative code.

Our contributions in this paper are as follows:

• A new CSFI activity analysis algorithm.

• Comparison of the new CSFI activity analysis with the ex-
isting CIFS activity analysis in terms of run time and output
quality.

• Implementation and experimental evaluation of the new al-
gorithm on eight benchmarks.

The remainder of this paper is organized as follows. In the next
section, we describe the existing CIFS activity analysis and use

examples to motivate our research. In Section 3, the new CSFI
activity analysis algorithm is described. In Section 4, we present
our implementation and experimental results. In Section 5, we
discuss related research. We conclude in Section 6.

2. Background
In this section, we motivate our research by explaining how the

existing CIFS activity analysis (ICFGAA) works. We then discuss
how its run time can be increased and how it can overestimate
active variables.

node 3: e = f + g

node 2: c = d + e

node 1: a = b + c

IN_varied = {g}

Figure 2. When implemented in iterative data-
flow analysis framework, activity analysis can
iterate more than what is limited by the depth
of the control flow graph.

Table 1. OUT sets of the nodes in Figure 2 in
iterative varied analysis

Iterations Node 1 Node 2 Node 3
1 {g} {g} {e, g}
2 {e, g} {c, e, g} {c, e, g}
3 {a, c, e, g} {a, c, e, g} {a, c, e, g}

ICFGAA starts by building an interprocedural control flow graph,
which is generated by connecting the control flow graphs of the
procedures in a given program. For each call site in procedure A
to procedure B, the basic block BB containing the call is split into
two, BB1 and BB2. BB1 is from the beginning of BB up to the
call statement, and BB2 is from the statement right below the call
to the end of BB. A call edge from BB1 to the entry node of pro-
cedure B and a return edge from the exit node of procedure B to
BB2 are inserted. Once the ICFG is complete, the two iterative
dataflow analyses follow. First, useful variables are propagated
backward along the ICFG edges starting from the exit node of the
program. Next, varied variables are obtained by propagating for-
ward starting from the entry node of the program.

A program analysis is separable if the solution values are not
coupled with each other [16, 10]. For example, reaching defini-
tion analysis and live variable analysis are separable because, for
reaching definition analysis, the reachability of one definition at
a certain program point does not affect the reachability of other
definitions at the same program point. Several program analyses
are not separable, however, such as reaching constant and points-
to analysis. So is activity analysis. The number of iterations in
separable dataflow analyses is bounded by the depth of the con-
trol flow graph [2]. In the case of activity analysis, however, the

node 3: e = f + g

node 2: c = d + e

node 1: a = b + c

IN_varied = {g}

node 6: h = i + a

node 5: j = k + h

node 4: l = m + j

node 9: n = o + l

node 8: p = q + n

node 7: r = s + p

Figure 3. Concatenated, short backward de-
pendence chains.

upper bound can be much higher than just the depth of the pro-
gram’s control flow graph. Figure 2 is an example code snippet
to show this point. Since the depth of the graph in the example
is 1, the upper bound on the number of iterations is 3 (depth +
2) if the analysis is separable: once to propagate the information
down, once to propagate the lower block information along the
back edge and, once to check that there are no further changes.
If we are doing a varied analysis, which propagates the variables
varied by the independent variables, and if the IN set of node 1
is {g}, the analysis needs to iterate four times (Table 1), which is
higher than the upper bounds on separable analysis cases. In this
example, we deliberately arranged the statements so that there is
a dependence chain in the reverse textual order: node 3 → 2 →
1. Although we have shown the smallest example, the number of
iterations can be arbitrarily large as the length of the backward de-
pendence chain increases. In our experiments with the MIT GCM
code, the varied analysis of ICFGAA iterated 31 times. While it
is hard to imagine any backward dependence chain as long as 30,
short backward dependence chains can be concatenated via for-
ward dependencies. In Figure 3, the three backward dependence
chains of length 3 are concatenated and have the same effect as
one backward dependence chain of length 7.

subroutine head(x,y,a,b)
double precision :: x,y,a,b

c$openad INDEPENDENT(x)
call foo(x, b)
call foo(a, y)

c$openad DEPENDENT(y)
end subroutine

subroutine foo(f,g)
double precision :: f,g
g = f

end subroutine

Figure 4. An example to show how ICFGAA
overestimates active variables.

