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Abstract

Density functional theory can accurately predict chemical and mechanical properties of nanostructures, al-
though at a high computational cost. A quasicontinuum-like framework is proposed to substantially increase
the size of the nanostructures accessible by simulations. It takes advantage of the near periodicity of the atomic
positions in some regions of nanocrystalline materials to establish an interpolation scheme for the electronic
density in the system. The electronic problem embeds interpolation and coupled cross-domain optimization
techniques through a process called electronic reconstruction. For the optimization of nuclei positions, compu-
tational gains result from explicit consideration of a reduced number of representative nuclei interpolating the
positions of the rest of nuclei following the quasicontinuum paradigm. Numerical tests using the Thomas-Fermi-
Dirac functional demonstrate the validity of the proposed framework within the orbital-free density functional
theory.

INTRODUCTION

Nanostructures have dimensions in the range of 1 ∼ 100 nm and typically contain 102 ∼ 108 atoms. Density func-
tional theory (DFT) methods within the Kohn-Sham approach1 are typically applied to systems with fewer than
100 atoms. Contemporary implementations of order-N methods2 such as SIESTA3, ONETEP4, and CONQUEST5

that exhibit linear scaling of computation time with system size enable an increase in the number of atoms by one
to two orders of magnitude. Studies of larger systems such as quantum dots and nanoparticles at the electronic
structure level resort to tight-binding methods6, kp method7, or empirical pseudopotential method8. These meth-
ods require parameterizations to empirical or first-principles data, and do not typically reproduce all structural and
electronic properties with high accuracy across a full range of possible geometries. Even larger system sizes are
accessible to interatomic potential methods but these methods cannot account for spin and charge relaxation and
conjugation effects, which are important in modeling reactions, electronic excitation, and bond breaking processes.
Therefore, new computational paradigms are needed that enable larger scale electronic structure calculations.

A combination of methods with different fidelity is often used to reduce computational effort if only local
information is needed with high accuracy. An example of such an approach is the ONIOM method9 for computa-
tions of chemical properties. However, such schemes have an inherent problem with conditions at the boundaries
of different fidelity regions. Another approach to reduce computational effort, called the quasicontinuum method,
is based on explicit treatment of only representative atoms and on interpolations for the rest. It has been success-
fully used in atomistic studies of mechanical properties with classical potentials and recently with electronic-level
calculations. This type of approach is particularly suitable for many nanostructures because large regions of the
structures are perturbed relatively little as compared to periodic structures and, therefore, can be treated by using
interpolation schemes.

The present work proposes a quasicontinuum-like technique that renders electronic structure information at the
nanoscale. The proposed methodology follows in the steps of the quasicontinuum approach10;11;12 for mechanical
analysis at the nanoscale. Specifically, this is an extension of the work in11;12, because, rather than considering a
potential-based interatomic interaction that has a limited range of validity and is difficult to generalize to inhomoge-
neous materials, the methodology proposed uses an ab initio method. At the same time it is a generalization of the
method proposed in10 because, rather than considering electron density within each mesh discretization element
separately, the proposed method treats the electronic density distribution in all elements in an overall optimization
framework.

The approach proposed does not rely on a strict periodicity assumption; it merely assumes that the material
displays a nearly periodic structure in certain regions of the nanostructure. However, in order to bridge the gap
between subatomic scale associated with the electron density and the nanoscale associated with the structures in-
vestigated, we have assumed that almost everywhere in the nanostructure the optimized structure results in only
small deformations of periodic structure. This assumption is referred to as near-periodicity, because the nonperi-
odic part of the state variables is approximated as a macroscopic smoothly varying field. As explained later, the
near-periodicity assumption enables the use of interpolation for electronic structure reconstruction.
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A second assumption made is that only small deformations are present in most of the material. The nanos-
tructure is considered to have an initial reference configuration D0 ⊂ 3. The structure undergoes a deformation
described by a deformation mapping Φ(r0, t) ∈ 3, which gives the location r in the global Cartesian reference
frame of each point r0 represented in the undeformed material frame. As indicated, the mapping might depend on
time t. The variable t does not necessarily represent the time contemporary with the structure under consideration.
In a static simulation framework this variable might be an iteration index of an optimization algorithm that solves
for the system ground state.

The components of the deformation gradient F are introduced as

FiJ =
∂Φi

∂r0
J

,

where upper-case indices refer to the material frame, and lower-case indices to the Cartesian global frame. Thus,
F = ∇0 Φ, where ∇0 represents the material gradient operator. Using the repeated index summation rule, the
deformation of an infinitesimal material neighborhood dr0 about a point r0 of D0 is expressed as

dri = FiJ dr0
J .

If u = r− r0, the concept of small distortion is equivalent to requiring that the spectral radius of the 3 × 3 matrix
F̄ = ∇ u(r0) be sufficiently small; that is,

σ (∇0 u(r0)) < K

is expected to hold almost everywhere in the domain D0, for a suitable chosen value of K.
With the two assumptions introduced, computational savings are due to a two-tier interpolation-based approach

that reduces the dimension of the problem. First, the electronic structure will be evaluated in some domains by
interpolation using adjacent regions in which a DFT-based approach is used to accurately solve the electronic struc-
ture problem; this procedure is called electronic density reconstruction. Second, the positions of the nanostructure
nuclei will be expressed in terms of the positions of a reduced set of so-called representative nuclei, repnuclei.
The proposed approach solves only for the positions of these repnuclei; the entire deformation field (mapping)
is defined based on an appropriate representation for Φ(r0, t). Following the quasicontinuum paradigm11;12, we
define this mapping based on the displacement of repnuclei:

Φ(r0, t) =
∑

J∈B

ϕ(r0|R0
J) Φ(R0

J , t), (1)

where B represents the index set associated with the repnuclei. Once the displacements of the repnuclei Φ(R0
J , t)

for J ∈ B are available, the displacement of any point in the nanostructure is obtained by interpolation using the
shape functions ϕ.

