Bocca: A Development Environment for HPC Components

E
Wael Elwasif
Oak Ridge National
Laboratory
P.O. Box 2008, MS6164
Oak Ridge, TN 37831-6164

elwasifwr@ornl.gov

Boyana Norris
Argonne National Laboratory
9700 S. Cass Ave,, Bldg. 221

Argonne, IL 60439

norris@mcs.anl.gov

Benjamin Allan
Sandia National Laboratories
7011 East Ave., MS 9158
Livermore, CA 94551
baallan@sandia.gov

Rob Armstrong
Sandia National Laboratories
7011 East Ave, MS 9158
Livermore, CA 94551
rob@sandia.gov

ABSTRACT

In high-performance scientific software development, the em-
phasis is often on short time to first solution. Even when
the development of new components mostly reuses existing
components or libraries and only small amounts of new code
must be created, dealing with component glue code to ob-
tain complete applications is still tedious and error-prone.
Component-based software meant to reduce complexity at
the application level increases complexity with the attendant
glue code. To address these needs, we introduce Bocca, the
first tool to enable application developers to perform rapid
component prototyping while maintaining robust software-
engineering practices suitable to HPC environments. Bocca
provides project management and a comprehensive build en-
vironment for creating and managing applications composed
of Common Component Architecture components. Of crit-
ical importance for HPC applications, Bocca is designed to
operate in a language-agnostic way, simultaneously handling
components written in any of the common HPC workstation
languages: C, C++, Fortran, Fortran77, Python, and Java.
Bocca automates the tasks related to the component glue
code, freeing the user to focus on the scientific aspects of
the application. Bocca embraces the philosophy pioneered
by Ruby Rails for web applications: Start with something
that works and evolve it to the user’s purpose.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments

*Correspondence should be directed to bocca-dev@cca-
forum.org

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

HPC-GECO/CompFrame 2007 Montreal, Canada 21-22 October
2007

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

General Terms

Common Component Architecture, component development
environment

Keywords

CCA, components, Bocca

1. INTRODUCTION

While component-based software engineering seeks to man-
age complexity for an overall application or a suite of ap-
plications, it increases the complexity of the programming
task by introducing automatically generated glue code that
implements multilanguage or runtime functionality required
by the component architecture. Because in a research envi-
ronment HPC programmers are usually also the end users
of their work, they are more impatient than the usual pro-
grammer for the results of their running application and less
tolerant of delays caused by good software engineering prac-
tices. As the capacity and capability of HPC systems in-
crease, the imperative to simulate nature to a higher degree
of fidelity expands. Higher fidelity means higher complexity
in simulation codes and an increasing need for component-
based systems to control that complexity. Thus, sacrificing
good software engineering practices in favor or obtaining
quick results can no longer produce quick or reliable results.
The challenge is to lessen the burden of adoption for HPC
components, while preserving performance and accommo-
dating parallel computing. Bocca addresses these concerns
for the Common Component Architecture (CCA), a compo-
nent model for high-performance computing. In the follow-
ing we give a short description of CCA, the motivation for
Bocca, some examples of its use, important design features,
and future directions.

1.1 CCA Component Model

The Common Component Architecture is the nucleus of
an extensive research and development program in the De-
partment of Energy and academia. On the research side,
the effort is focused on understanding how best to apply
component-based software engineering practices in the high-
performance scientific computing area. In addition to the
definition of the CCA specification itself, the development

effort is aimed at creating practical reference implementa-
tions conforming to the specification, helping scientific soft-
ware developers use them to create CCA-compliant software,
and, ultimately, creating a rich “marketplace” of scientific
components from which new component-based applications
will be built. Space constraints require that we limit our
presentation here to those aspects of the CCA that bear di-
rectly on dealing with complexity: a description of the basic
elements of the CCA’s component model and the mechanism
by which components are created, formed into applications,
and executed. However, a comprehensive overview will be
published soon [7], and tutorials are already available [1].

The specification of the Common Component Architec-
ture is defined entirely in SIDL and can be expressed in any
of the supported languages. Briefly, the main elements of
the specification are:

e Components are units of software functionality that
can be composed together to form applications. Com-
ponents encapsulate much of the complexity of the
software inside a black box and expose only well-defined
interfaces to other components.

e Ports are interfaces through which components inter-
act. Specifically, CCA ports provide procedural inter-
faces that can be thought of as a class or an interface
in object-oriented languages, or a collection of subrou-
tines, or a module in a language such as Fortran 90.
Components may provide ports, meaning they imple-
ment the functionality expressed in the port and pub-
lish a port instance to the framework. Components
can also use ports, meaning they make calls on port
instances obtained from the framework and published
by another component.

e The framework holds CCA components as they are
assembled into applications and executed. The frame-
work is responsible for connecting uses and provides
ports without exposing the components’ implementa-
tion details. It also provides a small set of standard
services, defined by the CCA specification, which are
available to all components. The BuilderService and
AbstractFramework ports are two of these standard
services which are both central and novel with respect
to the way the CCA deals with complexity [6].

