
Multilingual Interfaces for Parallel Coupling in

Multiphysics and Multiscale Systems

Everest T. Ong1, J. Walter Larson23, Boyana Norris2, Robert L. Jacob2,
Michael Tobis4, and Michael Steder4

1 Department of Atmospheric and Oceanic Science, University of Wisconsin,
Madison, Wisconsin, USA,

{eong,larson,norris,jacob}@mcsanl.gov
{steder,tobis}@gmail.com

2 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, USA

3 ANU Supercomputer Facility, The Australian National University, Canberra ACT
0200 Australia

4 Department of Geophysical Sciences, University of Chicago, Chicago, IL USA

Abstract. Multiphysics and multiscale simulation systems are emerg-
ing as a new grand challenge in computational science, largely because
of increased computing power provided by the distributed-memory par-
allel programming model on commodity clusters. These systems often
present a parallel coupling problem in their intercomponent data ex-
changes. Another potential problem in these coupled systems is language
interoperability between their various constituent codes. In anticipation
of combined parallel coupling/language interoperability challenges, we
have created a set of interlanguage bindings for a successful parallel cou-
pling library, the Model Coupling Toolkit. We describe the method used
for automatically generating the bindings using the Babel language in-
teroperability tool, and illustrate with short examples how MCT can be
used from the C++ and Python languages. We report preliminary perfor-
mance reports for the MCT interpolation benchmark. We conclude with
a discussion of the significance of this work to the rapid prototyping of
large parallel coupled systems.

1 Introduction

Multiphysics and multiscale models are emerging or are in active use in many
fields, including meteorology and climate, space weather, combustion and re-
active flow, fluid-structure interactions, material science, and hydrology. Mul-
tiphysics models portray complexity stemming from the mutual interactions
among a system’s many constituent subsystems. Multiscale models depict com-
plex phenomena originating in interactions between a system’s multiple preva-
lent spatiotemporal scales. In both multiphysics and multiscale models, these
interactions are called couplings, and thus they are coupled models.

Coupled systems are very demanding computer applications and often require
high-performance computing for their solutions. Most HPC platforms today are

2

distributed-memory multiprocessor clusters programmed with a message-passing
programming model. This approach creates a new concomitant problem—the

parallel coupling problem (PCP)[1]. Specifically, implementing couplings between
message-passing models that solve their equations of evolution on distributed
domains entails the description, transfer, and transformation of distributed data.
Thus the PCP is an important emerging problem in computational science.

Typical coupled models have purpose-built ad hoc solutions to the PCP. For
example, numerous coupling packages exist in the climate area alone, including
Ocean-Atmosphere-Sea Ice-Surface (OASIS; [2]) coupler, Projet D’Assimilation
par Logiciel Multi-methodes (PALM; http://cerfacs.fr/ palm), the Flexible Mod-
eling System (FMS; http://gfdl.noaa.gov/fms/), and the Earth System Modeling
Framework (ESMF; http://esmf.ucar.edu). Each of the cited examples has its
own custom (and slightly different) solution to the same underlying problem
(the PCP), but implemented with numerous domain-specific assumptions (e.g.,
mesh descriptions based on Arakawa grids from geophysical fluid dynamics).
The PCP is sufficiently widespread across many distinct scientific fields that an
application-neutral software solution is desirable.

MCT5 is an open-source package that supports rapid development of par-
allel coupling interfaces between MPI-based parallel codes. MCT is in active
use in numerous applications, most notably as coupling middleware for CCSM6,
and as a prototype coupling layer for the WRF7. MCT is highly scalable and
performance portable, supporting both vector and commodity microprocessor
architectures. Its Fortran-based API is naturally compatible with scientific ap-
plications, as Fortran remains the dominant programming language for science.
MCT’s programming model is minimally invasive, and scientific-programmer-
friendly.

Here we report results of our work to broaden the applicability of the MCT
programming model from its native Fortran API. Our motivations for extending
MCT to other languages are 1) to broaden MCT’s applicability from that of
a Fortran-based toolkit to a callable framework that allows one to compose
parallel coupling mechanisms in multiple programming languages, 2) to allow
coupling of separately developed codes implemented in different languages, and
3) to leverage MCT’s robust and efficient Fortran compute kernels and build
coupling mechanisms in languages better suited to object-oriented programming
(OOP). The strategy we have chosen is to create a set of multilingual bindings
that can be installed on top of the MCT code base, rather than making them
an inextricable part of MCT. This separation of concerns is in keeping with
the MCT philosophy of offering a minimally invasive programming model, and
will be addressed in some detail in Section 3. We believe that the outcome of
the work reported here will enable rapid prototyping of parallel coupled models
implemented in different languages, and should be of great interest to both
current and would-be multiphysics and multiscale modeling teams.

5 Model Coupling Toolkit, http://www.mcs.anl.gov/mct
6 The Community Climate System Model, http://www.ccsm.ucar.edu/
7 Weather Research and Forecasting Model, http://wrf-model.org

3

2 The Model Coupling Toolkit

MCT [1, 3] is a Fortran toolkit that eases the programming of parallel couplings
in MPI-based applications. MCT addresses the parallel data processing part of
the PCP, while maximizing developer flexibility in choices regarding parallel
coupled model architecture. MCT achieves this by providing a set of Fortran
modules designed to emulate object oriented classes and methods8 and a library
of routines that perform parallel data transfer and transformation. These classes
and methods amount to programming shortcuts that are used à la carte to create
custom parallel couplings. MCT supports parallel coupling for both serial and
parallel compositions—and combinations thereof—and also supports single and
multiple executables.

MCT has nine classes for use as parallel coupling building blocks. Three
datatypes constitute the MCT data model, encapsulating storage of multi-field
integer- and real-valued data (AttrVect), the grids or spatial discretizations on
which the data reside (GeneralGrid), and their associated domain decompositions
(GlobalSegMap). MCT’s data transfer facility’s fundamental class is a lightweight
component registry (MCTWorld) containing a directory of all components to be
coupled and a process rank translation table supporting intercomponent mes-
saging. One-way parallel data transfer message scheduling is encapsulated in the
Router class, and this function for parallel data redistribution is embodied in
the Rearranger. Data transformations supported directly by MCT are handled
by three additional classes. The Accumulator is a set of time-integration registers
for state and flux data. MCT supports regridding of data in terms of sparse linear
transformations, with user-supplied transform coefficients stored in coordinate
(COO) format by the SparseMatrix class. The SparseMatrixPlus class encapsu-
lates matrix element storage and the necessary communications scheduling for
parallel matrix-vector multiplication.

MCT has a library of routines that manipulate MCT datatypes to perform
parallel coupling, supporting both blocking and non-blocking parallel data trans-
fer and redistribution. MCT’s transformation library routines support 1) parallel
linear transforms used for intergrid interpolation; 2) time accumulation of flux
and state data; 3) computation of spatial integrals required for flux conservation
diagnoses; and 4) merging of outputs from multiple models for input to another
model.

MCT is invoked through the use statement of Fortran90/95. One uses MCT
modules to gain access to MCT datatype definitions and library interfaces, one
declares variables of MCT datatypes to express distributed data to be exchanged
and transformed, and one invokes MCT library routines to perform parallel data
transfer and transformation. This is analogous to importing a class, instantiat-
ing an object which is a member of that class, and invoking the class methods
associated with the object. A simple example of how MCT is used to construct

8 The choice of Fortran as MCT’s implementation language was driven by Fortran’s
continuing dominance as the language of choice in scientific programming. The de-
velopers of MCT implemented OOP features manually in Fortran, and the use of
the terms class and method follow Decyk et al. [4].

