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Abstract— We present a PDE-constrained approach to opti- dielectric media and the solute charge distribution istega
mizing the electrostatic interactions between two biomolecules. as a set of discrete point charges.
These interactions play important roles in the determination of The estimated electrostatic energies are frequently sefu

binding affinity and specificity, and are therefore of significant . . . ; .
interest when designing a ligand molecule to bind tightly to in molecular design efforts, in which one often wishes to

a receptor. Using a popular continuum model and physically design a molecule, calledlgand, that can bind a specified
reasonable assumptions, the electrostatic component of the target, orreceptor with high affinity and specificity. Binding
binding free energy is a convex, quadratic function of the ligand  free energies between candidate ligands and the target can
charge Q|str|but|on. Tradl_tlonal optimization methods require be estimated using quite sophisticated methods (see, for
exhaustive pre-computation, and the expense has precluded a ; .

full exploration of the promise of electrostatic optimization in example, (13]). Hoyvever, f‘?r C_omputatlonal expediency the
biomolecule analysis and design. In this paper we describe an relative free energies of binding are often modeled much
approach in which the electrostatic simulations and optimiza- more simply as sums of electrostatic and non-electrostatic
tion problem are solved simultaneously; unlike many PDE- terms [14]. In these simpler models, the non-electrostatic
constrained optimization frameworks, the proposed method interactions between molecules are extremely short-ginge

does not incorporate the PDE as a set of equality constraints. d not ticular] iabl ith t 10 the t f
This co-optimization approach can be used by itself to solve un- @Nd NOU particularly varable with respect 1o the types o

constrained problems or those with linear equality constraints, atoms at the interface. Consequently, shape complemigntari
or in conjunction with primal-dual interior point methods to  at the binding site is thought to be necessary but not suiticie
solve problems with inequality constraints. Model problems for achieving tight binding. In contrast, the electrostati
demonstrate that the co-optimization method is computationally forces between molecules are long-range and can have
efficient and that it can be used to solve realistic problems. L o .

significant effects on the binding interaction. Therefaee

. INTRODUCTION promising approach for improving computational molecular

The electrostatic interactions between biomolecul design methodologies is to identify a ligand charge distrib
€ electrostatic interactions between biomolecules ¢ I?m, or multiple distributions, that have optimal electatic
play important roles in determining binding affinities and

B o ) interactions with the target. Such knowledge may suggest
specificities [1]-[3]. Methods for estimating these intera regions of design space that will have a relatively high

tions are theref_ore .|mp(_)rtant computatlonal tools [1]. [4]density of compounds that would be predicted to bind tightly
The task of estimation is challenging because electrgstati A rigorous optimization theory, based on linear-response

Interactions are Iong-range and involve many solvent WatWﬁeory, has been developed to identify optimal chargeidistr
molecules around the biomolecules of interest. Comput%-

. e utions for molecular design and analysis [15]-[18]. Led an
tional approaches that treat the s_olvent explicitly, sush ®idor were the first to investigate the possibility of optimi
Monte Ca_rlq.or moleculgr dynamics methqu .[5.]_[9] ar(?ng a ligand molecule’s charge distribution for binding to a
often prohibitively expensive, and .therefo.re implicit et target receptor [15]. They based their study on analyticall
Wivable spherical geometries and a multipole repregentat
of the ligand charge distribution. A series of papers by
%%gas and Tidor extended the optimization theory [16]-
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theory are frequently used [1], [3], [11], [12]. Frequently
these models treat the solvent and solute as homogene
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the electrostatic optimization framework has been somewha
hampered by the computational expense of setting up the
optimization problem. The Hessian matrix, which completel
describes the curvature of the objective function, reguée Q
expensive pre-computation whose cost scales linearly with e
the number of optimization variables. This paper presents a I
approach to solving these optimization problems without ex
plicitly calculating the Hessian matrix. This approach,ebh
we call co-optimization, resembles some PDE-constrained
optimization methods such as that of Biresal. [31], but
differs significantly from previously presented stratsgi€he
next section provides background on biomolecule electost Fig. 1. Mixed discrete-continuum electrostatics model.
ics, a method for numerical simulation of electrostatickpro
lems, and the electrostatic optimization theory. Sectibn |
describes the new coupled optimization/simulation methogquation formulation specialized to non-ionic solutiomsl a
and contrasts it with the traditional approach and other PDkhe boundary-element method (BEM) [40], [41], [44]-[46].
constrained optimization techniques. Section IV presents Several other formulations allow treatment of dilute ionic
set of numerical results demonstrating the computationgblutions [33], [42], [43], [47]; for clarity, however, we
efficiency of the new method and its application to a realistipresent only the simplest formulation.
molecular design problem. Section V summarizes the paperConsider the unbound ligand molecule. An induced sur-
and discusses areas for future work. face chargeap(r) forms at the dielectric boundarp
Il. BACKGROUND in response to the ligand charge distribution. The charge

) ) _ ) distribution satisfies the second-kind integral equation
A. A Mixed Discrete—Continuum Electrostatic Model N
& + &

, , o 0  Opu(r)dX
One model for studying biomolecule electrostatics is map,u(rﬂ—][ () A T —17
shown in Figure 1. Space is divided into two regions by (& —eu) Q IE) ! l
the surfaceQ: the biomolecule interior (region I) and the - _ 90 ¢ i
solvent exterior (region Il). Region | is a homogeneous on(r) /& 4me||r —ril|’
dielectric with low permittivitye;, which is typically between | 1o the subscripti denotes the unbound geometr,
2 and 4 [3]. The biomolecule charge distribution is modelegenotes the principal value integral, an¢r) denotes the

as a set o dl_?'::rete point charges located at the atomy,rmga) direction atr on the surface, which is defined to
centers, with the™ charge ar; and having valugj;. The  ,ine qutward into solvent. This integral equation may be
elgctros_tatlc potential () s§t|sf|.es a Poisson equat|_on Ngerived by replacing region Il with a medium of permittivity
th,'s region. The_ §o_|vent regionis a homogeneous: dlelectrgT" and forcing the electric field discontinuity across the same
with high permittivity &, which is usually approximately p,q,nqary to match the field discontinuity of the original two

that of bulk water. The potential in this region is assumed tgia|actric problem [40], [46], and can be written in operato
obey either the Laplace equation (in non-ionic solutions) gqm as

the linearized Poisson—Boltzmann equation (in dilute doni _

. . . Ax0pu=AuqL, (2)
solutions) [3]. The potential and the normal displacement _ S _
field are continuous at the interface [32] and the potentiavhereqy is the vector of partial atomic charges aAgland
satisfies regularity conditions at infinity [33]. The presen A1 are linear operators.
of the charges polarizes the high-dielectric solvent ared th The reaction potentialat theit ligand charge locatiom;
polarization produces aeaction potentialat the charge induced by solvent polarization in response to the charges
locations; one needs to calculate these potentials in dederd. may then be found by calculating the potential induced
evaluate the electrostatic energy of the system. Repiiagentby gpu(r):
the biomolecule as a union of van der Waals spheres and NdA

REAC . Opu(r’)

. o . o) = 3
rolling a probe sphere over this union allows the interfce o (i) o e || 1] 3

1)

between the regions to be defined as the set of points closest T

to the union that the probe sphere surface can reach [34hich in operator form is written

This is called the solvent-excluded, or molecular, surface REAC _ 4
o5 "= As0pu, 4)

B. Numerical Simulation of Electrostatics whereAg is the linear operator that maps the surface charge
The coupled PDE system described in Section II-A cadistribution to the reaction potentials.

be solved using any of a variety of numerical techniques: One can solve (1) numerically by defining a set of basis

finite-difference, finite-element, and boundary-elemeatim functions on the surface such that the unknown surface

ods have all been used [11], [33], [35]-[43]. We demonvariable o, y(r) can be reasonably well approximated as

strate the co-optimization approach using a simple integraa scaled sum of the basis functions. A finite-dimensional



square linear system is formed by forcing the integral tguadratic programs can be solved using standard techniques
satisfy a carefully chosen set of constraints [45], [46]eThonce the matriced,, Ly, and the vectorc have been
resulting matrix equatiodx= b is dense, unlike linear sys- calculated.

tems produced by finite-difference or finite-element meghod

To eliminate the prohibitivéd(n?) memory requirement and lll. COUPLING SIMULATION AND

O(n®) time costs associated with dense LU factorization or OPTIMIZATION

dense Krylov methods, Krylov methods such as GMRES [48). Co-optimization is a “Reverse-Schur-Complement”
are used in conjunction with approximate algorithms suchethod

as the fast multipole [49], [50], precorrected-FFT [51], or The essential idea of the co-optimization approach is that
FFTSVD [52], which can rapidly compute the required densghe Hessian’s Schur-complement structure can be exploited
matrix—vector products. The combination of Krylov methodsto solve the optimization problem without explicit calctie

effective preconditioners, and fast algorithms allow tiolu  of the Hessian. A simple example demonstrates the approach.
of the dense BEM systems in linear or near-linear time anthe linear system

memory [53]. e AX—b, @®
here A; € O™k Ay, € O™" and Az € 0K, with n > k,
as the same solutianas the linear system

C. Biomolecule Electrostatic Optimization Theory

Combining (2) and (4) allows the reaction potentials at th
ligand charge locations to be written explicitly as a linea
function of the charge values: [ 0 As } { X ] B [ b ]

9)
_ A1 A 0
PFEAC= AoA; AL (5) t e lly
. . . where we have introduced the auxiliary variagleBecause
The electrostatic free energy due to the reaction ﬁeld,lwhu:the original system (8) is the Schur complement of (9)

i« 1ATHREAC i 1 i
is 309y "" [32], is therefore a quadratic Hmt'_on of the e say that co-optimization is a reverse-Schur-complement
charge distributiorg.. The mapping_, = AsA, “A; is sym- method.

metric and p95|t|ve deﬂmFe.. , i The Hessian structure in (7) is a difference of two reverse
The quantity to be optimized is the electrostatic CompOg-hur complements, and the optimal solutigh to the

nent of the binding free energy, which is the difference i, .qnstrained problem may therefore be found by solving
electrostatic free energies between the bound and unboulrpl linear system

states. The ligand is assumed to be rigid, and the ligand

charge values are assumed to be the same in the bound and 0 B3 —Ag a —cC
unbound states. The bound-state electrostatic free enrgy —B1 B O | =] O |. (10)
a sum of four components: the reaction energies associated —A1 Az Opu 0

with the receptor and ligand charges, the energy associaigghtimization with sum-of-charge or other linear equality

with the interaction of the ligand charges with the receptor,gnstraints of the form.q. = b have solutions that satisfy a

charge-induced reaction field, and the Coulombic intevacti |jnear relation for their optimality (Karush-Kuhn-Tuckear

between the ligand and receptor charge distributions. Th&T conditions [54]), such as

receptor charge distribution is assumed to be fixed, and T .

therefore the first term is independent of the ligand charge [ Lo—Lu Ac ] { ac } _ [ —C ] (11)

distribution and can be dropped from the objective function Ac A b |’

The third and fourth terms can be grouped into a single vect@hd this block system can be transformed similarly.

¢, and then the bound-state ligand-dependent free energy can

be written as B. Primal-Dual Interior-Point Methods and Co-optimizatio

1+ 1 T 1+ T Primal—dual interior-point methods represent an extrgmel

AGpound= 50 BsB, "BaaL +C'aL = Sallod +C7 AL, (B)  powerful and efficient approach to solving inequality-

whereBy, B,, andBs denote the operators for the bound-stat€onstrained quadratic programs [55]. The electrostatic op

electrostatics problem. The component of the electrastafiMmization problems with linear inequality constraintsidze

binding free energy that is dependent on the ligand chargf@nsformed into the standard quadratic program

is thus . 1
minimize =x'Lx+x'c

1 1
AAG = Sl LeaL — 50l Luau +cTa. @ 2 15
_ , , subj. to Ax=b (12)
It has been shown that this quadratic functiomjofs convex
and x> 0.

for many physically reasonable bound- and unbound-state
geometries [17]. Equality constraints are usually appted This program has optimality conditions that are nonlinear
ensure that the total ligand charge has a particular integier the primal variable, the Lagrange multipliera, and
value [15], [19], [21], and in addition inequality constits the dual slackss. Primal-dual interior-point methods find
are often imposed so that the computed charges are limitedan optimal solution using a modified form of the Newton—
magnitude [21]. The resulting unconstrained or constdiineRaphson method that preserves positivity of the primal



variables and dual slacks at every iteration by biasing thepproaches, such as that of Biros and Ghattas [31], [58],
Newton—Raphson updates so that the pairwise prodggts the PDE variables are added as variables to the optimization
remain approximately equal. TH&" update is calculated by problem, and the PDE itself becomes an equality constraint.
solving a linear system such as The Schur preconditioner presented by Biros and Ghattas
allows efficient solution of the resulting system. In con-

T k
Lb;cL” _QC _OI g\(k - (13) rast in a co-optimization method one first writes down
% 0 xk ALK - the linear system to be solved and assumes the ability to
form the Hessian—vector product. The KKT equations—or
1k 0 the primal—dual interior-point Newton—Raphson equatiens
—F (X Ak 8 + 0 ) are then transformed using the reverse Schur complement.
oue It is possible that the co-optimization approach works only

where F(x,A,s) is the nonlinear function whose zeros ardn very restricted circumstances, such as the selectiomof a

optimal solutions wher(x,s) > 0 andxs = 0vi, S is the optimal distribution given a fixed basis set.

diagonal matrix with§¢ = s¢, X is defined similarly with the V. COMPUTATIONAL RESULTS

entries ofx along the diagonak is a vector of all ones, and '

p = x<Tsk/n wheren is the number of primal variables. This I this section we first present a set of simple examples

linear system can also be expanded using two reverse Scfgrdemonstrate the superior scaling of the co-optimization

complements to be solved using an implicit representatigR€thod relative to the explicit-Hessian method [57], [60].

of the Hessian matrix. The examples are similar to those described in Lee and
Explicit-Hessian techniques can easily be adapted usirlgdor’s initial work on electrostatic optimization [15]nl

regularization schemes [20], because the eigendecorigrositaddition, a problem with realistic geometries and charge

is readily computed. However, regularization in the codistributions has been optimized successfully and the co-

optimization is somewhat more subtle, and is a subject &ptimization results validated against the traditionat ap

current research [56]. The results reported in Section [\Rroach [57].

A rely on penalizing the eigenvectors corresponding to th& Spherical Geometries

smallest eigenvalues of an approximate Hessian, which ‘is

computed as = B3Ps,B; — AgPa,A1, Where P, and Pa, Figure 2 is an illustration of the ligand and ligand-recepto
denote the preconditioners for the bound- and unboune-st&20mplex, which are spheres of 8 and 82respectively. The
BEM simulations. ligand binds to the receptor such that the ligand center is
. . at (0, 0, 24) if the center of the complex is the origin. The
C. Comparison to Other Techniques receptor has 200 charges placed at random locations inside

1) Traditional Optimization Method: Until the co- the complex, subject to the constraints that charges were al
optimization method was developed, electrostatic optimiz separated by at least 2% and at least 13 away from the
tion problems were typically solved by explicitly calcutag  ligand and receptor surfaces. The receptor charge values we
the Hessian one column at a time. Thi#® column is chosen randomly from a uniform distribution between -0.85
calculated by setting thi&" ligand charge to 1 and all others and +0.85 times the electron charge. Twelve sets of ligand
to zero, simulating the bound and unbound states, with a naharges were generated. The sets varied in size from 4 to 120
receptor charge distribution in the bound state, and stibtracharges and placed at random locations in the ligand sphere,
ing the calculated potentials at the ligand charge locationsubject to the constraints that no charges be placed within
The computational expense required for this approach growss A of one another or within 2 of the ligand surface.
linearly with the number of charges and must be fully paid Each of the resulting twelve objective functions was
before optimization can begin [19], [29]. minimized without constraints. Figure 3 is a plot of the

2) An Alternative Implicit-Hessian Approacln alterna- computational expense required to solve the unconstrained
tive to the co-optimization approach might be to solve th@roblems using the implicit-Hessian method and using a
KKT or biased Newton—Raphson equations using a nestatindard method in which the Hessian is calculated explicit
Krylov method. Each Krylov iteration to solve (11) would For each of the optimization methods, the total number
then require simulation of the bound and unbound statesf GMRES iterations required for solution was counted
It can be difficult to precondition the outer Krylov methodand used as a cost metric. For all of these problems, the
effectively, and in the worst case may require as much dround-state and unbound-state geometries each consisted
more computation than that required to compute an explicitf 1810 spherical boundary elements [61], the FFTSVD [52]
Hessian [57]. algorithm was used to compress the BEM operators, and