A CCA Framework provides a number of services for com-
ponents. It maintains the component repository, and creates
and destroys components. It gathers the port information
and maintains the connections between ports, as shown in
Figure 1. Many component models evade the language in-
teroperability issue by requiring components to uniformly
written in a particular language (e.g., Java Beans). Rec-
ognizing that HPC developers use a variety of languages,
CCA solves this problem by using SIDL, an scientific inter-
face definition language, and the supporting code generation
tool, Babel [5]. CCA interfaces are specified in SIDL, which
enables interoperability between many languages simultane-
ously. For example, an interface can be defined by SIDL as
follows:

package mydomain version 1.0 {
interface StringSourceq{
string getString(in int index);

}

‘ Component 1 ‘ ‘ Component 2

G

addProvidesPort(,"A")
/

(
&

CCAServices

registerUsesPort{"A")

CCAServices

&

@ = getPort{"A")

Figure 1: Exchange of a port instance between two
components via their CCAServices handles, forming
a connection.

where method getString is defined in the StringSource in-
terface. This SIDL code can then be used to generate com-
patible code in any of Java, C, C++, Python, F77, or For-
tran9X. With the aid of the Babel runtime system, invoca-
tions on SIDL interfaces from any one of these languages
can be passed through to any other. For more information
about SIDL see the Babel website [5].

While part of the power of the CCA component model is
its language independence, it is also the source of a great deal
of complexity in implementation and project maintenance.
To support the most general case for a CCA application, the
build system must be accommodate all of the compilation
and linking idiosyncrasies of all of the languages simulta-
neously. For that reason, Bocca is indispensable because it
creates a build structure around the developer’s generated
components. Prior to Bocca, the user whad to create, mod-
ify, and maintain the component skeleton and build system
manually. Enormous effort was expended on understand-
ing the CCA glue code before even the simplest component
could be built and executed. Now, by typing a few com-
mands (see Section 2), components are created that build
and run immediately. As the developer adds functionality,
the build may break, but always the working code can be re-
covered by backing up and discovering the problem by trial
and error. The purpose of Bocca is to let the user create
and maintain useful HPC components without the need to
learn the intricacies of CCA and waste time and effort in
low-level software development and maintenance tasks.

1.2 Motivation for Bocca

Bocca lays down the scaffolding for a complete componen-
tized application without any attendant scientific or math-
ematical implementation. Although Bocca uses the Com-
mon Component Architecture, the concept can be broadly
applied. The typical use case proceeds in three parts:

1. A user must conceive of the application as a collec-
tion of components. Typically a subset or all of those
components will be unimplemented, or the implemen-
tation will exist only as importable functionality from
libraries. Previously, users had to learn the API and
syntax associated with CCA and construct the compo-
nent themselves. Now, given a name and an implemen-
tation language, Bocca creates a fully loadable compo-
nent and integrates it into the build system. The user

can proceed implementation immediately, ignoring all
the generated glue code.

2. The user next identifies conceptually what interfaces
are to be exchanged between components. Normally
users would have to learn how to express even empty
prototype CCA port interfaces in SIDL and under-
stand how these interfaces are converted into loadable
form by the build system. Again, given an interface
name and an implementation language, ports can be
generated and integrated into the build system with a
single command.

3. The user must then associate these ports with the com-
ponents. Normally the user would have to use CCA
glue code to express these port providing and using
associations. Bocca automatically encodes port asso-
ciations, associating them with components and up-
dating the dependencies in the build system.

4. Finally, the user must connect ports among instances
of the defined components to complete the application.
Normally this is done in an interactive environment (a
CCA GUI or shell). Bocca will automatically gener-
ate and build a stand-alone main program suitable for
batch execution, producing a log of a GUI or shell ses-
sion. The main program will be in the Babel-supported
language of the user’s choice.

At each of these steps Bocca automates code management
tasks and keeps the generated glue code out of the way of the
code developer, leaving the focus on the application func-
tionality and not on the component or build infrastructure.

Bocca belongs to an emerging class of development tools
whose purpose is to embed users’ structure and code in a
pre-existing architecture. Ruby Rails, a tool for construct-
ing database-backed web applications, is probably the pre-
mier example of this class. Relying heavily on ideas associ-
ated with Extreme Programming, the idea is to start with a
working application that is vaguely similar to the eventual
goal and then evolve the application incrementally. This
approach has its roots in the observation that most useful
code evolves from other code. Bocca provides a similar tool
for HPC CCA applications. The relationship of Bocca to
general interactive development environments is discussed
further in Section 5.

2. CCA APPLICATIONSWITH BOCCA

As a command-line tool, Bocca provides HPC developers
with a familiar interface that greatly reduces the barrier to
adoption. In keeping with this philosophy, Bocca makes
extensive use of default settings that can be set (and reset)
by the user at will to further simplify the commands used to
manage various application entities. Bocca offers users the
ability to refine an initial application design whenever the
need for such refinement arises. The user is able to modify
and remove Bocca entities, relying on Bocca to properly
propagate such changes throughout the application project.

2.1 Example Using Bocca

In this section, we present an example that illustrates
the use of Bocca to create the working skeleton of an HPC
component-based application. The application represents

a recurring pattern in HPC, where a driver component in-
teracts with a model component that represents the phys-
ical system being studied. The model component uses a
solver port to compute an approximation of the mathemati-
cal problem description. The functionality of the solver port
can be provided using a linearSolver or a nonLinearSolver
component, depending on the type of problem and desired
solution fidelity. Note that we provide details pertaining
to the use of Bocca to create the initial working application
skeleton. We also briefly discuss some of the ways Bocca can
be used to modify the application in ongoing development
subsequent to creation.

Creating a New Project.

The complete sequence of Bocca commands used to create
the example application is shown in Figure 2. These com-
mands create the application described above, compile all
generated code, and then instantiate the constituent com-
ponents to verify the absence of any component framework
runtime problems that would interfere with the execution of
the application. All of these steps are performed before any
user code is introduced; that is, Bocca automatically creates
buildable and runnable empty components.

Bocca uses the project abstraction as a container for a
collection of components, ports, and other artifacts. The
creation of a new Bocca project accomplished by using the
command bocca create project is shown on line 2 in Fig-
ure 2. A new project resides in a directory that has the
same name as the project. Bocca allows the specification of
a default language for the new project (FORTRAN 90/95
in this example), as well as a default SIDL package contain-
ing project elements (the project name is used as the default
top-level package name if it is not specified). Default project
settings are stored in a file in a BOCCA subdirectory in the
top-level project directory and can be modified by the user
at any time. We note that the selection of the build system
to be used for the newly created project is done at project
creation time. Bocca uses a pluggable approach that allows
for multiple build systems, as outlined in Section 3. In this
example, the default GNU Make-based Bocca project build
system is used.

Creating New Ports.

The next stage in the example script (lines 5-8) shows the
creation of new SIDL ports that belong to the new project.
Executing the bocca create port commands anywhere in
the project directory associates the newly created ports with
the project (and thus inherit project defaults). Bocca allows
a newly created port to extend other ports (or plain SIDL
interfaces), whether they belong to the current project or
not. Upon creating a port, Bocca generates a new SIDL file
that contains a functioning skeleton of the new port. The
developer can then fill method details in the newly created
SIDL port file.

Creating New Components.

Component creation for the sample application is shown
on lines 10-25 in Figure 2. The listing shows some of the
options available to fully describe the new component. The
developer can specify the component implementation lan-
guage (or default to the project’s default language as is the
case with the HPCModel component). Additional component
arguments include the ports it provides or uses, as well as

1 # Project Creation

2 bocca create project sim —Ilanguage=F90
3 cd sim

4

5 # Ports creation

6 bocca create port ConfigPort

7 bocca create port ModelPort

8 bocca create port SolverPort

9

10 # Component creation
11 bocca create component Driver \

12 —language=CXX \

13 ——provides gov.cca.ports.GoPort :GOPORT \
14 —uses ConfigPort :CONFIG \

15 —uses ModelPort :MODEL

16 bocca create component HPCModel \

17 —provides ModelPort :MODEL \

18 —provides ConfigPort :CONFIG \

19 —uses SolverPort :SOLVER

20 bocca create component LinearSolver \

21 —language=C \

22 ——provides SolverPort :SOLVER

23 bocca create component NonLinearSolver \
24 —language=FT77 \

25 ——provides SolverPort :SOLVER

26

27 # Project configuration and build
28 ./ configure
29 make

31 # Test new project skeleton
32 make check

Figure 2: Example project script.

any non-CCA interfaces and classes that the component will
implement (in the case of SIDL interfaces) or extend (in the
case of SIDL classes). One can also specify external (to the
project) dependencies that are needed by the component.

When creating a new component, Bocca generates the ini-
tial version of the SIDL file containing the definition of the
component. Bocca also controls the generation of the appro-
priate language binding for the new component. In addition,
Bocca populates the newly generated language binding with
the code necessary to integrate the new component into any
CCA-compliant framework.

Bocca not only supports the management of CCA ports
and components, it also manages plain SIDL interfaces and
classes that are not CCA components. This support allows
HPC developers to use a unified application development
platform for all their SIDL code. While this simple exam-
ple does not illustrate this aspect of Bocca, such support is
crucial for the majority of component-based HPC applica-
tions, which typically use components only to encapsulate a
subset of the collection of objects that make up the bulk of
the application.

Assembling and Validating the Application.

Lines 27-32 in Figure 2 show the construction and testing
of the newly created components. The default Bocca build
system used in this example is based on GNU make and au-
toconf [14]. A sample application can then be constructued
with a script or with the Ccaffeine GUI; the result is shown
in Figure 3.

2.2 Application Maintenance with Bocca

MonLinearsolver

MODEL
CONFIG

HPCModel

LinearSolver

Figure 3: Sample application component connectiv-
ity wiring diagram.

We have illustrated the use of Bocca to create skeleton
CCA component applications. While this functionality is
important to lower the CCA component methodology adop-
tion barrier for HPC developers, it is by no means sufficient
to address the entire lifecycle of typical HPC applications.
As ports, components, and the overall application design
evolve over time, developers will undoubtedly need to change
aspects of their ports and components that were specified at
time of creation.

Bocca provides facilities to support refactoring the com-
ponent aspects of the application (those aspects that Bocca
generated in the first place). Developers can rename Bocca
entities, change some of their attributes (e.g., adding/remov-
ing ports to/from components, changing the implementation
language of a component, and using a component as a tem-
plate to create a new component). Bocca propagates the
effects of such changes throughout the assembly of entities
that constitute a Bocca project, thus giving HPC developers
a high degree of flexibility in experimenting with and evolv-
ing their design. These operations are not limited to entities
that share a common implementation language.

To further support application maintenance, Bocca ex-
ports the dependency information of a managed project us-
ing the widely supported graph representation of Graphviz |2,
10]. This allows developers to visually analyze their applica-
tion and explore potential modifications. The dependency
graph for the sample application can be seen in Figure 4.

3. DESIGN AND REQUIREMENTSFOR RA-
PID DEVELOPMENT WITH CCA

Our aim is to decrease to near-zero the time required to
define, build, and maintain the component glue aspects of
CCA/SIDL-based applications. We design Bocca to capture
knowledge about the component framework-related aspects
of an HPC application and to use that knowledge to au-
tomate as much as possible the process of application con-
struction and maintenance. The information to be captured
and managed falls broadly into three categories:

1. The application structure, which is a list of component
instances, port connections, input parameter data, and
locations of installed components.

2. The ports, classes, and interfaces required to build a
given component, as expressed in SIDL and in the us-
es/provides pattern; the external dependencies (typi-
cally libraries) required to build the component,

3. The choice of build tools to which compilation pro-
cesses are delegated.

Our software design reflects the different types of data
that must be managed, as shown in Figure 5. Users can

Legend

port project

package

sim.ModelPort

gov.cca.ports.GoPort

provides

sim.ConfigPort

project: sim

package: sim

contains | contains sim.SolverPort contains contains

provides

sim.NonLinearSolver

Created with GraphViz by Bocca

Figure 4: Graph representation of example application. Vertices correspond to project entities managed by
Bocca, while edges indicate dependencies between project artifacts.

leverage their favorite existing tools to perform all the func-
tions that are generic to component software development:
compilation, source code editing and version management,
and execution of the completed applications in some frame-
work.

U

s SIDL item

¢ database

r

S

h E

e X Application

1 € descriptions

1 c

— .

I t

Ve
¢ v <> API build plug-ins
e e

r

f

a Generated SIDL,
¢ Components, Build
€ system

Ccafe ¥

GUI |—p] Ccaffeine

Figure 5: Bocca design overview.

Our implementation is constrained by key requirements
with higher priorities in HPC software development than in
most circumstances. Specifically, Bocca must do the follow-
ing:

1. Function well in ill-defined development processes where
the project requirements rarely stabilize and where

the participants are scientific applications program-
mers rather than experienced software engineers. