
A Composition Environment for MPI Programs

Narayan Desai, Ewing Lusk, Rick Bradshaw

Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439

Abstract. While MPI is the most common mechanism for expressing
parallelism, MPI programs are not composable by using current MPI
process managers or parallel shells. We introduce MPISH2, an MPI pro-
cess manager analogous to serial Unix shells. It allows the composition
of MPI and serial Unix utilities with one another to perform scalable
tasks across large numbers of Unix clients. This paper discusses in detail
issues of process management and parallel tool composition.

1 Introduction

The shell is the most familiar interface to Unix systems. In general, it is the first
contact that users have with Unix systems. Its ubiquity makes it the dominant
mechanism through which command execution occurs.

Unix shells provide a rich environment for task automation, exposing com-
mand exit codes, providing control flow constructs, and organizing disparate
programs into complex command pipelines. Users are familiar with the decom-
position of complex tasks into the invocation of single-function utilities using
these mechanisms.

While MPI is not as ubiquitous as Unix shells, it is the dominant mechanism
used to express parallelism in scalable applications. Many high-performance im-
plementations of MPI exist; indeed, MPI is so pervasive that a good MPI im-
plementation is frequently cited as one of the requirements for new large-scale
computational science machines.

Unfortunately, process management systems that can start MPI programs
have not provided or exposed sufficient information for their composition with
their serial analogues or even with each other. To address this issue, we have
implemented MPISH2, an MPI process manager that provides a user interface
and composition capabilities nearly identical to the Bourne shell.

This paper focuses on the issues involved in process management and parallel
tool use. We motivate the discussion with a series of use cases and examples.
To set the context, we begin by describing how our work on MPISH2 fits into
related efforts. Next, we discuss the design and implementation of MPISH2. We
then demonstrate how program composition techniques can benefit the larger
community of users of parallel system software and tools.

2 Related Work

Shells have long been a subject of interest in the Unix research community.
Starting with the original shell included with early Unix systems [15], shells have
been augmented into relatively full-featured programming languages, including
data types [9]. Because of the familiarity of the shell interface to Unix users,
many attempts have been made to present a shell-like interface for program
execution on parallel systems.

Existing shells provide users with a large range of functionality. The Bourne
shell [1] offers process management features, job control, interactive program
execution, command pipelines, and control flow constructs. Using these facilities,
users can automate complex interactions between executables in a robust and
intuitive fashion.

As parallel systems have become more common, several attempts have been
made to offer analogous capabilities for parallel execution of serial and paral-
lel programs. Parallel shells provide an interface for the execution of the same
program across multiple systems. The key goal of these tools are to enable scal-
able, uniform execution of the same programs across large numbers of clients.
pdsh [13] is a parallel shell that uses an rsh or ssh client and a strided, parallel
approach to run tasks in parallel across many systems. The C3 tools [8] provide
a similar execution mechanism that also runs tasks through rsh.

These tools do an admirable job of starting processes scalably; however, they
do not expose any of the Unix process information needed to compose commands
effectively. Discrete exit statuses are not returned for each process executed.
All control flow statements are executed serially and independently. Command
pipelines, while usable in some cases, are still fundamentally serial constructs.
Most important, existing parallel shells do not support MPI process startup.

MPI process management has also been the subject of much work over the
past several years. Historically, MPI startup mechanisms have scaled poorly and
performed badly overall [5]. Two systems have addressed these issues over the
past several years. MPD [4] uses a group of daemons, arranged in a ring topology,
to scalably start MPICH2 MPI processes. Yod [2] provides similar capabilities
in the Cplant software stack.

Both of these mechanisms provide highly scalable process startup and man-
agement services needed to execute MPI processes, but neither provides sufficient
information for use in shell-style programming. MPD provides access to all exit
statuses and to standard I/O multiplexed into single streams. Yod provides sim-
ilar access to standard I/O but fails to provide any access to return codes. Most
important, each of these systems provides the access to the exec system call
without adding a framework around it for program composition. This exclusion
makes it impossible to compose several discrete tasks into a command pipeline,
or any more complex task construct.

