
Extending the MPI-2 Generalized Request
Interface

Robert Latham, William Gropp, Robert Ross, and Rajeev Thakur

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA
{robl,gropp,rross,thakur}@mcs.anl.gov

Abstract. The MPI-2 standard added a new feature to MPI called gen-
eralized requests. Generalized requests allow users to add new nonblock-
ing operations to MPI while still making use of many pieces of MPI
infrastructure such as request objects and the progress notification rou-
tines (MPI Test, MPI Wait). The generalized request design as it stands,
however, has deficiencies regarding typical use cases. This is particularly
true in environments that do not support threads or signals, such as some
of the leading petascale systems (IBM BG/L and BG/P, Cray XT-3 and
XT-4). This paper examines those shortcomings, proposes extensions to
the interface to overcome them, and presents implementation results.

1 Introduction

In a message-passing environment, a nonblocking communication model often
makes a great deal of sense. Implementations have flexibility in optimizing com-
munication progress and, should asynchronous facilities exist, computation can
overlap with the nonblocking routines.

MPI provides a host of nonblocking routines for independent communication
and MPI-2 added nonblocking routines for file I/O as well. When callers post
nonblocking MPI routines they receive an MPI request object. Callers can then
determine the state of the nonblocking operation via this request object. Gener-
alized requests, added as part of the MPI-2 standard [1], provide a way for users
to define new nonblocking operations. Callers of these user-defined functions re-
ceive a familiar request object and can use the same test and wait functions as a
native request object. A single interface provides a means to test communication,
I/O and user-defined nonblocking operations.

Generalized requests have limitations that make them difficult to use in some
environments. Our experience with generalized requests comes from using them
to implement nonblocking I/O in the widely available ROMIO MPI-IO imple-
mentation [2].

In the absence of generalized requests, ROMIO defines its own ROMIO-
specific request objects to keep track of state in its nonblocking MPI-IO routines.
By using these custom objects, ROMIO does not need to know the internals
of a given MPI implementation. The usual MPI request processing functions,

2 Robert Latham, William Gropp, Robert Ross, and Rajeev Thakur

however, cannot operate on ROMIO’s custom objects, so ROMIO must also
export its own version of the MPI test and wait routines (MPIO TEST, MPIO WAIT,
etc). These custom objects and routines are not standards-conformant. MPI-2
implementations exist on many more platforms now. On such platforms, ROMIO
can use generalized requests to eliminate the use of its custom requests and
functions. Generalized requests allow ROMIO to adhere to the MPI standard
and provide fewer surprises to users of ROMIO’s nonblocking routines.

Unfortunately, the current definition of generalized requests makes it difficult
(or in some instances impossible) for us to implement truly nonblocking I/O. In
order for ROMIO to carry out asynchronous I/O with generalized requests, it
must spawn a thread. That thread can then test and indicate an asynchronous
operation has completed.

The MPI standard allows an implementation to make some or even all
progress when a test or wait call is carried out on a request, but does not allow
generalized requests to be implemented in a similar way. In this work we will
examine the shortcomings of the existing generalized request system, propose a
new extension to the generalized request design, and discuss the benefits this
extension affords.

2 MPI Requests vs. Generalized Requests

The MPI standard addresses the issue of progress for nonblocking operations
in section 3.7.4 of [3] and section 6.7.2 of [1]. MPI implementations have some
flexibility in how they interpret these two sections. The choice of a weak in-
terpretation (progress occurs only during MPI calls) or a strict interpretation
(progress can occur at any point in time) has a measurable impact on perfor-
mance, particularly when the choice of progress model affects the amount of
overlap between computation and communication [4].

In a similar, though not identical, manner the MPI-2 standard addresses the
issue of progress for generalized requests, defining a strict model. In fact, for
generalized requests the requirements are more strict (super-strict) in that no
progress can be made during an MPI call. When creating generalized requests,
users must ensure all progress occurs outside of the context of MPI. Typically a
thread or a signal handler provides the means to make progress.