THE IONIC PROBLEM AND QUASICONTINUUM APPROACH

Finding the stable configuration of a nanostructure (called hereafter the Ionic Problem) reduces to minimizing the
total energy Etot with respect to the positions of the nuclei. More precisely, the equilibrium configuration of a
nanostructure is provided by that distribution of the nuclei that minimizes the energy

Etot = Ee + Eext + Enn,

where Enn is the internuclear interaction energy, Ee is the electronic ground-state energy for the corresponding
nuclear distribution, and Eext is the electron-nuclei interaction energy defined as

Eext(ρ̂(r); {RI}) = −

∫

ρ̂(r)Vext (r; {RI}) dr = −
M
∑

A=1

∫

ZAρ̂(r)

||r − RA||
dr,
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where Vext(r; {RI}) =
M
∑

A=1

ZAρ̂(r)
||r−RA|| dr is the ionic potential, which depends on the positions of the nuclei {RI},

and ZA is the atomic number of nucleus A.
The electronic structure computation is approached here as the solution of a constrained minimization problem

according to the Hohenberg-Kohn theorem13, minρ Etot[ρ(r)], subject to
∫

ρ(r)dr = Ne, where Ne represents the
number of electrons present in the system. The solution to this problem depends parametrically on the locations
of the nuclei RI , I = 1, . . . , M , a consequence of the Born-Oppenheimer approximation. Subsequently, the
optimization of nuclei positions in the entire system is the solution of min{RI} Etot.

Let us consider the optimization problem

min
{RI}

Etot = min
{RI}

Ee + Eext + Enn

subject to the constraint that for a nuclear configuration {RI} the energy Ee is the electron ground-state energy.
Under this assumption, the first-order optimality conditions from the Hellmann-Feynman theorem14 yield

FK =
∂Eext
∂RK

+
∂Enn

∂RK
= 0,

where FK , K = 1, . . . , M , is interpreted as the force acting on nucleus K and

Enn =
M
∑

A=1

M
∑

B=A+1

ZAZB

||RB − RA||
.

The Hellmann-Feynman theorem leads, for each nucleus K, to

FK =

∫

ρ̂(r)
r − RK

||r − RK ||3
dr +

M
∑

A=1,A #=K

ZA
RA − RK

||RA − RK ||3
= 0 , (2)

which thus allows one to solve the nuclear equilibrium problem by using only the ground state solutions of the
electron density problem to find forces on ions to the first order and not the values and the derivatives of the kinetic
and exchange energies. Once the electron density is available, the equilibrium conditions FK = 0, K = 1, . . . , M ,
can be imposed right away. The major computational consequence of this result is that how the actual ground state
electron density ρ̂(r) was obtained is irrelevant; there is also no need to have an explicit energy functional of the
electron density ρ. Moreover, the gradient of the energy with respect to the atomic positions at the current electron
density has the same property15. Therefore, the ground-state electron density can be computed with a stand-alone
software package that requires only the current atomic positions.

Since we use an iterative technique to solve the electronic density problem this means that we compute only
an approximation of the ground state energy ρ̂. Therefore, the expression of FK , K = 1, 2, . . . , M in (2) is
only an approximation of the gradient of the energy with respect to {RK}, K = 1, 2, . . . , M . Nonetheless, for
optimization algorithms of the type discussed here, FK , K = 1, 2, . . . , M need not be calculated exactly, rather
they should only provide a search vector whose angle with the exact gradient is bounded away from π

2
16. Therefore,

the approach proposed can tolerate inexact values of the ground density ρ̂.
When a local quasicontinuum approach is used, the equilibrium conditions are imposed only for repnuclei, that

is, only for J ∈ B. The positions of the remaining atoms in the system is then expressed in terms of the positions of
the repnuclei. The repnuclei become the nodes of an atomic mesh, and interpolation is used to recover the position
of the remaining nuclei. Concretely, if the atomic mesh is denoted by M, τ is an arbitrary cell in this mesh, V(τ)
represents the set of nodes associated with cell τ , and ϕL is the shape function associated with node L in cell τ ,

FJ =

∫

ρ̂(r)
r − RJ

||r − RJ ||3
dr +

∑

τ∈M

∑

A∈τ

ZA

∑

L∈V(τ)
RLϕL(R0

A) − RJ

||
∑

L∈V(τ)
RLϕL(R0

A) − RJ ||3
= 0 , J ∈ B . (3)
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This effectively reduces the dimension of the problem from 3 M (the (x, y, z) coordinates of the nuclei), to 3 Mrep,
where Mrep is the number of nodes in the atomic mesh, which is the number of elements in B. Following the
quasicontinuum paradigm, the selection and the number of the repnuclei is based on an energetic argument and
tailors the computational mesh to the structure of the deformation field11. The sum in the expression of FJ above
is most likely not going to be the simulation bottleneck (solving the electron problem for ρ̂ is significantly more
demanding), but fast-multipole methods17;18;19 can be considered to speed the summation.

Denoting by Pi, i = 1, . . . , Mrep, the position of the representative nucleus ni, we can group the set of
nonlinear equations of Eq. (3) into a nonlinear system that is solved for the relaxed configuration of the structure:

f1(P1,P2, . . .PMrep) = 0

f2(P1,P2, . . .PMrep) = 0

· · ·
fMrep(P1,P2, . . .PMrep) = 0

where fJ is obtained based on Eq. (3). The solution of this system is found by a Newton-like method. Evaluating
the Jacobian information is straightforward and not detailed here. We note that in Eq. (3) a connection is made
back to Eq. (1); the position of an arbitrary nucleus A in cell τ is computed based on interpolation using the
nodes V(τ), one of many choices available (one could consider repnuclei from neighboring cells, for instance).
Effectively, this provides in Eq. (1) an expression for Φ(R0

A, t), which depends only on J ∈ V(τ) rather than
J ∈ B.

THE ELECTRONIC PROBLEM

The electronic problem refers to the computation of the ground-state electron density given the positions of nuclei in
the nanostructure. Scaling considerations and accuracy requirements established DFT as the most viable candidate
for handling this task. In a general form, the electronic contributions to the total energy in a density functional
framework can be written as

Ee[ρ] = T [ρ(r)] + EHar[ρ(r)] + Exc[ρ(r)],

where T [ρ(r)] is the kinetic energy functional, EHar[ρ(r)] is the electron-electron Coulomb repulsion energy,
and Exc[ρ(r)] is the exchange and correlation energy. The ground-state electron density is the function ρ̂(r) that
minimizes Ee[ρ]+Eext(ρ(r); {RI}) with respect to the electron density subject to a charge conservation constraint,
∫

ρ̂(r)d r − N = 0, and the requirement that the density stay nonnegative.
The orbital-free DFT (OFDFT) methods (see, for instance, Ref. 20), based on the explicit approximations to

the unknown exact functional are attractive as they are numerically easier to formulate and solve than the most
widely used Kohn-Sham approach (KS-DFT)1 and there is no need for orbital localization and orthonormaliza-
tion. Compared to the KS-DFT approaches that typically require the solution of a nonlinear algebraic eigenvalue
problem, the OFDFT approaches result in optimization problems based on a methodology that scales linearly and
is relatively simple to implement. The main difficulty lies in providing good quality approximate functionals, since
the exact functionals are not known. This is particularly true in the case of the kinetic energy functional, which
is otherwise easily obtained in traditional KS-DFT. Efforts to find accurate functionals have been quite successful
for several simple metal systems. OFDFT has recently been used in molecular dynamics simulations for accurate
representation of interatomic forces in order to reproduce and provide an explanation for calorimetry results in Na
clusters21, for the studies of several thousand atoms near a metallic grain boundary22, for predicting of the dislo-
cation nucleation during nanoindentation of Al3Mg23 used in combination with the quasicontinuum method12;24,
and for the metal-insulator transition in a two-dimensional array of metal nanocrystal quantum dots25.

Approximations for the exchange and correlation energy functionals, K [ρ], are discussed, for instance, in Ref.
26 and Ref. 27. Providing suitable expressions for the kinetic energy functional remains a challenging task and,
because of reduced transferability, is the factor that prevents widespread use of the approach. The simplest explicit
functional is due to Thomas and Fermi28;29

TTF [ρ] = CF

∫

ρ
5

3 (r) dr,
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where CF is a constant. This crude approximation has been improved upon by the von Weizsäcker form of the
kinetic energy functional30,

TvW [ρ] = TTF [ρ] +
1

8

∫

|∇ρ(r)|2

ρ(r)
dr,

which has been further improved on31;32;33;20

THyb[ρ] = TvW [ρ] +
∑

α λαTα ,

Tα =
∫ ∫

ρα(r)ρα(r′)wα(r − r′; ρ(r)) dr dr′ ,

where the function wα(r − r′; ρ(r)) is an electron density-dependent kernel that is formulation dependent.
Within the framework of OFDFT for electronic structure computation a model reduction approach is pursued

that relies on the near-periodicity assumption introduced above34;35. The entire domain of interest is first meshed
and divided into subdomains. Using a finite element approach one can express the kinetic, exchange correlation,
Coulomb, and electron-nuclei interaction energies in terms of the values of the electron density at grid points.
Since the bulk of a nanostructure often displays quasiperiodic conditions, not all the density grid point values
will be considered as “degrees of freedom”. Instead, in order to reduce the overall dimension of the optimization
problem, only the density value at grid points of so-called active subdomains are considered actual degrees of
freedom. Among the active subdomains is a subset of reconstruction subdomains, which are used in recovering
the value of the electron density in the nonreference subdomains. The latter are called passive subdomains. If there
are no passive subdomains, no reconstruction process is involved, and the proposed approach becomes an OFDFT
domain partitioning scheme in which all the degrees of freedom are accounted for, and the subdomains are treated
in parallel.

The value of the density in the passive subdomains is implicitly accounted through the interpolation operator
acting on the reconstruction subdomains in a self-consistent manner. In its simplest representation, the reconstruc-
tion of the electron density in a passive subdomain Di (see Figure 1) is characterized by two sets of parameters: the
reconstruction weights ϑα(i), and the reconstruction vectors Tα(i), where a Greek superscript is used to indicate
the index of an active subdomain Yα. The reconstruction vector Tα(i) takes the point r in subdomain Di to its
image in the reconstruction subdomain Yα, and ϑα(i) is the weight with which the subdomain Yα participates in
the reconstruction of the electron density in subdomain Di. Generalizing this idea, if Q̄ is a function that depends
on the electron density, the proposed reconstruction ansatz calls for a computation of the value of Q̄ at a point r

that belongs to a passive subdomain Di as a linear combination of values of the function Q̄ evaluated at suitably
chosen points in the reconstruction subdomains, which are determined based on the underlying near-periodicity
assumption of the material. Referring to Figure 1, since in this example there are 7 active subdomains, Q̄(r) in
subdomain Di is expressed by interpolation in terms of values Q̄(rα), for rα ∈ Yα, α ∈ {1, . . . , 7}:

Q̄(r) =
∑

α∈R(i)

ϑα(i) Q̄(rα),

where R(i) represents the union of all reconstruction subdomains Yα involved in the reconstruction of subdomain
Di, and the reconstruction weights ϑ are determined based on the type of interpolation considered. The deformation
field factors into the reconstruction scheme. Concretely, in the proposed reconstruction ansatz Q̄(Φ(r0, t)) is
replaced in passive subdomains with a linear combination of values in the reconstruction subdomains taking into
account the underlying near-periodicity of the material:

Q̄(Φ(r0, t)) =
∑

α∈R(i)

ϑα(i)Q̄(Φ(r0 + Tα(i), t)) ,

where in a perfect crystal the reconstruction vector would be chosen based on the primitive vectors of the Bravais
lattice (see, for instance, Ref. 36). Referring back to the example presented in Figure 1, R(4) = R(5) =
R(6) = {3, 4}; in other words, the reconstruction of the subdomains D4, D5, and D6 is based on values of the
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density in subdomains Y3 and Y4. Similarly, R−1(α) represents the set of all the subdomains that have the values
of the density reconstructed based on values from Yα; for instance, R−1(3) = {3, 4, 5, 6}, in other words, the
reconstruction subdomain Y3 is implicated in the reconstruction of D3, D4, D5, and D6. In general, the subdomains
Di may be thought to be of identical shape, in which case the interpolation approach is reminiscent of the gap-tooth
method37 where the reference subdomains are the “teeth”. Herein, however, the reconstruction by interpolation
of the density is also carried out in the gaps, and not only at the boundary of the teeth, because of the long-range
electrostatic interactions.

It is reasonable to expect that there will be parts of the nanostructure where the reconstruction approach is not
applicable because of the breakdown of the near-periodicity assumption. In these cases, all subdomains spanning
such volumes will be active, effectively leading to a domain decomposition approach to OFDFT calculations.

Formulation Framework

The calculation of electron energy Ee requires the evaluation of integrals of the form

I[Θ] =

∫

Θ(r) dr.

The integrand Θ is represented as the product of two components: Θ(r) = Q̄(ρ(r), r) L̄(r). Q̄ depends on the
value of the density at the location r and possibly on the spatial component r itself (to simplify the notation,
without any loss of generality, this component will be denoted by Q̄(r)). The component L̄ does not depend on
the electron density ρ. For instance, in the case of the electron-nuclei interaction,

I[Θ] = Ene = −

∫

ρ(r)
M
∑

A=1

ZA

||r − RA||
dr ⇒







Q̄(ρ(r), r) = ρ(r)

L̄(r) =
M
∑

A=1

−ZA
||r−RA||

.

The other energies for the Thomas-Fermi-Dirac functional can be cast into this form as well, with the double
integral component being treated separately. With Dt = Φ(D0, t),

Ee =

∫

Dt

Q̄(r) L̄(r) dr =

∫

D0

Q̄(Φ(r0, t)) L̄(Φ(r0, t)) J(r0, t) dr0,

where J(r0, t) =
∣

∣det(∇0 Φ(r0, t))
∣

∣. The notation Q(r0) = Q̄(Φ(r0, t)) and L(r0) = L̄(Φ(r0, t))J(r0, t) will
be used; and although there is a time dependency involved, it will be omitted for brevity. Likewise, the zero
superscript, which indicates that the integration is with respect to the initial configuration, will be dropped to
simplify the notation. With this, Ee requires the computation of quantities like

I[Θ] =

∫

D0

Q(r)L(r) dr.

As far as the nomenclature is concerned, at a point r, the Q(r) component is reconstructed according to the
proposed ansatz and thus computed as a linear combination of functions evaluated at remote points. The component
L(r) is evaluated at the local point r. This partitioning is used to compute the integral I[Θ] in terms of electron
density values from the active subdomains using a suitably chosen quadrature rule:

I[Θ] =
u
∑

i=1

∑

τi,j∈M(Di)

∑

k∈Q(i,j)
wi,j,kQ(ri,j,k)L(ri,j,k)

=
u
∑

i=1

∑

k∈Q(i)
wi,k Q(ri,k)L(ri,k)

,
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where u is the total number of subdomains and, for k ∈ Q(i, j), ri,j,k/wi,j,k, represent the quadrature points/weights
in cell τi,j of mesh M(Di) for computing the integral I[Θ] on the subdomain Di. Note that in order to keep the
notation simple, the j subscript associated with the cell has been dropped. Reconstruction is applied to get Q(ri,k):

Q(ri,k) =
∑

α∈R(i)

ϑα(i)Q(ri,k + Tα(i)) =
∑

α∈R(i)

ϑα(i)Q(rαi,k).

This is the case when the same subdomains are involved in the reconstruction of the value of ri,k for k ∈ Q(i) and
might not be the case if the partitioning of the overall domain in subdomains Di and Yα is not done carefully.

In what follows the clout Cα
n (i) of a node n in the mesh M(Yα) relative to the subdomain Di represents

the set of indices k for which the associated quadrature point ri,k ∈ Di, when subjected to the reconstruction
translation, falls within a cell of M(Yα) for which n is a node. Using this notation and linear shape function-based
interpolation, we obtain

∑

k∈Q(i)
wi,k L(ri,k)Q(ri,k)

=
∑

k∈Q(i)
wi,k L(ri,k)

[

p
∑

α=1
ϑα(i)

∑

n∈N (τα(ri,k))
Q(rαn)ϕαn(rαi,k)

]

=
∑

α∈R(i)

∑

n∈M(Yα)
Q(rαn)ϑα(i)

∑

k∈Cα
n (i)

wi,k L(ri,k)ϕαn(rαi,k),

where τα(ri,k) is a function that returns the cell in the mesh M(Yα) in which the quadrature point ri,k ∈ Di falls
when subjected to the reconstruction translation, and N (τ) returns the set of node points associated with the cell
τ . Typically, a node n has several cells that it belongs to, and a shape function is associated to each pair (node n,
cell it belongs to). This aspect is acknowledged, but for simplicity the notation does not reflect this dependency.
Defining

κα←i
n = ϑα(i)

∑

k∈Cα
n (i)

wi,k L(ri,k)ϕ
α
n(rαi,k),

καn[L] =
∑

i∈R−1(α)

κα←i
n ,

the dependency of the kernel at node n in the subdomain Yα is explicitly indicated to depend on the expression of
the local function component L: καn = καn[L]. The integral and its derivative with respect the value of the electron
density at a node n of the mesh M(Yα) are expressed as

I[Θ] =
p

∑

α=1

∑

n∈M(Yα)

καn Q(rαn) = κ[L] · Q[ρ̂],

∂I[Θ]

∂ρ̂αn
= καn[L]

∂Q

∂ρ
(ρ̂αn),

where

κ[L] =
[

κ1
1[L], . . . , κ1

y(1)[L], . . . . . . , κp
1[L], . . . , κp

y(p)[L]
]

,

Q[ρ̂] =
[

Q(r1
1), . . . , Q(r1

y(1)), . . . . . . , Q(rp
1), . . . , Q(rp

y(p))
]T

.

Here y(α) represents the number of nodes in the reconstruction subdomain Yα, and Q(rαn) is the value of the
function Q evaluated at the node n of the mesh M(Yα). The notation Q[ρ̂] emphasizes that this vector depends
on the value of the density ρ but only at a discrete set of locations, that is, the nodes of the meshes M(Yα), for
α = 1, . . . , p. The kernel vector is constant and evaluated once; the vector Q[ρ̂] changes with the value of the
density and in an iterative process should be evaluated at each iteration.
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A matrix-vector notation describes the above procedure more concisely. For a subdomain Di and a recon-
struction subdomain Yα, α ∈ R(i), a quadrature matrix is defined to capture the concept of a clout associated
with a node n in Yα relative to the subdomain Di. Thus, Qα←i;O ∈ q(i;O)×y(α) has as many rows as there are
quadrature points q(i;O) in the subdomain Di, and a number of columns equal to the number of nodes y(α) in
the reconstruction subdomain Yα, for α ∈ R(i). The superscript O is necessary to differentiate between different
quadrature types in the case of a double integral, as will be the case shortly. The notation suggests that this matrix
refers to the outermost integral; for a double integral a superscript I is used to refer to a quantity defined in relation
to the innermost integral. Note also that the number of quadrature points q(i;O) depends on what quadrature
rule is considered for integration and that the factor ϑα(i) that indicates the weight of the subdomain Yα in the
reconstruction of the subdomain Di is also rolled into the expression for Qα←i;O. For a quadrature point ri,k ∈ Di,
the entry (k, n) is nonzero provided k ∈ Cα

n (i). Therefore, the clout of a node n is the set of rows with nonzero
entries in the column associated with this node. A nonzero entry assumes the form

Qα←i;O[k, n] = ϑα(i)wi,k ϕ
α
n(rαi,k).

Defining
L̃O

i =
[

L(rOi,1) . . . L(rOi,q(i;O))
]

,

then, for i ∈ R−1(α), we have
κα←i = L̃O

i Qα←i;O. (4)

Approximation of a double integral will now be established for the Coulomb integral:

J [ρ] =
1

2

∫ ∫

ρ(r) ρ(r′)

|r − r′|
dr dr′.

Defining first

L(r) =

∫

ρ(r′)

|r′ − r|
dr′,

we can approximate the Coulomb integral as

J [ρ] =
1

2

p
∑

α=1

∑

n∈M(Yα)

ραn
∑

i∈R−1(α)

ϑα(i)
∑

k∈Cα
n (i)

wi,k L(ri,k)ϕ
α
n(rαi,k).

Furthermore,

L(ri,k) =
p

∑

β=1

∑

m∈M(Yβ)

κβm[i, k] ρβm,

where the notation κβm[i, k] indicates that the kernel κβm[i,k] corresponds to the local function |r′ − ri,k|−1. Using
the notation

Kαβ
nm =

∑

i∈R−1(α)

∑

k∈Cα
n (i)

ϑα(i)wi,k κ
β
m[i, k] ϕαn(rαi,k)

leads to

J [ρ] =
1

2
ρTKρ

K =









K11 K12 . . . K1p

K21 K22 . . . K2p

. . . . . . . . . . . .
Kp1 Kp2 . . . Kpp









Kαβ =
∑

i∈R−1(α)

∑

j∈R−1(β)

Kα←i,β←j =
[

Kαβ
nm

]

n = 1, . . . , y(α), m = 1, . . . , y(β)

9



with Kα←i,β←j yet to be defined. Corresponding to the quadrature point associated with the outer integral, rOi,k, a
row vector is defined as

L̃I
j [i, k] =

[

|rOi,k − rIj,1|
−1 . . . |rOi,k − rIj,q(j;I)|

−1
]

. (5)

Then,
κβ←j [i, k] = L̃I

j [i, k] Qβ←j;I ∈ 1×y(β).