ICFGAA is context insensitive in that dataflow analysis values
can flow along unrealizable control paths. In other words, values
can flow into a procedure along the call edge of one call site and
flow out of the procedure along the return edge of another call site.
Figure 4 is a small example to illustrate this point. In subroutine
head, x is declared as an independent variable and y as a depen-
dent variable by using compiler directives. The ICFG of this code
is shown in Figure 5. For each call to foo, two nodes are created,
one call node representing the call statement before call and one
return node for the call statement after the call. Node 6 and 7 are
the call and return nodes for the first call statement, and likewise
node 10 and 11 are for the second call. For procedure foo, three
nodes are generated. Node 8 and 9 represent the entry and exit
node of the procedure, and node 14 is for the statement within it.
All other irrelevant nodes are abbreviated for simplicity. Table 2(a)

10

11

8

CALL

14

7

9

RETURN RETURN

6

CALL

Figure 5. The ICFG of the code in Figure 4.

shows how OUT sets of the nodes change over iterations in the
varied analysis. Along call and return edges, parameter binding
information is used to replace an actual parameter with the cor-
responding formal parameter and vice versa. Table 2(b) shows
how IN sets of the nodes are changed in the useful analysis. Value
propagation in the useful analysis is similar to that of the varied
analysis except that it propagates backward along the edges. Also,
note that variable g is not useful anymore above the assignment in
procedure foo. According to ICFGAA, x is active because it is
both varied and useful in the IN set of node 6, and y is active be-
cause of the IN set of node 11. Further, f and g are active because
of the IN sets of node 14 and node 9, respectively. In the code,
however, there is no value flow from the independent variable x to
the dependent variable y. Hence, no variables are active.

Table 2. Iterative dataflow analysis values for
the nodes of Figure 5

Order Node Iter 1 Iter 2
1 6 {x} {x}
2 7 {x} {x,b}
3 10 {x} {x,b}
4 8 {f} {f}
5 14 {f} {f}
6 9 {f,g} {f,g}
7 11 {x,a,y} {x,a,y,b}
(a) Varied analysis (OUT sets)

Order Node Iter 1 Iter 2
1 11 {y} {y}
2 10 {y} {y,a}
3 7 {y} {y,a}
4 9 {g} {g}
5 14 {f} {f}
6 8 {f} {f}
7 6 {x,y} {x,y,a}
(b) Useful analysis (IN sets)

In this section, we have shown that ICFGAA can iterate a large
number of times when the order of the statements in a dependence
chain is opposite to the propagation direction of the analysis. Also,
we have shown how ICFGAA overestimates active variables be-
cause of context insensitivity. Based on this observation, we de-
veloped a new activity analysis algorithm that is context sensitive

but does not use an iterative dataflow framework.

3. Algorithm
In this section, we describe the new activity analysis algorithm

VDGAA. The algorithm consists of three major steps, as follows.
1. Build a variable dependence graph (VDG).

2. Propagate forward from the independent variable nodes in
the VDG to find varied variable nodes.

3. Propagate backward from the dependent variable nodes in
the VDG to find useful variable nodes.

Build-VDG(program PROG)
VDG ← new Graph
DepMatrix ← new Matrix
for each procedure P ∈ CallGraph(PROG) in postorder
for each statement Stmt ∈ P
for each (Src,Dst) pair ∈ Stmt

VDG.addEdge(Src → Dst, FLOW, P)
DepMatrix[P][Src][Dst] = true

if (Stmt has procedure calls)
for each (Actual,Formal) pair of a Call ∈ Stmt

VDG.addEdge(Actual → Formal, CALL, P)
if (Formal is a reference parameter)

VDG.addEdge(Formal → Actual, RETURN, P)
Label the two edges with the address of Call

DepMatrix[P] ← TransitiveClosure(DepMatrix[P])
for each formal parameter pair (F1,F2) of P
if (DepMatrix[P][F1][F2])

VDG.addEdge(F1 → F2, PARAM, P)
for each call to P from P’

DepMatrix[P’][Actual(F1)][Actual(F2)] = true

Figure 6. Algorithm: Build variable depen-
dence graph.

A variable dependence graph (VDG) is a tuple (V, E), where
a node N ∈ V represents a variable in a program uniquely and
an edge (n1, n2) ∈ E represents a data dependency from node
n1 to n2 [12]. Since the multiple definitions of a variable are all
mapped to a node, the information for flow sensitivity is lost when
the graph is built. Figure 6 shows an algorithm to build VDG.
For each statement in a given program, we generate a FLOW edge
from each source variable to the destination variable. If a state-
ment contains procedure calls, we also add a CALL edge from
each actual parameter to the corresponding formal parameter and
a RETURN edge from the formal parameter to the actual parame-
ter if it is a reference parameter. These edges represent value flow
between pairs of variable nodes. In addition to FLOW, CALL, and
RETURN, there is one more edge type, PARAM, which summa-
rizes data flow among formal parameters. We add a PARAM edge
from formal parameter f1 to f2 whenever there is a path from f1
to f2. The PARAM edges are added to allow multiple traversals
along the same edge when there are multiple call sites for a pro-
cedure. To insert these PARAM edges, we set an element of the
procedure’s dependence matrix to true whenever a FLOW edge is
created. After building the VDG of a procedure, we apply War-
shall’s transitive closure algorithm to add PARAM edges for pairs
of formal parameter nodes whenever there is a path from one to
the other.

The varied analysis shown in Figure 7 propagates from the in-
dependent variable nodes forward along the VDG edges. To sup-
port context sensitivity, we use a call stack. When a CALL edge
is followed, we push the call site label of the edge onto the stack,
and we pop the stack top when the corresponding RETURN edge
is followed or the propagation retreats back along the CALL edge.
Before a RETURN edge is followed, we compare the current top
of the stack with the edge label. The edge is followed only when
they match. One exception is when the top of the stack keeps a
special value called VTG (for Value Through Globals), in which
case we allow any RETURN edges to be followed. Even when the
stack top is VTG, however, CALL edges can be followed, main-
taining the stack normally. Note that we still follow the realizable
value flow paths even when VTG is used.

The useful analysis is similar to the varied analysis. However, it
traverses the VDG backward starting from the dependent variable
nodes. Another difference is that we do not visit a node unless it
is already marked as varied. Finally, when a node is marked as
useful, we mark the variable active as well.

Node::Mark Varied Node(stack CALLS, procedure CurrProc)
Mark this as varied
for each successor node N and the edge E
if (N.onPath ∨ E.visited) continue
N.onPath ← true
switch (E.kind)
case CALL:

CALLS.push(E.label);E.visited ← true
N.markVaried(CALLS,E.sinkProc)
CALLS.pop();break

case RETURN: // VTG: Value Through Globals
if (CALLS.top() == E.label ∨ CALLS.top == VTG)
if (CALLS.top != VTG) CALLS.pop()
E.visited ← true
N.markVaried(CALLS,E.sinkProc)
if (CALLS.top != VTG) CALLS.push(E.label)

break
default :
if (E.kind != PARAM) E.visited ← true
if (CurrProc != E.proc)

CALLS.push(VTG)
N.markVaried(CALLS,E.proc)
CALLS.pop()

else
N.markVaried(CALLS,E.proc)

N.onPath ← false

Figure 7. Algorithm: Mark varied nodes.