Here’s how one would use generalized requests to implement a new non-
blocking operation. The new operation would call MPI GREQUEST START to get
an MPI request object. After the operation has finished its task, a call to
MPI GREQUEST COMPLETE marks the request as done. The completion call will
never be invoked by any MPI routine. All progress for a generalized request
must be done outside of the MPI context.

When we used generalized requests to implement nonblocking I/O routines in
ROMIO, we found this super-strict progress model limiting. In many situations
we do not want to or are unable to spawn a thread. We could effectively apply
generalized requests to more situations if we could relax the progress model. We
could also achieve a greater degree of overlap between computation and file I/O.

Extending the MPI-2 Generalized Request Interface 3

3 Asynchronous File I/O

Before we discuss the difficulties using generalized requests with ROMIO, it
will help to discuss the asynchronous file I/O models present today. The most
common one is POSIX AIO [5], but Win32 Asynchronous I/O [6] and the PVFS
nonblocking I/O interfaces [7] share a common programming model.

Table 1. Typical functions for several AIO interfaces

POSIX AIO Win32 AIO PVFS v2

Initiate aio write WriteFileEx PVFS isys write

Test aio error SleepEx PVFS sys test

Wait aio suspend WaitForSingleObjectEx PVFS sys wait

Wait (all) aio suspend WaitForMultipleObjectsEx PVFS sys waitall

In Table 1 we show a few of the functions found in common AIO interfaces.
While the three APIs are quite different, they all share a common completion
model. The model looks much like that of MPI and involves two steps: (1) post
an I/O request then at some point in the future (2) test or wait for completion
of that request. After posting I/O operations, a program can perform some
other work while the operating system asynchronously makes progress on the
I/O request. The operating system has the potential to make progress in the
background, though it is also possible that all work occurs in either the initiation
or the test/wait completion call. Note that this programming model lends itself
well to programs with a single execution thread. We should note that POSIX
AIO does define an alternate mechanism to indicate completion via real-time
signals. Neither the other AIO interfaces nor other situations where work is
occurring asynchronously could make use of signals, and so we will not consider
them any further.

4 Generalized Request Deficiencies

ROMIO, one of the earliest and most widely deployed MPI-IO implementations,
has portability as a major design goal. ROMIO strives to work with any MPI
implementation and on all platforms. Because of this portability requirement,
ROMIO cannot always use threads. While POSIX threads are available on many
platforms, they are notably not available on BlueGene/L, BlueGene/P, or the
Cray XT3 and XT4 machines, for example.

The present generalized request design makes it difficult to create new non-
blocking operations without spawning a thread. Specifically, the progress model
for generalized requests differs significantly from other MPI requests. The MPI
standard clearly gives an MPI implementation the flexibility to make progress
at any point between the time an implementation returns from the post of a

4 Robert Latham, William Gropp, Robert Ross, and Rajeev Thakur

nonblocking operation and when the caller tests or waits for completion, even
if all progress is made in the test/wait step. Generalized requests do not have
this flexibility. The standard expects a user-controlled body of code (a thread or
a signal handler) will make all progress. No progress can be made by the MPI
call to test or wait. Once the operation is complete, the caller’s function must
invoke MPI GREQUEST COMPLETE before any of the MPI request test and wait
routines will indicate completion. (Generalized requests define a query fn func-
tion pointer, but this function only operates on the MPI status data structure).
There is no mechanism in the current generalized request design for a separate
body of code to call the test or wait completion function for an asynchronous
I/O interface.

MPI_File_iwrite () {

struct aiocb write_cb = { ... }

aio_write (& write_cb)

MPI_Grequest_start (...)

aio_suspend(write_cb , 1, MAX_INT)

MPI_Grequest_complete (...)

return;

}

Fig. 1. A thread-free way to use generalized requests. In the current generalized request
design, the post and the test for completion of an AIO operation, and the call to
MPI GREQUEST COMPLETE must all happen before the routine returns.

Consider the code fragment in Figure 1 implementing MPI File iwrite. The
implementation must blocking because there is no way we can invoke aio suspend
and MPI Grequest complete without spawning a thread or relying on unwieldy
signal handlers. This pseudocode is no contrived example. It is essentially the way
ROMIO must currently use generalized requests. A thread or a signal handler
is unnecessary in the file AIO case: the operating system takes care of making
progress. The current generalized request design needs a way for the MPI test
and wait routines to call a function that can determine completion of such AIO
requests.