Our earlier attempt to solve this problem was MPISH. It had all of the startup
functions required to natively execute MPICH2 programs; however, the specifi-
cation of execution locations was insufficient for many complex tasks.

The Unix and parallel shell landscape includes all of the facilities needed to
build complex compositions of parallel programs; however, no single tool includes
all of these facilities. The ideal tool would include the flexibility and power of a
serial shell with the ability to scalably execute and compose parallel programs.

The work we present here has been motivated largely by the gains in sys-
tem software scalability afforded by the use of MPI in system tools [6,7,12].
This approach also has proved positive in terms of overall performance gains.
More surprising, tools implemented by using MPI-based scalable components
have proved far easier to troubleshoot and debug than their ad hoc analogues.
The need to execute large numbers of small scalable tools brings execution is-
sues clearly into focus. As additional parallel system tools become available, the
desirability of tool composition increases at least as fast.

3 Design

The design of MPISH2 followed from the idea that users need not treat parallel
programs differently from serial ones. With such a uniform execution interface,
parallel (and hence scalable) reimplementations of serial utilities could be au-
tomatically used by existing scripts. At the same time, we wanted to take the
best features from each of the previously mentioned shells. The goal was a sys-
tem that provided the flexibility and power of the Unix shell, with the scalable
startup features of parallel shells and the ability to run MPI processes directly.

We chose the Bourne shell [1] as the language basis for MPISH2. It has the
benefit of being ubiquitous and well understood among Unix users. The con-
trol flow constructs available in the Bourne shell are fairly standard, including
while, if, for, and case. Since these are the real workhorses of shell scripting,
we attempted to keep their semantics as close as possible to the Bourne shell.
However, enhancements were required in order to support startup of parallel pro-
cesses. In this section, we discuss these enhancements, as well as the language
employed by MPISH2 and the use of the resulting tool.

3.1 Enabling Parallelism

Parallel process managers work in much the same way as serial process man-
agers. They are responsible for post-fork/pre-exec process setup and the setup
of standard I/O. The main difference between serial and parallel process man-
agers is the need for parallel library bootstrapping. This bootstrapping consists
of two main parts: the description of the parallel process topology and the com-
munication setup.

Many process managers describe initial process topology at the time of paral-
lel process startup. Typically, the topology specification consists of process count
and some set of resources, usually a list of nodes on which the processes should be
executed. This corresponds closely to the common arguments to mpirun. Alter-
natively, one can use mpiexec, specified by the MPI standard [10], for supplying
the same data. Whatever the input format, this information is used for the same

purpose: the description of initial communicator, MPI COMM WORLD, for the new
process. Each communicator has a specific size, and each component process has
a specified rank in that communicator. This initial topology description is what
differentiates one 32-node program from thirty-two 1-node programs.

To support MPI program execution, we introduce the notion of a parallel exe-
cution context. A parallel execution context describes the resulting MPI COMM WORLD
communicator for all MPI programs executed. When MPISH2 is started, the initial
parallel program execution context is global; it corresponds to MPI COMM WORLD
for the MPISH2 processes, since they are also an MPI process. As the MPISH2
process executes the input script, the parallel execution context can be split
into non overlapping pieces by MPISH2 control flow constructs. This process is
discussed in detail in Section 3.2.

The second important aspect of parallel process startup is communication
bootstrapping. For disparate processes to begin acting as a single parallel entity,
communication must be established. This is accomplished in different ways with
different parallel libraries. MPICH2 uses an interface called PMI, or Process
Manager Interface, to provide this information to client programs. PMI takes the
form of a distributed database, providing standard put, get, and fence operations.
The client program is provided with connection information for its PMI instance
and can use that data to connect to other processes. Because this mechanism
is not mandated by the MPI specification, this technique is implementation-
specific. Hence, it works only with MPICH2 programs.