Define

L̃i,O;j,I =





L̃I
j [i, 1]
· · ·

L̃I
j [i, q(i;O)]





and

κβ←j [i] =





κβ←j [i, 1]
· · ·

κβ←j [i, q(i;O)]



 = L̃i,O;j,I Qβ←j;I .

Then,
Kα←i,β←j =

[

Qα←i;O]T
[

L̃i,O;j,I
] [

Qβ←j;I
]

. (6)

Note that κβ←j [i] ∈ q(i;O)×y(β) and Kα←i,β←j ∈ y(α)×y(β). Implementation details for the parallel evaluation
of the method’s associated kernels are discussed in Ref. 38.

The Optimization Problem

The formalism introduced for the computation of an integral I[Θ] =
∫

Θ(r) dr hinges on the partitioning Θ(r) =
Q(r) L(r) and has been applied to the Thomas-Fermi-Dirac DFT, leading to the following optimization problem:

minEtot = −CXκ · ρ̂
4

3 + CFκ · ρ̂
5

3 + κne · ρ̂ +
1

2
ρ̂TKρ̂

0 = κ · ρ̂− Ne

0 ≤ ρ̂

where ρ̂ =
[

ρ̂1
1, . . . , ρ̂

1
y(1), . . . , ρ̂

p
1, . . . , ρ̂

p
y(p)

]T
and

κ = κ[1] κne = κ

[

M
∑

A=1

ZA

|r − RA|

]

.

Defining for an exponent c ∈ + a diagonal matrix

D[ρc] = diag
(

(

ρ1
1

)c
, . . . ,

(

ρ1
y(1)

)c
, . . . ,

(

ρ1
p

)c
, . . . ,

(

ρp
y(p)

)c)

,

we obtain the gradient of the cost function

∇Etot = g[ρ̂] = κT

(

5

3
CFD[ρ̂

2

3 ] −
4

3
CXD[ρ̂

1

3 ]

)

+ κT
ne +

1

2
ρ̂T

(

K + KT
)

.

The Hessian is evaluated as
H[ρ̂] = Hd[ρ̂] +

1

2

(

K + KT
)

,

10



where
Hd[ρ̂] = diag

(

H1[ρ̂], . . . ,Hp[ρ̂]
)

,

Hα[ρ̂] = diag
(

κα1

(

2
3CF (ρ̂α1 )−

1

3 − 1
3CX (ρ̂α1 )−

2

3

)

, . . . ,

, . . . , καy(α)

(

2
3CF

(

ρ̂αy(α)

)− 1

3

− 1
3CX

(

ρ̂αy(α)

)− 2

3

))

.

The value of the electron density should always remain positive, and therefore the minimization is best ap-
proached in the framework of bound constrained optimization. Bound-constrained optimization problems (BCOPs)
have the form

min{f(x) : l ≤ x ≤ u},

where f : n *→ is a nonlinear function with continuous first- and second-order derivatives, the vectors l and
u are fixed, and the inequalities are taken componentwise. A classical result16 shows that the bound-constrained
optimization problem has a unique solution on the feasible region

Ω = {x ∈ n : l ≤ x ≤ u}

when the function f : n *→ R is strictly convex. This result holds for unbounded Ω, and the components of l and
u are allowed to be infinite. For the projection operator

[TΩd]i =







di if xi ∈ (li, ui)
min{di, 0} if xi = li
max{di, 0} if xi = ui

,

x∗ is a solution of the BCOP if and only if the projected gradient TΩ∇f(x∗) = 0. Given a tolerance τ , an
approximate solution to the BCOP is any x ∈ Ω such that

‖TΩ∇f(x)‖ ≤ τ.

Note that this holds whenever x is sufficiently close to x∗. Algorithms for solving these problems are usually
generalizations of well-known methods for unconstrained optimization. For unconstrained optimization, Newton’s
method, for example, solves a linear system involving the Hessian matrix of second derivatives and the gradient
vector. Each iteration of active-set methods fixes a set of variables to one of their bounds and solves an uncon-
strained minimization problem using the remaining variables. A set of three algorithms used in conjunction with
the electronic structure computation problem is presented and discussed in 38. These algorithms are part of the
Toolkit for Advanced Optimization (TAO) library 39;40. TAO provides optimization software for the solution of sci-
entific applications on high-performance architectures. These applications include minimizing energy functionals
that arise in differential equations and molecular geometry optimization. Various software packages are available
for solving these problems, but TAO provides the portability and scalability necessary for parallel optimization on
high performance computers (Linux clusters, IBM BG/L, etc.).

PROPOSED COMPUTATIONAL SETUP

Given a nanostructure the goal is to determine the electron density distribution as well as the positions of the
nuclei, that is, the mapping Φ. Here we do not consider dynamics of the nuclei. As indicated in Fig. 2, the
proposed computational approach has three principal modules: the preprocessing stage, the electronic problem
and the ionic problem. Preprocessing is carried out once at the beginning of the simulation. A domain D0 is
selected to include the nanostructure investigated. The partitioning of D0 into u subdomains Di, i = 1, . . . , u,
is done to mirror the underlying periodicity of the structure. The subdomains Dχ(1) through Dχ(p) become the
active subdomains and, as in Figure 1, they are denoted by Y1 through Yp. A set of values of the electron density
is required at the nodes of the discretization mesh; the initial guess for the electron density could be an overlap
of isolated atom electron densities throughout the nanostructure or, when practical, could be obtained based on
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periodic boundary conditions assumption by computing it in a domain Dj and then cloning for the remaining
domains Dk. Preprocessing concludes with the initialization of the deformation map Φ to identity.

With a suitable norm, the new electron density ρnew is compared to ρinit, and the computation restarts the
electronic problem after setting ρinit = ρnew unless the corrected and initial values of the electron density are
close. This iterative process constitutes the first inner loop of the algorithm.

The ionic problem uses the newly computed electron density to reposition the nuclei. The nonlinear system
in Eq. (3) provides the position of the repnuclei; the other nuclei are positioned based on the quasicontinuum
paradigm according to Eq. (1). The nonlinear system is solved by an iterative method that leads to the second
inner loop, which has four steps: (a) evaluate the integral of Eq. (3); when necessary, evaluate its partial with
respect to Pi; (b) evaluate the double sum of Eq. (3), which is based on a partitioning of the structure, and,
when necessary, evaluate its partial derivative with respect to the position of the representative atoms; (c) carry
out a quasi-Newton step to update the positions Pi of the Mrep representative nuclei; and (d) go back to (a) if no
convergence results.

The precision in determining the positions of the nuclei is directly influenced by the accuracy of the electron
density ρ(r). Thus, an important issue, not addressed by this work, is the sensitivity of the solution of the nonlinear
system in Eq. (3) with respect to ρ(r). It remains to be determined what level of approximation of the electron
density suffices for solving the ionic problem at a satisfactory level of accuracy. After determining the position of
the nuclei, the algorithm computes the new deformation mapping Φ according to Eq. (1). If the overall change in
the position of repnuclei at the end of the ionic problem is smaller than a threshold value, the computation stops;
otherwise the new distribution of the nuclei is the input to a new electronic problem (second stage of the algorithm).
In summary, the algorithm passes through the preprocessing stage once. It then solves the electronic problem (the
first inner loop) and proceeds to the ionic problem (the second inner loop). The outer loop (electronic problem,
followed by ionic problem) stops when there is no significant change in the position of the repnuclei.

PRELIMINARY NUMERICAL RESULTS

The fact that quasicontinuum method represents a meaningful reduction model approach has already been es-
tablished10;11;12;24. The focus of the numerical experiments presented here is on model reduction as applied
to the electronic problem. The approach proposed for the solution of the electronic problem has been inves-
tigated in the context of undeformed topologies. In other words, for the deformation gradient ∇0 Φ(r0, t),
J(r0, t) = det(∇0 Φ(r0, t)) = 1.

String of Atoms Example

Our first example is a three-dimensional variation of the one dimensional case analyzed in the previous section.
The size of each of the 3D subdomains surrounding a hydrogen atom is 3 × 3 × 3 (all units henceforth are atomic
units). A full simulation with no reconstruction is provided as the reference solution. Two scenarios with seven
and five active subdomains were subsequently considered; all meshes in this numerical experiment are uniform.
In the first scenario, the subdomains D1, D2, D3, D7, D11, D12, and D13 were active; only D3, D7, and D11 were
used for reconstruction. In the second scenario, the subdomains D1, D2, D7, D12, and D13 were active; only D2,
D7, and D12 were used for reconstruction. For this test, the number of nodes/cells in the active subdomains is as
follows: 28561/22464 for the nonreconstruction case (13/13), 15379/12096 for the 7/13, and 10985/8640 for the
5/13 case. All meshes considered herein, uniform or variable, are made up of hexahedrons. Figure 3 displays the
relative errors; shown are only the regions where the relative error is larger than 5%. The results show a slight
improvement in the seven-subdomain case; as the number of active subdomains increases, the quality of the results
improve. Because of the dimension reduction, the size of the optimization problem decreases, thereby leading
to a reduction in the number of iterations. Moreover, each iteration is computationally less expensive. The large
relative errors are explained by the small values assumed by the electron density away from the nuclei where in
practice it is expected to be zero. This and the boundary artifacts explain the accumulation of the 5% relative error
isosurfaces far away from the nuclei and close to the boundary of the solution domain. While an exact quantitative
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Active Subdomains 13 7 5
Number of Iterations 605 245 221

Total Energy -14.257 -14.256 -14.256

Table 1: Uniform mesh summary of the results. TAO-BLMVM optimization constraints are 10−6 for absolute and
10−5 for relative convergence tolerance.

characterization of the boundary artifacts remains to be produced, they are traced back to at least two sources.
First, the small pockets of nonzero electron density are explained by a slow convergence rate of the optimization
algorithm that currently does not use Hessian information and stops before clearing these pockets in remote corners
of the nanostructure. Second, and more important, the assumption of underlying periodicity of the solution when
used in conjunction with a small number of reconstruction subdomains (few degrees of freedom) limits the capacity
of the electron density to relax due to these periodicity constraints that must be numerically satisfied. As expected
and illustrated in the results corresponding to the 5 active subdomains case, the situation is exacerbated as fewer
degrees of freedom are available in the energy minimization step of the method. In spite of these boundary artifact,
it should be noted that the differences in total energy are small for both the 7 and 5 active subdomain cases (about
0.007%; see Table 1). The results reported were obtained by running in parallel with 13 processes on a Linux
cluster.