Figure 8 is the VDG generated for the code in Figure 4. We
use this VDG to show how VDGAA works. All variables in the
input code are mapped to their own nodes in the graph. A FLOW
edge from F to G is generated because of the statement in proce-
dure foo, and a PARAM edge between the same pair of nodes is
generated as a result of the transitive closure operation. All other
edges are CALL and RETURN edges that map between actual and
formal parameters. In addition to edge types, CALL and RETURN
edges also have edge labels, which are call site addresses. Varied
analysis starts propagating from the independent variable node for
X. When varied analysis finishes, all nodes in path X → F → G
→ B are marked as varied. Now, useful analysis starts from the
dependent variable node Y. At this time, it immediately returns
from the algorithm because node Y is not marked as varied. No
variables are marked as active.

X

F

CALL
900

RETURN
900

G

FLOW PARAM

A

RETURN
056

B

CALL
900

RETURN
900

Y

RETURN
056

CALL
056

CALL
056

Figure 8. Variable dependence graph of Fig-
ure 4.

4. Experiment
The VDGAA algorithm described in Section 3 is implemented

in the OpenAnalysis environment. By defining intermediate rep-
resentation (IR) interfaces for multiple compiler infrastructures,
OpenAnalysis aims to make a single implementation of compiler
analyses in IR independent fashion [18]. Although OpenAnaly-
sis is used by multiple compiler infrastructures for multiple lan-
guages, for this experiment our implementation is linked into an
automatic differentiation tool called OpenAD/F [19] in conjunc-
tion with the Open64/SL compiler infrastructure [15]. Figure 9
shows a block diagram of the experimental flow implemented as
part of OpenAD/F, which is a source-to-source translator for For-
tran. The machine we used has a 1.86 GHz Pentium M processor
with 2 MB L2 cache and 1 GB DRAM memory.

Open64
Fortran 90
Front end

VDGAA

ICFGAA

AD
Transformation

Open64
Fortran 90
Unparser

Input
(Fortran)

Output
(Fortran)OpenAnalysis

Figure 9. OpenAD automatic differentiation
tool.

Table 3 shows the applications used in our experiments. MIT-
gcm is a numerical model of the atmosphere, ocean, and climate [1].
While the code size is several hundred thousand lines, we use
a stripped version. LU and CG are obtained from NAS parallel
benchmarks [20]. Since the analyses do not understand the seman-
tics of MPI calls, we augmented LU and CG with global variables
and forced all communicated variables to be active by declaring
them both independent and dependent. Newton implements New-
ton’s method and Rosenbrock function. The adiabatic subroutine
models adiabatic flow, a commonly used module in chemical en-
gineering. Msa and swirl are from the MINPACK-2 test collec-
tion [3] and compute the minimal surface area and the swirling
flow problem, respectively. C2 implements an ordinary differen-
tial equation solver.

583

278

30.2
7

79.4

6 5.4 2
MITgcm LU CG newton adiabatic msa swirl c2

Benchmarks

0

100

200

300

400

500

600

Sp
ee

du
p

of
 V

D
G

A
A

 o
ve

r I
CF

G
A

A

Figure 10. Speedups in analysis run time:
VDGAA over ICFGAA.

Figure 10 shows the speedups of the new analysis over ICF-
GAA. The speedups range from 583 times for MITgcm to 2 times
for C2. Notice the correlation between the speedups and the code
sizes of Table 3. The speedup increases as the program size grows.
Newtonwas an exception because, compared to its large code size,
only the small Rosenbrock function was differentiated.

2.97

1.26 1.43

18.5

1.01 1 1 0.83

MITgcm LU CG newton adiabatic msa swirl c2
Benchmarks

0

5

10

15

20

A

ct
iv

e
va

rs
 IC

FG
A

A
 /

ac

tiv
e

va
rs

 V
D

G
A

A

Figure 11. Reduction in number of active vari-
ables.

Our next interest is the quality of the produced outputs. While
we can conservatively assume that all variables are active and still
the generated codes will produce the correct numerical results,
computing unnecessary derivatives for passive variables not only
is a source of longer execution time but also requires more mem-
ory space possibly thrashing the disks for swapping. Figure 11
shows the reduction in number of active variables. The reduc-
tion is computed by dividing the number of active variables pro-
duced with ICFGAA by that of VDGAA. Computing the reduc-
tion factor this way is conservative because we do not know the
exact number of active variables and assume that all found ac-
tive variables are overestimations. In reality, however, a large por-
tion of active variables identified by VDGAA are truly active, and
the reduction factors are expected to be much higher. For MIT-

Table 3. Benchmarks.
Benchmarks Description Source # lines

MITgcm MIT General Circulation Model MIT 13787
LU Lower-upper symmetric Gauss-Seidel NASPB 5951
CG Conjugate gradient NASPB 2480

newton Newton’s method + Rosenbrock function ANL 2189
adiabatic Adiabatic flow model in chemical engineering CMU 1009

msa Minimal surface area problem MINPACK-2 461
swirl Swirling flow problem MINPACK-2 355

c2 Ordinary differential equation solver ANL 64

gcm, ICFGAA produced 758 active variables, whereas VDGAA
found only 255 among them. The reduction is not very large for
LU and CG because of the global variable inserted to model MPI
calls. For newton, ICFGAA overestimated a significant number
of active variables. While the independent and dependent vari-
ables are declared within a small procedure, for the varied and
useful analysis of ICFGAA, values are propagated along the call
and return edges into the calling function, leading to the overes-
timation of active variables in the calling procedure. For adia-
batic, VDGAA found two fewer active variables than did ICF-
GAA, but both analyses found the same set of active variables for
msa and swirl. C2 is interesting because VDGAA overestimated
one more active variable than did ICFGAA. The overestimation
is caused by flow insensitivity of VDGAA where the statement
order information is lost. For all other benchmarks shown in the
graph, the sets of active variables found by VDGAA are the sub-
sets of those found by ICFGAA. In other words, only C2 has one
passive variable that is overestimated as active by VDGAA but
correctly determined as passive by ICFGAA. However, we found
some other applications where VDGAA overestimated more ac-
tive variables than did ICFGAA. The most common case is shown
in Figure 12. In (a), a is active because there is a value flow path
from an independent variable x to a dependent variable y through
a: x → f1 → b1 → a → b1 → g1 → y. In (b), a is not active
because there is no such value flow path from x to y through a.
The value of a returned from the first call to foo2 is passed back
to b2 of the second call to foo2 but is killed by the first assign-
ment within foo2. Whereas ICFGAA correctly discovers this,
VDGAA fails because there is no difference between the VDGs
of foo1 and foo2. In order to eliminate these overestimations
caused by flow insensitivity of VDGAA, a global reaching defini-
tion analysis can be used.

subroutine head(x,y)

c$openad INDEPENDENT(x)
call foo1(x, a, y)
call foo1(x, a, y)

c$openad DEPENDENT(y)
end subroutine

subroutine foo1(f1,b1,g1)
g1 = b1
b1 = f1

end subroutine

(a) ’a’ is active

subroutine head(x,y)

c$openad INDEPENDENT(x)
call foo2(x, a, y)
call foo2(x, a, y)

c$openad DEPENDENT(y)
end subroutine

subroutine foo2(f2,b2,g2)
b2 = f2
g2 = b2

end subroutine

(b) ’a’ is passive

Figure 12. Overestimation of active variables
in VDGAA.

This outstanding output quality of CSFI activity analysis with
respect to that of CIFS activity analysis is beyond our initial ex-
pectation. Several factors can help explain this result. The first
is the way programmers use variables. For scientific applications
written in Fortran, usually variables are defined once, before being
used. Second, by the nature of activity analysis, the analysis value
for a variable is binary, either active or passive. Hence, even when
a variable is defined and used multiple times, it is highly likely
that a correct value still is determined for the variable. For exam-
ple, consider a variable defined and used 10 times each. VDGAA
determines the activity of the variable correctly if at least one of
the following conditions is met: (1) at least one def-use pair is on a
value flow path from an independent variable to a dependent vari-
able, (2) no definition of the variable has a value flow path from
any independent variable, or (3) no use of the variable leads to any
dependent variable. VDGAA may overestimate the variable as ac-
tive if there is a definition leading from an independent variable
and a use leading to a dependent variable in VDG but the defini-
tion does not reach the use in the program because either the use
textually precedes the definition or the def and use are in two mutu-
ally exclusive control paths. Thus, this comparison result between
CSFI and CIFS activity analyses on scientific applications writ-
ten in Fortran should not be blindly generalized to other analyses
nor to other applications written in other programming languages.
Lastly, ICFGAA makes some conservative assumptions. For ex-
ample, any variable aliased with an active variable is assumed to
be also active.

5. Related Work

Activity analysis has been known for some time [5], but only
recently have algorithms been developed and described for the
analysis. Hascoet et al. have described an algorithm based on iter-
ative dataflow analysis framework [9]. Their data flow equations
are similar to the ones used in ICFGAA. Kreaseck et al. inves-
tigated dynamic activity analysis that make decisions during run
time as to computing derivative values [11]. Strout et al. used
activity analysis as an example to verify their data flow analy-
sis framework extended for MPI [7] programs [17]. Fagan and
Carle described the static and dynamic activity analysis in AD-
IFOR 3.0 [6]. Similar to VDGAA, their static activity analysis
is context-sensitive flow-insensitive. As in VDGAA, they apply
transitive closure to compute transitive dependencies of all pairs
of variables in a procedure.

Program slicing is a technique to find all statements and predi-
cates of a program that might affect a variable x at a program point
P [21]. Forward slicing is similar to varied analysis, and backward
slicing is similar to useful analysis of VDGAA. Program chopping
is a technique to obtain all program elements (statements or pred-

icates) that are used to convey effects from a source element s to a
target element t [14]. Comparable to PARAM edges in VDGAA,
they compute summary edges among actual parameters of proce-
dure calls. Instead of computing transitive closure for all local
variables, they restrict the computation to procedure parameters.
Thus, the complexity to compute summary edges is O(pn2) as
opposed to O(n3) for Warshall’s algorithm, where p is the num-
ber of procedure parameters and n is the number of variables used
in the procedure [13].

Program chopping returns program elements such as statements
and predicates as an output whereas activity analysis returns ac-
tive variables. It is conceivable to use program chopping to find
activity of variables by ignoring the predicates in the output and
taking the variables being defined by the statements as active vari-
ables. However, the active variables obtained this way may in-
clude the variables that depend on independent variables through
control dependence and the ones on which dependent variables de-
pend through control dependence. Consequently the output can be
more conservative than that of VDGAA. Compared with VDGAA,
program chopping has a wider range of applications. However,
VDGAA is simpler and cheaper than program chopping. For ex-
ample, in order to build a system dependence graph for program
chopping, data flow analysis is performed to compute the set of
reaching definitions. For VDGAA, building a variable dependence
graph requires a single scan of the input program. Although we
use an O(n3) algorithm to generate PARAM edges, this is only
for simplicity, and the O(pn2) algorithm of program chopping
can replace Warshall’s algorithm in VDGAA. Furthermore, the
number of parameters (represented as p) of VDGAA can be much
smaller than that of program chopping because, in program chop-
ping, global variables are treated as extra parameters. In addition,
the cost of graph navigation algorithm for VDGAA is O(P ×E +
CSites × Params2) whereas it is O(Params × (P × E +
CSites × Params2)) 1 for program chopping where, P is the
number of procedures in the program, E is the maximum num-
ber of edges for the graph of any procedure, CSites is the total
number of call sites in the program, and Params is the maximum
number of procedure parameters in any procedure.

6. Conclusion
Activity analysis is essential for automatic differentiation tools

by allowing them to generate efficient derivative codes that run
faster with less memory. In this paper, we describe a novel context-
sensitive flow-insensitive activity analysis, called VDGAA, and
provide a comparison with an existing context-insensitive flow-
sensitive activity analysis, called ICFGAA. In our experiments on
eight benchmarks, the speedups of VDGAA over ICFGAA range
from 2 to 583 times. For most benchmarks, VDGAA overesti-
mates the same or fewer active variables than ICFGAA.