3) PDE-Constrained OptimizationThe co-optimization preconditioned GMRES was run to a tolerance of le-5. A
technique differs markedly from other approaches to PDEliagonal preconditioner was employed for the BEM sim-
constrained optimization (see, for instance, referendé} [ ulations; the co-optimization preconditioner was a praduc
[58], [59]) in one important respect: in co-optimizatiohet of four block matrices that would exactly invert the co-
PDE constraints are not introduced formally into the matheptimization matrix (10) if the BEM preconditioner were ex-
ematical program as constraints. In most PDE-constrainedtt [56]. A 10 kcal/mok¥ penalty was assessed for exploring



(0,0,24) charges computed using the Hessian-implicit primal-dual
method closely matched those computed by explicitly calcu-
lating the Hessian using a finite-difference method; Figure
is a plot of the computed charge distributions. The inhibito
contains 26 charges to be optimized. Each primal-dual step
required the solution of a linear system of dimension greate
than 130,000 by preconditioned GMRES [48].

1 ‘ ‘ — Explicit Hessian | |
- -- Implicit Hessian

0.5r

Calculated Optimal Partial Charge
o

Fig. 2. Dielectric boundaries of the model problems. The liiana sphere ‘10 5 10 15 20 o5 30
with radius 8A centered atx = Oy=0z=24 A. The ligand— receptor Atom Index
complex is a sphere of radius Fcentered at the origin. All units ard.

Fig. 4. Primal-dual interior-point methods, used with cokoptation,
allow accurate computation of optimal charges [57].

eigendirections corresponding to eigenvalues less thah le
in magnitude.
V. DISCUSSION
This paper has described biomolecule electrostatic op-
timization and presented an efficient PDE-constrained ap-
proach to solve these problems. Unlike many other PDE-
constrained optimization techniques, the present approac
does not introduce the PDE into the optimization problem
x 1 as a set of equality constraints. Numerical results ilatstr
x | that the method’s computational cost grows very slowly as
X a function of the number of optimization variables and that
both unconstrained and constrained problems can be solved
using co-optimization. A realistic example demonstrates t
X ] viability of the approach for solving problems in biomolézu
analysis and design.
X 0000 Ot O O OO Although. this paper has presented a co-optimization
0 20 40 60 80 100 120 method built on boundary-element methods to solve the
Number of Ligand Charges underlying PDE, no conceptual difficulties preclude the use
Fig. 3. Computational expense required to solve unconstaaptimiza- Qf _Other numerical methods such a_s the ﬁn_ite'difference or
tion problems using explicit-Hessian calculation and theoptimization ~ finite-element methods. Such techniques might decrease the
technique. overall time required to set up the linear system of equation
to be solved, especially because forming the compressed
BEM operator can be expensive. Fast direct methods [64],
B. A Realistic Example: Chorismate Mutase and an In[65] may offer significant advantages for some types of
hibitor optimization problems, particularly when multiple bindin
The first large-scale implementation of the co-optimizatio geometries are being studied. Ultimately, however, thal tot
method was based on the pFFT++ boundary-element methodmputational cost of co-optimization depends criticalty
and the PETSc scientific computing libraries [51], [62]the availability of efficient methods for solving the trans-
[63]. This implementation was used to find the optimaformed KKT (or biased Newton—Raphson) equations.
charge distribution in a transition-state analog inhibitd Numerous questions about co-optimization remain to be
the enzyme chorismate mutase frdm coli [57], imposing studied. A detailed convergence analysis has yet to be
linear equality and linear inequality constraints. Thelropt  presented; the relationship between co-optimization and
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other PDE-constrained methods is being examined moyss]
thoroughly; finally, it is possible that electrostatic co-
optimization may offer even better efficiency in other typeg; 7
of QP solvers such as active-set methods [66]. Work in these
areas continues, and in addition the co-optimization nuitho [18]
presented here are being applied to study new problems [5@]
drug design.
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