Extensive Chaos in Rayleigh-Bénard Convection
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Using large-scale numerical calculations we explore spatiotemporal chaos in Rayleigh-Bénard con-
vection for experimentally relevant conditions. We calculate the spectrum of Lyapunov exponents
and the Lyapunov dimension describing the chaotic dynamics of the convective fluid layer at con-
stant thermal driving over a range of finite system sizes. Our results reveal that the dynamics of
fluid convection is truly chaotic for experimental conditions as illustrated by a positive leading order
Lyapunov exponent. We also find the chaos to be extensive over the range of finite sized systems in-
vestigated as indicated by a linear scaling between the Lyapunov dimension of the chaotic attractor

and the system size.

PACS numbers: 05.45.Jn,05.10.-a,47.20.Bp,47.52.+j,47.54.-4

Many open challenges in science and engineering are
due to the complex dynamics of spatially-extended sys-
tems that are driven far-from-equilibrium [1]. Examples
include the weather and climate, the trajectories of hur-
ricanes, earthquakes, the patterns of growing colonies of
microorganisms, manufacturing uniform materials from a
melt, and the convection of suspended organisms in the
oceans and rivers. These systems form intricate spatial
patterns that affect the transport of mass, momentum,
and energy which then affect the spatial patterns. These
interactions are often nonlinear and present a significant
obstacle to furthering our understanding of many real-
world systems. A common feature of spatially-extended
nonequilibrium systems is spatiotemporal chaos, where
the dynamics are aperiodic in time and space (aperiodic
time dynamics alone is often referred to as chaos). A
great deal of progress has been made in understanding
spatiotemporal chaos from studies of simplified models of
spatially extended systems. However, it remains unclear
whether these insights apply to experimentally accessible
systems. In this Letter we present large-scale calculations
that shed new insight upon the spatiotemporal chaos
of an experimentally accessible system. Computations,
such as these, provide a quantitative link between theo-
retical ideas and the dynamics of spatiotemporal chaos
for real-world systems.

A particular open challenge is to understand the ori-
gins and structure of the active degrees of freedom of
complex dynamics in extended systems. However, in
most physical systems the complex dynamics is the re-
sult of many competing factors including strong exter-
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nal driving (such as fluid turbulence), many interacting
components (such as the complex regulatory networks
common in biology), or large system size (such the as
the weather and climate). Of these possibilities the case
of large system size is particularly promising in light of
the modern supercomputers and improved parallel algo-
rithms that are now available. In what follows we explore
numerically the development of spatiotemporal chaos in
a fluid system for fixed driving as a function of increasing
system size for the precise conditions of experiment.

Much of our current understanding of chaos has come
from studies where the chaotic attractor of the system
dynamics can be described geometrically in terms of only
a few chaotic degrees of freedom. However, it is not clear
how to proceed when the dimension of the attractor be-
comes large as is expected for most experimentally rele-
vant systems [2—4]. In this case geometrical descriptions
of the attractor become very difficult and prohibitive to
implement [5]. Many significant open questions remain.
For example, of the infinite degrees of freedom in a con-
tinuous system (actually several million degrees of free-
dom on a computer) how many are excited? What are
the origin, structure, and dynamics of the chaotic degrees
of freedom? How do these chaotic degrees of freedom en-
ter the dynamics as the system size is increased? Are
there important features of the striking visual patterns
of many nonequilibrium systems that significantly con-
tribute to spatiotemporal chaos?

It is possible to begin to address these questions by
appealing to the defining feature of chaos; the exponen-
tial separation of trajectories of solutions in phase space
from solutions that originate from nearly identical initial
conditions [5]. The separation in phase space is quan-
tified by the spectrum of Lyapunov exponents \; where
1 =1,..., N with )\; arranged in descending order. The
leading order exponent A; describes the growth of the



line separating two trajectories in phase space, A1 + Ao
describes the growth of a two-dimensional area of initial
conditions, and Zf\il A; describes the growth of an N-
dimensional ball of initial conditions. For many practical
systems there will be a finite number of exponents that
yield a positive result when added together. The exact
number of exponents required for the sum to vanish cor-
responds to the dimension of the ball of initial conditions
that will neither grow nor shrink under the dynamics
(often called the Lyapunov dimension D) ). Given only
the Lyapunov exponents, D, can be determined from
the Kaplan-Yorke formula Dy = k + Si/|Ag+1|, where k
is the largest n for which S, = >°1" | A; > 0 [6]. The
value of D) is the minimum number of active degrees of
freedom that contribute to the chaotic dynamics [7, 8.
The Lyapunov exponents are extremely difficult to mea-
sure experimentally since it is usually not possible to be-
gin experiments from slightly different initial conditions
and the perturbations quickly grow beyond the linear
regime as required by the linearization in the definition
of the Lyapunov exponents. In addition, the Lyapunov
exponents are also computationally intensive to calculate
since an additional linearized solution must calculated si-
multaneously for each desired exponent. However, with
the advent of large supercomputers and improved nu-
merical algorithms these calculations are now possible
for experimentally accessible systems as we show here.