Acknowledgments

This work was supported by the Mathematical, Information,
and Computational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, Office of Science,
U.S. Dept. of Energy, under Contract DE-AC02-06CH11357. We
thank Gail Pieper for proofreading several revisions.

1Nontruncated, same-level chopping

References
[1] http://mitgcm.org/.
[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.
[3] Brett M. Averick, Richard G. Garter, and Jorge J. More.

MINPACK-2 Test Problem Collection. Technical Memorandum
ANL/MCS-TM-150, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL, May 1991.

[4] Martin Berz, Christian H. Bischof, George F. Corliss, and Andreas
Griewank, editors. Computational Differentiation: Techniques,
Applications, and Tools. SIAM, Philadelphia, PA, 1996.

[5] Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew
Mauer. ADIFOR 2.0: Automatic differentiation of Fortran 77
programs. IEEE Computational Science & Engineering, 3(3):18–32,
1996.

[6] Mike Fagan and Alan Carle. Activity Analysis in ADIFOR:
Algorithms and Effectiveness. Technical Report TR04-21,
Department of Computational and Applied Mathematics, Rice
University, Houston, TX, November 2004.

[7] Message Passing Interface Forum. MPI: A message-passing
interface standard. International Journal of Supercomputer
Applications, 8(3/4):165–414, 1994.

[8] Andreas Griewank and George F. Corliss, editors. Automatic
Differentiation of Algorithms: Theory, Implementation, and
Application. SIAM, Philadelphia, PA, 1991.

[9] L. Hascoët, U. Naumann, and V. Pascual. “To be recorded” analysis
in reverse-mode automatic differentiation. Future Generation
Computer Systems, 21(8), 2004.

[10] Uday P. Khedker and Dhananjay M. Dhamdhere. A generalized
theory of bit vector data flow analysis. ACM Transactions on
Programming Languages and Systems, 16(5):1472–1511, 1994.

[11] Barbara Kreaseck, Luis Ramos, Scott Easterday, Michelle Strout,
and Paul Hovland. Hybrid static/dynamic activity analysis. In
Proceedings of the 3rd International Workshop on Automatic
Differentiation Tools and Applications (ADTA’04), Reading,
England, 2006.

[12] Arun Lakhotia. Rule-based approach to computing module
cohesion. In Proceedings of the 15th International Conference on
Software Engineering, pages 35–44, Baltimore, MD, 1993.

[13] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay.
Speeding up slicing. In Proceedings of the 2nd ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 11–20,
1994.

[14] Thomas Reps and Genevieve Rosay. Precise interprocedural
chopping. In Proceedings of the 3rd ACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 41–52, 1995.

[15] Rice University. Open64 project.
http://www.hipersoft.rice.edu/open64/.

[16] Marc Shapiro and Susan Horwitz. The effects of the precision of
pointer analysis. In International Symposium on Static Analysis,
pages 16–34, 1997. Lecture Notes in Computer Science, Vol. 1302,
Pascal Van Hentenryck (ed.), Springer-Verlag, New York, NY.

[17] Michelle Mills Strout, Barbara Kreaseck, and Paul D. Hovland.
Data-flow analysis for MPI programs. In International Conference
on Parallel Processing, 2006.

[18] Michelle Mills Strout, John Mellor-Crummey, and Paul D. Hovland.
Representation-independent program analysis. In Proceedings of
The Sixth ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, 2005.

[19] Jean Utke. OpenAD: Algorithm implementation user guide.
Technical Memorandum ANL/MCS–TM–274, Mathematics and
Computer Science Division, Argonne National Laboratory, 2004.

[20] Rob F. van der Wijngaart. NAS parallel benchmarks version 2.4.
Technical Report NAS-02-007, NASA Advanced Supercomputing
(NAS) Division, October 2002.

[21] Mark Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering, pages 439–449,
1981.