4

a GlobalSegMap domain decomposition descriptor is shown in the code fragment
below. More detailed examples MCT usage can be found in [1, 3] and in the ex-
ample codes bundled in the MCT source distribution, which can be downloaded
from the MCT Web site.

use m_GlobalSegMap, only : GlobalSegMap, GlobalSegMap_Init => init

implicit none

type(GlobalSegMap) :: AtmGSMap

integer, dimension(:) :: starts, lengths

integer :: myRoot, myComm, myCompID ! MPI communicator, root process

integer :: myCompID ! MCT component ID

! initialize segment start and length arrays starts(:) and lengths(:)...

:

! Create and initialize MCT GlobalSegMap

call GlobalSegMap_init(AtmGSMap, starts, lengths, myRoot, myComm, &

myCompID)

3 Construction of The Multi-Lingual Interfaces for MCT

The MCT API is expressed using Fortran derived types and pointers, compli-
cating considerably the challenge of interfacing MCT to other programming lan-
guages. This is due to the lack of a specific standard for array descriptors in For-
tran90/959. Thus, interfacing available contemporary Fortran to other languages
remains notoriously difficult. One solution is to hard-code wrappers, which can
be cumbersome, time-consuming, hard to maintain, and error-prone. The only
automatic solution known to the authors is a vendor-by-vendor implementation
of array descriptors such as CHASM[5].

Our multilingual interfaces are defined using the Scientific Interface Defini-
tion Language (SIDL). These interfaces are processed by a language interoper-
ability tool called Babel[6], which leverages the vendor-specific array descriptors
provided by CHASM. Babel currently supports interoperability between C, f77,
Fortran90/95, C++, Java, and Python. Babel is used to generate glue code from
an iterface description, thus avoiding modification of the original source code.
This has the important advantage of separation of concerns; that is, we view
language interoperability as a distinct problem from the algorithmics of parallel
coupling. Thus MCT’s scientist-friendly Fortran-based programming model is
untouched, while langauage interoperability is available to those who need it.
Our use of Babel enables us to create multilingual MCT bindings and distribute
them as a separate package that references MCT. This approach superior to
ESMF, whose fundamental types (e.g., ESMF Array), are implemented in C for
interfacing ESMF with possible future C applications, while important func-
tions (such as Regrid) are implemented in Fortran. Language interoperability is
internal to the ESMF software, not necessarily a user feature.

9 This has been rectified by the BINDC specification in Fortran2003, but this standard
is only now beginning to be implemented by compiler vendors.

5

As mentioned earlier, the SIDL interfaces and classes for MCT are processed
by Babel to generate interlanguage “glue” code to bridge the caller/callee lan-
guage gap. This glue code comprises skeletons in the callee’s programming lan-
guage (Fortran in the case of MCT), the internal object representation (IOR),
which is implemented in C, and stubs that are generated in the caller program-
ming language (e.g., C++ and Python). We have inserted calls to the MCT
library in the Babel-generated implementation files that initially contain the
empty function definitions from the SIDL interfaces (we will refer to them as
.IMPL files). The IOR and stubs that provide the inter-language glue are gener-
ated by Babel automatically and require no modifications by the user. Working
MCT bindings and example codes for both C++ and Python can be downloaded
from the MCT Web Site. Included with the bindings are the Babel base classes
and other core pieces of glue code that must be compiled against a pre-installed
MCT, eliminating the need to install Babel (which can be nontrivial).

An example SIDL code block for the MCT AttrVect class and excerpt of the
associated .IMPL file for the skeleton code are shown in Figure 1. The directed
dotted grey arrows on the figure show the calling path by which an application
written in some non-Fortran language accesses MCT by first calling a stub in
the application’s implementation language, which in turn calls the C IOR, which
then calls the Fortran skeleton, and via it MCT.

Fig. 1. Schematic for SIDL/Babel-based generation of MCT’s multilingual interfaces
and calling path from applications in other languages back to MCT.

Our multilingual MCT bindings correspond to a subset of the MCT API
because at this time Babel does not support the use of optional arguments, a
Fortran feature that is widely used in MCT. For routines with only one or two

6

optional arguments, we have created static SIDL interfaces for each possible
combination of optional arguments. For some of MCT’s spatial integration and
merging routines, which have in some cases four or more optional arguments, we
decided to support only a subset of the possibilities, which will be expanded in
the future as needed.

4 The MCT Multilingual Programming Model

MCT’s native Fortran programming model described in section 2 consists of
module usage, declaration of derived types, and invocation of library routines.
The C++ and Python MCT programming models are analogous, but within
each language’s context. We will illustrate the differences in the respective pro-
gramming models with a simple example taken from the example code in the
MCT Fortran distribution and its C++ and Python counterparts. Below we
show code excerpts from the MCT multilingual example applications and the
original Fortran. The full example code demonstrates the kind of coupling found
in climate models such as CCSM, with focus on atmosphere-ocean interactions
via a third component called a coupler. The atmosphere, ocean, and coupler each
execute on their own respective pool of MPI processes, making this example a
parallel composition. The code fragments in this section are from the “coupler”
parts of the respective example codes, and are for the initialization of an MCT
GlobalSegMap domain decomposition descriptor.

4.1 C++

In C++, MCT exists as a namespace named MCT, and a collection of header files
containing class declarations, in one-to-one correspondence with the set of For-
tran modules in the original MCT source. The C++ MCT programming model
differs from Fortran as follows: module use is replaced with inclusion of a Babel-
generated header file; declaration is replaced with invocation of a no-argument
constructor; and library routines are invoked through calls to Babel-generated
C++ stubs that reference MCT functions. The code block below illustrates cre-
ation of an MCT GlobalSegMap in C++. The most subtle usage point is the use
of SIDL arrays required by the MCT C++ interfaces.

#include "MCT_GlobalSegMap.hh"

...

// Create SIDL arrays indexed (note starting index is 1 or

// compatibility with Fortran

int32_t dim1 = 1;

int32_t lower1[1] = {1};

sidl::array<int32_t> start =

sidl::array<int32_t>::createRow(dim1, lower1, lower1);

start.set(1, (myrank * localsize) + 1);

...

// Create an MCT GlobalSegMap domain decomposition descriptor

MCT::GlobalSegMap AtmGSMap = MCT::GlobalSegMap::_create();

AtmGSMap.initd0(start, length, 0, comm, compid);

7

4.2 Python

In Python, MCT exists as a package named MCT. The Python MCT pro-
gramming model differs from MCT’s native Fortran as follows: module use
is replaced with Python package import; declaration is replaced with invoca-
tion of a constructor; and library routines are invoked through calls to Babel-
generated Python stubs. The code block below illustrates creation of an MCT
GlobalSegMap in Python. Babel’s support of SIDL arrays in Python is handled
by the Numeric package, thus the creation of the arrays start and length as
Numeric arrays.

import Numeric

from MCT import GlobalSegMap

...

Create start and length arrays--only the ’start’ array shown here

start = Numeric.zeros(2,Numeric.Int32)

start[1] = (myrank*localsize)+1

...

Describe decomposition with MCT Global Seg Map

AtmGSMap = GlobalSegMap.GlobalSegMap()

AtmGSMap.initd0(start,length, 0,comm, compid)

5 Performance

Babel has been used successfully in various projects to generate interlanguage
bindings with low performance overheads (e.g., see [7]). We evaluated the perfor-
mance of the MCT C++ API for MCT’s atmosphere-ocean parallel interpolation
benchmark. The atmosphere-to-ocean grid operations are: 720 interpolation calls
to regrid a bundle of two fields, and two sets of 720 interpolastion calls to regrid
six fields. The atmospheric grid is the CCSM 3.0 T340 grid (512 latitudes by
1024 longitudes), and the ocean grid is the POP 0.1◦ grid (3600 × 2400 grid
points). We ran the experiments on the Jazz cluster in the Laboratory Comput-
ing Resource Center at Argonne National Laboratory. Jazz is a 350-node cluster
of 2.4 GHz Pentium Xeon processors connected by a Myrinet 2000 switch. The
compilers used in this study were Absoft 9.0 Fortan and gcc 3.2.3. Timings (in
seconds) for this benchamark for both MCT’s native Fortran and for the Babel-
generated C++ API are summarized in Table 1. The overhead decreases from
1.6% for small numbers of processors to less than one percent for larger num-
bers of processors, where the amount of work performed by MCT is enough to
amortize the cost of executing the interlanguage glue code for each call to MCT.

6 Conclusions

We have created a set of multilingual bindings for the Model Coupling Toolkit.
These bindings were created using the Babel language interoperability tool from

8

Table 1. Timings (in seconds) of the MCT A2O Benchmark

Number of Processors 8 16 32

Native Fortran 1985.6 1084.6 556.9

C++ via Babel 2016.5 1085.1 559.6

a SIDL description of the MCT API. The resultant glue code is sufficiently ro-
bust to support proof-of-concept example applications, and impose relatively lit-
tle performance overhead. The Babel-generated glue code and C++ and Python
coupling example codes are now publicly available for download at the MCT Web
site. The MCT programming model has been expanded beyond its native For-
tran, making this robust and well-tested parallel coupling package available for
use in coupling MPI-based parallel applications implemented in other languages.
This is a first step towards our long-term goal of enabling fast prototyping of
large, multilingual parallel coupled systems. The multilingual MCT bindings
are also capable of supporting coupling of parallel applications implemeted in
multiple programming language. We have employed them in a daring object-
oriented Python re-implementation of the CCSM coupler (pyCPL), resulting in
a Pythonic CCSM that supports Fortran models interacting via a Python cou-
pler. Promising preliminary peformance results are a matter for further study.

Acknowledgements: This work was supported by the US Department of Energy’s
Scientific Discovery through Advanced Computing under Contract DE-AC02-
06CH11357, by the National Science Foundation under award ATM-0121028,
and by the Australian Partnership for Advanced Computing.

References

1. Larson, J., Jacob, R., Ong, E.: The Model Coupling Toolkit: A new Fortran90
toolkit for building multi-physics parallel coupled models. Int. J. High Perf. Comp.
App. 19(3) (2005) 277–292

2. Valcke, S., Caubel, A., Vogelsang, R., Declat, D.: Oasis3 ocean atmosphere sea ice
soil user’s guide. Technical Report TR/CMGC/04/68, CERFACS, Toulouse, France
(2004)

3. Jacob, R., Larson, J., Ong, E.: M×N communication and parallel interpolation in
CCSM3 using the Model Coupling Tookit. Int. J. High Perf. Comp. App. 19(3)
(2005) 293–308

4. Decyk, V.K., Norton, C.D., Syzmanski, B.K.: Expressing object-oriented concepts
in Fortran90. ACM Fortran Forum 16(1) (1997) 13–18

5. Rasmussen, C.E., Sottile, M.J., Shende, S.S., Malony, A.D.: Bridging the language
gap in scientific computing: The CHASM approach. Concurrency and Computation:
Practice and Experience 18(2) (2006) 151–162

6. Dahlgren, T., Epperly, T., Kumfert, G.: Babel User’s Guide. CASC, Lawrence
Livermore National Laboratory. version 0.9.0 edn. (January 2004)

7. Kohn, S., Kumfert, G., Painter, J., Ribbens, C.: Divorcing language dependencies
from a scientific software library. In: Proc. Tenth SIAM Conference on Parallel
Processing in Scientific Computing, Portsmouth, VA (August 2001)