Ruelle [9] was the first to conjecture that for very large
systems the Lyapunov dimension should scale extensively
with the size of the system, Dy o I'% where T is the
system size and d; is the number of spatially extended
dimensions. Extensive chaos has been confirmed in a
variety of simple model systems [10-15] and for experi-
mentally motivated systems with non-physical boundary
conditions [2, 3]. However, these arguments have not
been tested for experimentally realistic systems.

We study the spatiotemporal chaos of Rayleigh-Bénard
convection (RBC) given by the buoyancy driven convec-
tion of a thin layer of fluid heated uniformly from below.
RBC is a canonical pattern forming system in which the-
oretical and experimental research continues to provide
important new insights into the dynamics of nonequilib-
rium systems. Governing the fluid motion of Rayleigh-
Bénard convection are the well known Boussinesq equa-
tions, a set of nonlinear partial differential equations
which yield the fluid velocity, pressure, and tempera-
ture as a function of time [1]. The control parameter
R, where R is the Rayleigh number, is proportional to
the constant temperature difference across the fluid layer
and is the key parameter that is varied during a typi-
cal convection experiment; small values of R correspond
to simple often time-independent flows; intermediate val-
ues of R correspond to complex chaotic flows as studied
here (see Fig. 1); and very large values of R correspond
to strongly driven turbulent flow. It is now possible to
solve these equations numerically for convection domains
with the precise conditions of experiment using a geo-
metrically flexible and highly efficient, parallel, spectral

FIG. 1: (Color online) The chaotic flow field from numerical
simulations in three different aspect ratios domains: a) I' =
4.72, b) I' = 10, I' = 15. Shown is the two-dimensional
temperature field at mid-depth. Red indicates warm rising
fluid and blue indicates cool falling fluid. In all simulations
R = 6000 (R/R. = 3.5 where R. is the critical Rayleigh
number), o = 1, with a numerical time step At = 0.0005.

element method [16] (for its use with RBC see for ex-
ample [17]). In our simulations we impose the no-slip
velocity condition to all material surfaces and the lateral
sidewalls are considered perfectly conducting.

The Lyapunov exponents are computed by measuring
trajectory separation in N, independent linearized com-
putations (where N) is the number of desired Lyapunov
exponents) [7, 18]. A driving Rayleigh-Bénard convec-
tion system satisfying the Boussinesq equations and sub-
ject to appropriate boundary conditions is computed in
parallel with the N, linearized equations. The growth
of the magnitudes of the perturbation vectors yields the
separation in phase space trajectories from which one can
deduce the finite time Lyapunov exponents [19].

Increasing the size of a weakly driven spatially-
extended system commonly results in spatiotemporal
chaos. For example, the pattern dynamics of RBC de-
pend upon the aspect ratio of the convection domain (for
a cylindrical domain the aspect ratio I' =radius/depth).
This was illustrated experimentally in the early pioneer-
ing work of Ahlers and Behringer where heat trans-
port measurements indicated a transition from steady to
chaotic dynamics by simply increasing the aspect ratio
of the convection layer [20]. For smaller domains the lat-
eral boundaries play a significant role in determining the
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FIG. 2: (Color online) (a) The Lyapunov spectrum A(i/T'?) as
a function of i/T'? where i = 1...N and N is the number of
Lyapunov exponents. Results are shown for 6 different aspect
ratios, the solid line is a sixth order polynomial curve fit to
the data for I' = 15. (b) The calculation of the Lyapunov
dimension §) as determined by integrating the curve fit for
I’ = 15 from panel (a).

dynamics and, as the system size increases, there is a
transition to bulk dominated dynamics. In the following
we explore spatiotemporal chaos in RBC over a range of
system sizes where this transition from boundary to bulk
dominated dynamics is occurring. In particular, fluid and
driving parameters are chosen to correspond to the spi-
ral defect chaos state [21] which consists of the complex
time-dependent dynamics involving the annihilation and
destruction of left and right-handed spiral shaped convec-
tion roll structures in large domains [21, 22]. Theoreti-
cal and experimental investigations of spiral defect chaos
in RBC have played an important role in the study of
pattern formation. The spiral defect chaos state is only
observed in large aspect ratio domains (for cylindrical

convection cells ' 2 20). For systems smaller than this,
as studied here, the lateral walls of the convection do-
main are important and the dynamics exhibit spatiotem-
poral chaos that consists of the complicated interactions
of many defects including wall foci, dislocations, targets
and roll pinch-off events (see Fig. 1). In this regime, the
size of the system significantly affects the dynamics and
our study explores spatiotemporal chaos in a finite sized
system which is important for many real-world applica-
tions (many naturally occurring systems exhibit complex
dynamics with system sizes that can not be approximated
as infinite or periodic). In light of this we perform nu-
merical simulations for the precise conditions of experi-
ment and we study spatiotemporally chaotic RBC over a
range of aspect ratios at fixed driving (given by constant
R). Information of the Lyapunov spectra and Lyapunov
dimension yield new insight into the basic origins and
nature of spatiotemporal chaos for an experimentally ac-
cessible system.