Slab of Atoms Example

Figure 4 shows the results obtained for the 5 × 5 subdomain 3D slab. Of the 25 subdomains considered for this
simulation, one subdomain per nucleus of a hydrogen atom, only nine subdomains of darker color were considered
active and used for reconstruction purposes. Figure 4a displays the electron density distribution on a mid-Z slice
for the reconstructed domain (9/25). Figure 4b displays the subdomain structure of the slab, and Fig. 4c shows the
relative error produced through reconstruction. Compared to the reference case, the relative error in the total value
of the electronic energy was 0.03%. The number of nodes/cells for the 5 × 5 case with all subdomains active was
33275/25000. For the 9/25 reconstruction scheme, the number of unknowns was reduced from 33275 to 11979.
The 3D simulation was run in parallel using 25 processes on a Linux cluster.

Nonuniform Mesh Results

Our third test investigated the effect of mesh adaptivity. An example consisting of a string of five hydrogen atoms
was run in parallel on IBM BlueGene/L using five processes with no reconstruction. The solution on a uniform
mesh is plotted in Fig. 5a; the variable mesh solution is presented in Fig. 5b. Although in both cases the number
of mesh points is comparable, the total energy in the nonuniform case has a slightly smaller value, which indicates
that it corresponds to a more relaxed distribution of the electron density. The peak electron density values are also
higher for the variable mesh case because of a refined mesh capable of capturing fast variations in the vicinity of
the nuclei. The energy values are slightly different in the two situations (a difference of 12%, from -5.8 to -5.2). In
Fig. 5 a “smearing” effect is noticed in the constant-size mesh, where the relatively higher values of the electron
density occupy larger volumes but with lower peaks. Both simulations use the same optimization settings (absolute
and relative convergence tolerance). In each of the five subdomains, the number of nodes/cells was 10999/7712
for the variable mesh and 11661/9216 for the uniform mesh.

The number of iterations in the nonuniform mesh case is much larger (2181 as opposed to 212). However, the
nonuniform mesh results were obtained without using any acceleration strategy. The poor convergence speed can
be addressed by a better mixing method41;42, multigrid approach and by providing Hessian information, which,
while straightforward in the proposed approach, is not implemented yet.

When one brings into the picture the reconstruction component, the trend noticed above persists. For the 13-
atom example run with 7 active subdomains, the uniform mesh size scenario led to an energy of -14.257 in 245
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iterations. The variable mesh case led to -15.54 in 3299 iterations, which is an order of magnitude increase in the
number of iterations.

Conclusions

Density functional theory can accurately predict chemical and mechanical properties of nanostructures, although
at a high computational cost. A quasicontinuum-like framework is proposed to substantially increase the size of
the nanostructures accessible by simulations. The approach combines a model reduction paradigm and parallel
computation capabilities to increase the size and reduce the simulation time associated with large simulations. The
entire domain of interest is first meshed and divided into subdomains. The kinetic, exchange correlation, Coulomb,
and electron-nuclei interaction energies are expressed in terms of grid values of the electron density in a subset
of so-called active subdomains. The resulting form of the energy is minimized subject to the charge conservation
constraint. The implementation leverages a domain-decomposition paradigm, and for parallel simulation support
it builds on top of the MPICH2 library and the Toolkit for Advanced Optimization. One salient feature of the
proposed approach is that the function and gradient evaluations, as well as the optimization stage, are run in
parallel. The reconstruction errors were shown to depend on the extent of model reduction. For a test problem
consisting of a three-dimensional string of one-electron atoms, the proposed approach led to a threefold reduction
in the number of iterations for convergence, while maintaining small values of relative error for the total energy and
the electron density in the regions of interest (boundary artifacts led to larger values in these boundary regions).

The method could be improved in three ways. First, and most importantly, more advanced forms of the kinetic
and exchange and correlation energy functionals need to be chosen, and the effective core potentials for many elec-
tron atoms have to be implemented. Second, for larger problems, cut-off techniques and fast-multipole methods43

need to be considered. These would ease memory limitations and allow the simulation of large reconstruction tests
that go beyond the current proof-of-concept applications. Third, the reconstruction approach should be extended
to the DFT Kohn-Sham approach because it has a significantly larger user base than OFDFT.
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Figure 1: Partitioning of the computational domain: D3, D7 and D11 reconstruction subdomains; D1, D2, D12, and
D13 active subdomains; D4, D5, D6, D8, D9, and D10 passive subdomains.
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Figure 2: Computational flow. Proposed approach has three stage; an iterative loop spans the last two stages: the
ELECTRONIC and IONIC PROBLEMS.
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(a) Relative error for 13/7 (245)

(b) Relative error for 13/5 (221)

Figure 3: Relative error surface for the 13-subdomain scenarios using (a) 7 and (b) 5 active subdomains. In
parentheses we show the number of optimization iterations. The number of active subdomains considered in the
algorithm reflects in the quality of the numerical solution: more active subdomains result in a larger number of
degrees of freedom, which positively impacts ability to relax to lower energy levels and reduces boundary artifacts.
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    

    

    

    

    

(a) Electronic distribution for 25/25 (b) Domain setup

(c) Relative error for 9/25

Figure 4: 5 × 5 three dimensional slab simulation scenario results. The reconstruction approach leads to good
results in spite of topology dominated by large boundary to volume ratio.
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(a) fixed mesh (-5.1829/212) (b) nonuniform mesh (-5.8705/2181)

Figure 5: Density distribution for the 5-subdomain example using (a) a uniform mesh and (b) an adaptive mesh.
Above each result we show the associated mesh. In parentheses we give the total energy/number of iterations. As
anticipated, an adaptive mesh shows higher electron density peaks. Convergence speed if very slow though, and
either Hessian information, or multigrid approach will have to be employed to address this issue.
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