3.2 The MPISH2 Input Language

When considering how to integrate MPI programs into a Unix environment, we
gave highest priority to retaining standard Unix shell semantics. The intention
was to allow currently existing scripts to use MPISH2 without modification. As
parallel versions of Unix utilities are written, these scripts can transparently be-
gin using them, greatly improving the scalability of existing tasks and processes.
Several of these parallel tools are described in Section 4.2.

The compatibility requirement motivated the use of a Bourne shell syntax. All
of the semantics regarding serial command execution remain the same as their
serial shell counterparts. The Unix parent/child process relationship provides
the same capabilities and remains fundamentally a serial construct. Command
pipelines, backticks, and exit statuses also remain the same as those in the
serial Bourne shell. However, the semantics of the control-flow constructs needed
augmentation to support parallel execution contexts.

As described in the previous section, MPISH2 supports parallel execution of
MPI programs by using a parallel execution context. This context describes the
topology of MPI COMM WORLD for any MPI processes executed by MPISH2. The
current state of the parallel execution context at any given point is maintained
by MPISH2. For example, if the first line of a script runs a program, its parallel
execution context will be global, and processes will run in a single large context
across all locations where MPISH2 processes are running. As the script executes
and control flow statements are processed, the parallel execution context is split

into smaller pieces and then rejoined when those scopes disappear. This behavior
is analogous to the use of MPI Comm split in MPI programs.

– if performs a two-way split, corresponding to the truth value of the predicate.
MPISH2 ranks will be grouped with others in the same side of the branch into
two parallel execution contexts corresponding to true and false. For example,
when if is executed in an 8-process context with a predicate that evaluates to
true on 2 nodes and false on the other 6 nodes, ranks evaluating to true are
grouped into a parallel execution context of size 2. Similarly, the remaining
nodes are grouped into a second parallel execution context of size 6. These
contexts persist until the if statement is finished executing.

– case performs an N-way split, operating similarly to if.
– while creates an execution context corresponding to all ranks for which the

condition evaluates as true. All programs run in each iteration are grouped
according to this initial evaluation. The condition is evaluated at the start
of each iteration on each rank, continuing until all ranks evaluate false.

– for has no effect on parallel execution context because it is not conditional.
No automatic parallelizing is performed.

Each of these control flow statements results in a set of new parallel execution
contexts for the duration of the control flow statement. The formulation of these
semantics requires the use of an implicit barrier at the conclusion of control flow
execution. This approach has the benefit of retaining the character of the serial
Bourne shell. All other Bourne shell semantics remain identical to their serial
analogues; in fact, for the degenerate case, MPISH2 behavior is identical to a
serial Bourne shell.

3.3 MPISH2: A Parallel Shell

The most important difference between a normal shell and MPISH2 is that MPISH2
is a parallel program, consisting of multiple communicating Unix programs. A
script, given to MPISH2, is executed by each of the MPISH2 processes concurrently.
The MPISH2 processes communicate with each other (in a scalable fashion) using
MPI. That is, MPISH2 is itself an MPI program. Therefore, MPISH2 must be
started by the startup mechanism of the proper MPI implementation. We assume
in this paper that mpiexec invokes this mechanism. Thus, a 100-process instance
of MPISH2 is started by a command line something like the following.

$ mpiexec -n 100 mpish2

In a cluster environment, the specification of which nodes MPISH2 is run
on depends on the particular MPI implementation being used. We have used
MPICH2 [11], but MPISH2—being an MPI program—can be run by using any
MPI implementation. Note, however, that because of the nonstandard nature of
MPI startup, programs started by MPISH2 must use MPICH2.

As described in the previous section, MPISH2 scripts are Bourne-shell scripts
that are presented to the standard input of each MPISH2 process. MPISH2 must

be parallel in order to properly provide all information about child processes. For
example, using a traditional MPI process manager to run two parallel programs
in a pipeline would look like the following.