Other Interfaces In addition to AIO, the current generalized request design
does not meet the needs of other interfaces. High-performance applications must
accommodate the lack of thread support on BlueGene/L and Cray XT series
machines. Coupled codes, such as those used in weather forecasting, need a
mechanism to poll for completion of various model components. This mechanism
could use generalized requests to initiate execution and test for completeness.
Nonblocking collective communication lends itself well to generalized requests as
well, especially on architectures with hardware assisted collectives. Implementa-
tions on today’s highest-performance computers must be able to use generalized

Extending the MPI-2 Generalized Request Interface 5

requests without relying on threads. A thread-free approach increases the situa-
tions where generalized requests make sense. This work suggests improvements
to the generalized request interface and uses asynchronous I/O as an illustra-
tive example. However, the benefits would apply to many situations where the
operating environment can do work on behalf of the process.

5 Improving the Generalized Request Interface

As we have shown, AIO libraries need some additional function calls to de-
termine the state of a pending operation. We can accommodate this require-
ment by extending the existing generalized request functions. We propose an
MPIX GREQUEST START function similar to MPI GREQUEST START, but which
takes an additional function pointer that allows the MPI implementation to make
progress on pending generalized requests. We give the prototype for this routine
in Figure 3 in Appendix A.

When the MPI implementation tests or waits for completion of a gener-
alized request, the poll routine will provide a hook for the appropriate AIO
completion function. It may be helpful to illustrate how we imagine an MPI
implementation might make use of this extension for the test and wait routines
({MPI TEST,MPI WAIT}{,ALL,ANY,SOME}). For each request, call its poll fn. If
the routine is a wait, continue to call poll fn until either at least one request
completes (wait, waitany, waitsome) or all request complete (wait,waitall).

An obvious defect of this approach is that the MPI WAIT{ANY/SOME/ALL}
and MPI WAIT functions must poll (e.g., busy wait). The problem is that we do
not have a single wait function that we can invoke. In Section 7 we provide a
partial solution to this problem.

6 Results

We implemented MPIX Grequest start in an experimental version of MPICH2[8],
and modified ROMIO’s nonblocking operations to take advantage of this exten-
sion. Without this extension, ROMIO still uses generalized requests, but does so
by carrying out the blocking version of the I/O routine before the nonblocking
routine returns. With the extension, ROMIO is able to initialize an asynchronous
I/O operation, use generalized requests to maintain state of that operation, and
count on our modified MPICH2 to invoke the completion routine for that asyn-
chronous I/O operation during test or wait. All this can be done without any
threads in ROMIO.

Quantifying performance of a nonblocking file operation is not straightfor-
ward. Ideally, both the I/O and some unit of work execute concurrently and
with no performance degradation of either. Capturing both performance and
this measure of “overlap” can be tricky.

Nonblocking writes introduce an additional factor to consider when measur-
ing performance. Write performance has two factors: when the operating system
says the write is finished, and when the write has been flushed from buffers to

6 Robert Latham, William Gropp, Robert Ross, and Rajeev Thakur

disk. Benchmark results for old and new MPICH2 implementations look quite
similar as MPI FILE SYNC dominates the time for both implementations. We will
focus on performance of the more straightforward read case.

We used the Intel R©MPI Benchmarks package [9]. Our results are for “op-
tional” mode only because we increased the maximum message size from 16MB
to 512MB in order to see how performance varied across a wider scale of I/O
sizes. Our test platform is a dual dual-core Opteron (4 cores total), writing to a
local software RAID-0 device.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 100 200 300 400 500 600

M
B

/s
ec

MiBytes

P_IRead_Priv (2proc)

Modified
Stock

(a) 2 Processes
 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

M
B

/s
ec

MiBytes

P_IRead_Priv (4proc)

Modified
Stock

(b) 4 Processes

Fig. 2. P IRead Priv test with two MPI processes

The results depicted in Figure 2(a) (2 processor) and Figure 2(b) (4 proces-
sor) show an MPI-IO test where each processor reads data from their own file.
Simultaneously, a synthetic CPU-heavy workload is running for a fixed amount
of time. This benchmark computes an “overlap” factor, but the computation in
this case gave odd and inconsistent results. When comparing two MPI imple-
mentations, we found computing the effective bandwidth at a given request size
yielded a useful metric for evaluating relative overlap.

Both graphs have three regions of interest. For small I/O sizes, true non-
blocking operations do not give much if any benefit. As the amount of I/O
increases, however, effective bandwidth increases when the MPI implementation
can carry out I/O asynchronously. Asynchronous I/O benefits most if there are
spare CPUs (nearly three times at peak), but even in the fully subscribed case
we see a near doubling of peak performance. At large enough request sizes, the
amount of I/O dwarfs the fixed amount of computation, and the two approaches
converge again.

We note that the work described in this paper enables asynchronous I/O.
Whether asynchronous I/O is beneficial or not depends on many factors such as
application workload and the quality of AIO libraries. Finding the ideal balance
between I/O and computation is a fascinating area of research, but is beyond
the scope of this paper.

Extending the MPI-2 Generalized Request Interface 7

7 Further Improvements: Creating a Generalized Request
Class

With this simple extension to generalized requests we have already achieved our
main goals: ROMIO has a hook by which it can determine status of a pending
AIO routine, and can do so without spawning a thread. If we observe that
generalized requests are created with a specific task in mind, we can further
refine this design.

In the AIO case, all callers are going to use the same test and wait routines.
In POSIX AIO, for example, a nonblocking test for completion of an I/O op-
eration (read or write) can be carried out with a call to aio error, looking for
EINPROGRESS. AIO libraries commonly provide routines to test for comple-
tion of multiple AIO operations. The libraries also have a routine to block until
completion of an operation, corresponding to the MPI WAIT family.

We can give implementations more room for optimization if we introduce
the concept of a generalized request class. MPIX GREQUEST CLASS CREATE would
take the generalized request query, free, and cancel function pointers already
defined in MPI-2 along with our proposed poll function pointer. The routine
would also take a new “wait” function pointer. Initiating a generalized re-
quest then reduces to instantiating a request of the specified class via a call
to MPIX GREQUEST CLASS ALLOCATE.

At first glance this may appear to be just syntax: why all this effort just to
save passing two pointers? In ROMIO’s use of generalized requests, the query,
free, and cancel methods are reused multiple times. A generalized request class
would slightly reduce duplicated code.

A more compelling answer lies in examining how to deal with polling. By
creating a class of generalized requests, we give implementations a chance to
optimize the polling strategy and minimize the amount of time spinning while
waiting for request completion.

Refer back to Figure 2(b), where the unmodified, blocking MPICH2 outper-
forms the modified MPICH2 at the largest I/O request size. At this point, I/O
takes much longer to compute than the computation. All available CPUs are
executing the benchmark, and polling repeatedly until the I/O completes. The
high CPU utilization, aside from doing no useful work, also interferes with the
I/O transfer (the benchmark is reading from software RAID).

Our proposed generalized request class adds two features which together
solve the problem of needlessly consuming CPU in a tight testing loop. First, we
introduce wait fn, a hook for a blocking function that can wait until completion
of one or multiple requests. If there are multiple generalized requests outstanding,
we cannot simply call a user-provided wait routine on all of them. However, if
all the outstanding requests are of the same generalized request class, we can
use a user-provided wait routine to complete multiple outstanding requests.

Generalized request classes also open the door for the MPI implementation to
learn more about the behavior of these user-provided operations, and potentially
adapt. We imagine an MPI implementation could keep timing information or
other statistics about a class of operations, and adjust timeouts in the same way

8 Robert Latham, William Gropp, Robert Ross, and Rajeev Thakur

Worringen automatically adjusts MPI-IO hints in [10]. Implementations cannot
collect such statistics without a request class, as those implementations can only
glean meaningful information by looking at generalized requests implementing
a specific feature.

8 Conclusions

Generalized requests in their current form do much to simplify the process of cre-
ating user-provided nonblocking operations. By tying into an implementation’s
request infrastructure, users avoid re-implementing request bookkeeping. While
generalized requests look in many ways like first-class MPI request objects, the
overly strict progress model hinders their usefulness. While an MPI implemen-
tation is free to make progress for a nonblocking operation in the test or wait
routine, generalized requests are unable to make progress in this way. This de-
ficiency manifests itself most when interacting with common asynchronous I/O
models, but is also an issue when offloading other system resources as well.

We have presented a basic extension to the generalized request design as
well as a more sophisticated class-based design. In reviewing the MPI Forum’s
mailing list discussions about generalized requests, we found early proposals
advocating an approach similar to ours. A decade of implementation experience
and the maturity of AIO libraries show that these early proposals had merit
that perhaps went unrecognized at the time. For example, at that time it was
thought that using threads would solve the problem, but today we are faced with
machines for which threads are not an option.

Our extensions would greatly simplify the implementation of nonblocking I/O
operations in ROMIO or any other library trying to extend MPI with custom
nonblocking operations. Class-based approaches to making progress on oper-
ations would alleviate some of the performance concerns of using generalized
requests.

Unlike many MPI-2 features, generalized requests have seen neither widespread
adoption nor much research interest. We feel the extensions proposed in this pa-
per would make generalized requests more attractive for library writers and for
those attempting to use MPI for system software, in addition to opening the
door for additional research efforts.

A Function Prototypes

In this paper we have proposed several new MPI routines. Figure 3 gives the C
prototypes for these routines.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357.

Extending the MPI-2 Generalized Request Interface 9

int MPIX_Grequest_start(

MPI_Grequest_query_function *query_fn ,

MPI_Grequest_free_function *free_fn ,

MPI_Grequest_cancel_function *cancel_fn ,

MPIX_Grequest_poll_function *poll_fn ,

void *extra_state ,

MPI_Request *request)

typedef int MPIX_Grequest_poll_fn(

void *extra_state ,

MPI_Status *status);

typedef int MPIX_Grequest_wait_fn(

int count ,

void *array_of_states ,

double timeout ,

MPI_Status *status);

int MPIX_Grequest_class_create(

MPI_Grequest_query_function *query_fn ,

MPI_Grequest_free_function *free_fn ,

MPI_Grequest_cancel_function ,

MPIX_Grequest_poll_fn ,

MPIX_Grequest_wait_fn ,

MPIX_Request_class *greq_class);

int MPIX_Grequest_class_allocate(

MPIX_Request_class greq_class ,

void *extra_state

MPI_Request *request)

Fig. 3. Prototypes for proposed routines.

10 Robert Latham, William Gropp, Robert Ross, and Rajeev Thakur

References

1. The MPI Forum: MPI-2: Extensions to the message-passing interface. The MPI
Forum (July 1997)

2. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with
high performance. In: Proceedings of the Sixth Workshop on Input/Output in
Parallel and Distributed Systems. (May 1999) 23–32

3. Message Passing Interface Forum: MPI: A message-passing interface standard.
Technical report (1994)

4. Brightwell, R., Riesen, R., Underwood, K.: Analyzing the impact of overlap,
offload, and independent progress for mpi. The International Journal of High-
Performance Computing Applications 19(2) (Summer 2005) 103–117

5. IEEE/ANSI Std. 1003.1: Single unix specification, version 3 (2004 edition)
6. Microsoft corporation: Microsoft Developer Network Online Documentation,

http://msdn.microsoft.com. (accessed 2007)
7. PVFS development team: The PVFS parallel file system. http://www.pvfs.org/

(accessed 2007)
8. : MPICH2. http://www.mcs.anl.gov/mpi/mpich2

9. Intel GmbH: Intel MPI benchmarks. http://www.intel.com
10. Worringen, J.: Self-adaptive hints for collective I/O. In: Proceedings of the 13th

European PVM/MPI User’s Group Meeting, Bonn, Germany (September 2006)
202–211

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