60

50

40

] 1 ]
0 50 100 ) 150 200 250
r

FIG. 3: Extensive chaos in RBC as illustrated by the linear re-
lationship between the Lyapunov dimension D) and system
size I". The error bars are determined from multiple simu-
lations for each aspect ratio starting from different random
initial conditions for the driving solution. Each data point is
the result of 2 numerical simulations except at I' = 4.72 and
I" = 10 which are for 3 different initial conditions. If an error
bar is not visible it is because the runs yielded nearly identical
results for D.

We have performed a series of large-scale numerical
calculations to determine the Lyapunov spectra and Lya-
punov dimension of RBC for six aspect ratios spanning
4.72 < T < 15 with thermal driving given by R/R. = 3.5
(where R, = 1708 is the critical Rayleigh number at
which convection occurs) and Prandtl number o = 1.
The driving RBC solution is first initiated from random
thermal perturbations and allowed to continue until the
initial transients have subsided, at which point it is as-
sumed that the dynamics are on the attractor (an esti-
mate for this time is given by I'? which is the nondimen-



sional time required for heat to diffuse a distance T") [23].
At this time, N, independent linearizations are initiated
from random initial conditions and these simulations are
then allowed to continue at least another I'? time units.
In order to keep the magnitude differences resolvable the
perturbation vectors are periodically Gram-Schmidt or-
thonormalized to yield the Lyapunov vectors. For each
aspect ratio two or three simulations were performed.

The spectra of Lyapunov exponents \; from these sim-
ulations are shown in Fig. 2. For extensive chaos the
Lyapunov spectra collapse on to a single curve, our re-
sults suggest that this is true for I' = 10. To indicate this
a sixth order polynomial is fit to the I' = 15 data and
is shown by the solid line. The deviations of the spectra
from this fit for the smaller aspect ratio domains is the
result of boundary dominated dynamics [19]. The Lya-
punov spectrum can be integrated to yield the dimension
density §y = D, /T'?, which is shown in Fig. 2(b) where
we find that ) =~ 0.25. Therefore, for an aspect ratio of
100 (a common size used in experiment) the Lyapunov
dimension would be D) = 2500 indicating the presence
of 2500 chaotic degrees freedom. In the work of Egolf et
al. [3] it was found that RBC exhibited extensive chaos in
large domains with nonphysical periodic boundary condi-
tions. Our work confirms these findings and furthermore
indicates that the chaos is also extensive over a range of
finite system sizes for experimental conditions.

The extensivity of the chaos is clearly illustrated in
Fig. 3 where the Lyapunov dimension is plotted as a
function of I'2. The slope of the solid line also yields
the dimension density. The dimension is extensive for
all of the aspect ratios explored except for the smallest
system (I’ = 4.72) where a deviation from extensivity is
apparent. An analysis of the flow field dynamics reveals
a transition from bulk to boundary dominated dynamics
over the range of system sizes explored [19]. Tt is interest-
ing to point out that even though the Lyapunov spectra

for I' > 4.72 do not collapse onto the curve fit in Fig. 2
describing the largest aspect ratio I' = 15 dynamics the
Lyapunov spectra still yield Lyapunov dimensions that
are extensive.

A volume I'* contains D, degrees of freedom which
suggests a natural length scale for an individual degree
of freedom that is given by ¢ = (D/T'%)~1/4: [1]. For
extensive chaos ¢ is independent of system size. Our sim-
ulations yield a chaotic length scale of £ ~ 2 which sug-
gests that an individual degree of freedom would occupy,
on average, an area of &2 ~ 4 (for reference, the width
of the convection rolls in Fig. 1 is approximately one).
This suggests that localized defect structures could con-
tribute significantly to spatiotemporal dynamics which is
corroborated from measurements of the dynamics of the
Lyapunov vector fields [3, 19].

Our results reveal that RBC is truly chaotic for ex-

perimental conditions and yield a positive leading order
Lyapunov exponent. In addition, spatiotemporal chaos
in RBC is extensive over a range of finite system sizes
including smaller domains whose dynamics are strongly
affected by the presence of lateral sidewalls. The precise
manner in which the geometry of the strange attractor
changes to maintain extensivity over this range remains
an open challenge. However, our results illustrate that
with the availability of supercomputers and improved nu-
merical algorithms such fundamental questions can now
be addressed quantitatively for the precise conditions of
experiment.
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