$ mpiexec -np 10 prog1 | mpiexec -np 10 prog2

This command runs prog1 and sends the standard output of the first mpiexec
to the second invocation of mpiexec. Handling of standard output is not specified
by the MPI standard; however, many MPI process managers provide multiplexed
standard output from all processes to the standard output of mpiexec. Likewise,
mpiexec typically, though not universally, sends standard input of mpiexec to
some number of the parallel process instances. This approach is suboptimal for
scripting, as the results are dependent on the implementation of the MPI process
manager. Moreover, the construction of pipelines is fundamentally nonscalable
and inefficient in this approach, since all stdio data is collected by the process
management system and then redistributed for each subsequent stage in the
command pipeline.

Under MPISH2, a similar command is used, together with a process manage-
ment system for MPISH2 startup.

$ mpiexec -np 10 mpish2

Once MPISH2 is running, a command pipeline can be executed by using the
following script.

$ prog1 | prog2

This script is run by every MPISH2 instance, resulting in 10 instances of both
prog1 and prog2, connected rankwise into a pipeline. That is, standard output
produced by the rank 0 instance of prog1 is fed into the standard input of the
rank 0 instance of prog2, and so forth. Additional utilities are provided, allowing
interrank manipulation of I/O streams. These execution semantics provide more
flexibility and scalability than those afforded by traditional parallel shells and
MPI process management systems.

4 Implementation

In this section, we discuss our implementation of MPISH2, and present several
utilities we have written to provide a full user environment.

4.1 Shell Modifications

The implementation of MPISH2 is based on a modified version of the Minix [14]
shell, included with Busybox [3]. Three main modifications have been made to
this shell, corresponding to the issues described in the previous section.

First, MPISH2 needs to be able to provide a discrete PMI instance for each
(potentially) parallel child program executed. PMI is a distributed database, in-
cluding put, get, and fence operations. A new PMI instance is initialized when-
ever a new process is forked. Each is initialized with an MPI communicator that
describes the current execution context. During client execution, each client pro-
gram can connect to this PMI instance via a socket and issue commands.

Many of the commands, like put, which stores a value in a distributed database,
will be serviced locally; however, some, like get or fence, may require communi-
cation with other parts of the same PMI instance. All communication operations
are implemented by using MPI collective and asynchronous operations. Fence is
implemented by using MPI Barrier. The implementation of get is more compli-
cated. When a PMI instance receives a get request, it checks whether the value is
already stored locally. If it is, the request is immediately serviced. If not, a mes-
sage is sent to the PMI instance with the next higher rank modulo communicator
size. Each process also receives queries for unknown values asynchronously. If the
local process has the value, it responds to the querier; otherwise, it forwards the
request to the next rank in the PMI instance.

Each PMI instance in the same MPISH2 process uses a discrete communi-
cator that has been MPI Comm dup’ed at initialization time. This allows largely
simultaneous execution of multiple parallel client programs; the only blocking
operation used in the MPI implementation of PMI is the barrier used in the PMI
fence operation.

The second major modification is driven by the fact that MPISH2 is designed
to run parallel programs—that is, a set of processes grouped into a single co-
hesive entity. To support this, we added a stack of parallel program execution
contexts to MPISH2. When MPISH2 begins execution, its initial execution con-
text corresponds to its MPI COMM WORLD. However, as the script executes, the
parallel execution context is split and joined based on conditional logic. Nested
control flow statements result in a deeper stack of execution contexts, each with
a corresponding MPI communicator.

The third, and perhaps most complex, modification was to the control flow
construct to manipulate the current parallel execution context. In a typical serial
shell, control flow constructs use only return codes and have no side effects. In
MPISH2, however, control flow constructs also affect the parallel execution context
by calling MPI Comm Split after predicate execution. For example, in serial shells,
the shell executes the if predicate and either the true or false branch depending on
a zero or nonzero return code, respectively. MPISH2 executes the same operations
but with the addition of a call to MPI Comm Split using zero/nonzero exit status.
Other control flow constructs were similarly modified.

The main complexity of implementing these control flow changes centered on
while. Extending while to support parallel execution contexts required the addi-
tion of a parallel notion of while loop status. Normally, once the while predicate
evaluates to false, the loop is complete. In an MPISH2 while loop, each rank needs
to continue executing the loop predicate until all ranks evaluate to false.

None of these modifications proved complicated, and the overall semantics
of the MPISH2 remains close to the semantics of the Bourne shell. At the same
time, these modifications provide a wealth of new capabilities to Unix users.

4.2 Parallel Utilities

A parallel execution environment isn’t really complete without a set of parallel
programs useful for writing basic programs. These programs are analogous to
test or wc for serial shells. We have implemented a variety of small utilities,
suffixed with the .mpi extension, to address this issue. The first set is a series
of parallel predicates, suitable for use in control flow constructs. The following
is a list of basic parallel predicates, with a short description of each.

– rank.mpi displays the process’s rank in the current execution context.
– size.mpi displays the size of the current execution context.
– once.mpi exits with a return code of 0 once per physical node present.
– zoom.mpi provides access to scalable numeric reductions for the provided

argument. The predicate use of this utility returns 0 when the argument
falls within one standard deviation of the mean of all values.

Another group of utilities is used to move data between ranks in parallel pipeline
operations.

– pflatten.mpi sends all stdout streams to process 0.
– ptee.mpi forwards stdin from process 0 to all processes. It functions like a

parallel version of tee.
– pcoalesce.mpi coalesces stdout from all nodes, producing hostname delim-

ited lines on processor 0.
– bcast.mpi broadcasts the data from one process, specified as an argument,

to all other processes. This data is reproduced on stdout.

The final group of utilities comprises parallel analogues to serial utilities. These
utilities provide the most promise for new types of functionality, as these MPI
utilities provide the ability to use client systems as a broadcast tree and collective
analysis of data.

– stagein.mpi downloads a file from an http server and broadcasts to all
nodes, eventually writing it to disk on each.

– stageout.mpi uploads files, tagged with rank, to the fileserver from all
clients.

– rsync.mpi synchronizes files from process 0 to all other processes. This pro-
gram can handle all regular and special files.

– time.mpi times the execution of a parallel program, producing a single wall-
time result.

Each of these programs is a simple MPI program. Nothing special is required
to write a utility, so users can easily write custom, scalable MPISH2 utilities.

5 Usage Examples

MPISH2 is useful across the same broad range of problems as are standard shell
scripts, with the added ability to run concurrent, parallel programs. It can easily
be used for tasks ranging from the most trivial to those that can strongly ben-
efit from access to parallelism and scalable tools. In this section, we illustrate
the most interesting language features and use cases for MPISH2. We begin by
providing simple cases that show use of these features in isolation, and then
build up to several more complex examples that demonstrate the flexibility and
elegance of this approach.

5.1 Language Features

This first example demonstrates how conditional expressions interact with the
parallel execution context.

Parallel Execution Context Manipulation The following script splits the
current execution context into two: one consisting of up to the first four ranks,
and another consisting of the remainder. Both branches run a hello world pro-
gram demonstrating the size and details of each parallel process.

#!/usr/bin/env mpish2

if [‘rank.mpi‘ −lt 4] ; then
hello.mpi

else
hello.mpi

fi

Note that each of these branches can be further subdivided by running a second
conditional inside.

Workload Distribution Among Clients The second example begins a com-
mand pipeline that performs a file listing on rank 0, broadcasts this listing to
all clients, performs a local ls -l on each client, performs a local filter to exclude
nonzero-length files, and coalesces the results to rank 0.

#!/usr/bin/env mpish2

(test ‘rank.mpi‘ −eq 0 && find /path −type f) | \
ptee.mpi | xargs ls −l | awk ’{if ($5 == 0) print $0}’ | \
pcoalesce.mpi

Performing these same operations with traditional parallel shells would be dra-
matically less scalable, as all output processing would be performed on the head

node. Hence, the complete results of all commands would need to be transmitted
to the head node. Also, all processing of this output would be performed seri-
ally on this single node. This example demonstrates the ability to run different
programs across ranks during the course of a single command pipeline.

Scalable Utility Replacement The final case demonstrates the use of a scal-
able replacement for a standard Unix program, rsync. A simple invocation of
rsync can cause substantial problems on a scalable resource with a limited file-
server infrastructure. Each client will individually download data from the server
in a point-to-point fashion.

#!/usr/bin/env mpish2

rsync.mpi −av /src /dst

When run under MPISH2, this script is able to call a scalable replacement for
rsync that performs an internal broadcast of file metadata and contents. This
has the useful behavior of providing a constant load on the file service infrastruc-
ture, regardless of client scale; all per-client scaling is performed on the clients.
This technique was demonstrated in an earlier paper [6] but has been made much
more accessible by MPISH2.

5.2 Complex Examples

The following are more complicated examples of MPISH2 being used in common
cluster tasks.

Job Script This example is a job script for a queueing system. This script
runs the prologue, epilogue, and file staging commands once per physical node
(hostname). Of these commands, the prologue and epilogue are serial, while the
file staging commands are parallel. Once setup has completed, the user job is
run (under the user’s UID), and cleanup is performed. Not only can serial and
parallel programs be interchanged, but standard shell scripting mechanisms (like
the use of su) can also be used with parallel programs.

#!/usr/bin/env mpish2
user="${1}"
userscript="${2}"
indir="${3}"
outdir="${4}"

once.mpi
once=’’${?}’’
if [‘‘${once}’’ −eq 0] ; then 10

run the prologue once per node
/usr/sbin/prologue
if [! −z "${indir}"] ; then

su "${user}" stagein.mpi "${indir}"
fi

fi

su "${user}" mpish2 "${userscript}"

20

if [‘‘${once}’’ −eq 0] ; then
if [! −z "${outdir}"] ; then

su "${user}" stageout.mpi "${outdir}"
fi
/usr/sbin/epilogue

fi

Several active execution contexts are used in this program. Two instances of a
context containing each physical node are created by the script. The first is used
for job setup (e.g., prologue and file staging), and the second is used for job
cleanup. The user’s job script is executed in the global execution context.

Benchmarking Scripts This example provides a basic illustration of concur-
rency. Benchmarking scripts are often implemented as a for loop that sequen-
tially executes program runs with different sizes, for example, a script such as
the following.

#!/bin/sh
for i in 2 4 8 16 32; do

time mpirun −np $i program
done

Such a script does a reasonable job of running benchmarks; however, numerous
processor resources are wasted in the first few iterations of the loop if the full
number of nodes is reserved for the full duration of the execution.

This process can be run far more efficiently if test cases are executed concur-
rently. First, the application is run on all nodes. Second, the nodes are grouped
into partitions, each with a different power of two size, up to half the total num-
ber of nodes. Each of these partitions runs a different size test case concurrently.
The following example is a concurrent benchmarking script. It is assumed that
the script is run on the largest size being benchmarked, in this case 32 nodes.

#!/usr/bin/env mpish2
rank=‘rank.mpi‘

slot="0"
basenum="2"
count="1"

time.mpi −t "size=32" progname
10

while ["$slot" −eq "0"] ; do
remainder=‘expr "$rank" − "$basenum"‘
if ["$remainder" −lt "$basenum"] ; then

slot="$count"
else

basenum=‘expr "$basenum" "*" "2"‘
count=‘expr $count + 1‘

fi
done

20

case $s`ot
1)
time.mpi −t "size=2" progname
;;

2)
time.mpi −t "size=4" progname
;;

3)
time.mpi −t "size=8" progname
;; 30

4)
time.mpi −t "size=16" progname
;;

esac

6 Conclusions and Further Work

We have presented MPISH2, a parallel process manager for MPI programs that
provides an interface almost indistinguishable from the standard Unix Bourne
shell. It enables the use of MPI in Unix environments in a seamless manner
not previously possible. The addition of scalable utilities and simple, Bourne
shell-style control to Unix environments enables a variety of system and user
tasks to be implemented in a scalable and elegant fashion. Moreover, users can
now distribute macroscopic tasks scalably across pools of clients and explicitly
control how communication occurs in command pipelines.

MPISH2 creates a venue in which scalable Unix utilities can be used. The
range of current utilities available is clearly insufficient for all of the possible use
cases. Hence, much of the future work will consist of identifying tasks that would

be better performed in parallel. Also, one current limitation of MPISH2 is that
job control has not been parallelized; it is unclear whether such parallelization
is needed, but the issue should be investigated.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357.

References

1. S. R. Bourne. An introduction to the Unix shell. Bell System Technical Journal,
57(2):2797–2822, July-Aug 1978.

2. Ron Brightwell and Lee Ann Fisk. Scalable parallel application launch on Cplant.
In Proceedings of SC 2001, 2001.

3. Busybox home page. http://www.busybox.net.
4. R. Butler, N. Desai, A. Lusk, and E. Lusk. The process management component

of a scalable system software environment. In Proceedings of the 5th IEEE Inter-
national Conference on Cluster Computing (CLUSTER03), pages 190–198. IEEE
Computer Society, 2003.

5. R. Butler, W. Gropp, and E. Lusk. A scalable process-management environment
for parallel programs. In Jack Dongarra, Peter Kacsuk, and Norbert Podhorszki,
editors, Recent Advances in Parallel Virutal Machine and Message Passing Inter-
face, number 1908 in Springer Lecture Notes in Computer Science, pages 168–175,
September 2000.

6. Narayan Desai, Rick Bradshaw, Andrew Lusk, and Ewing Lusk. MPI cluster sys-
tem software. In Dieter Kranzlmuller, Peter Kacsuk, and Jack Dongarra, editors,
Recent Advances in Parallel Virutal Machine and Message Passing Interface, num-
ber 3241 in Springer Lecture Notes in Computer Science, pages 277–286. Springer,
2004.

7. Narayan Desai, Andrew Lusk, Rick Bradshaw, and Ewing Lusk. MPISH: A parallel
shell for MPI programs. In Proceedings of the 1st Workshop on System Management
Tools for Large-Scale Parallel Systems (IPDPS ’05), Denver, Colorado, april 2005.

8. R. Flannery, A. Geist, B. Luethke, and S. L. Scott. Cluster command & con-
trol (C3) tools suite. In Proceedings of the 3rd Distributed and Parallel Systems
Conference. Kluwer Academic Publishers, 2000.

9. David G. Korn, Charles J. Northrup, and Jeffery Korn. The new Korn shell. The
Linux Journal, 27, July 1996.

10. Message Passing Interface Forum. Document for a standard message-passing inter-
face. Technical Report CS-93-214 (revised), University of Tennessee, April 1994.
Available on netlib.

11. MPICH2. http://www.mcs.anl.gov/mpi/mpich2.
12. Emil Ong, Ewing Lusk, and William Gropp. Scalable Unix commands for parallel

processors: A high-performance implementation. In Y. Cotronis and J. Dongarra,
editors, Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face, volume 2131 of Lecture Notes in Computer Science, pages 410–418. Springer-
Verlag, September 2001.

http://www.busybox.net

13. Pdsh:parallel distributed shell. http://www.llnl.gov/linux/pdsh/pdsh.html.
14. Andrew Tannenbaum. Operating Systems, Design and Implementation. Prentice

Hall, 1987.
15. K. Thompson. The Unix command language. Structured Programming, pages

375–384, 1975.

http://www.llnl.gov/linux/pdsh/pdsh.html

The submitted manuscript has been created by UChicago Argonne, LLC as
Operator of Argonne National Laboratory (”Argonne”). Argonne, a U.S. De-
partment of Energy Office of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government retains for itself, and others act-
ing on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the Government.

	A Composition Environment for MPI Programs
	Narayan Desai, Ewing Lusk, Rick Bradshaw

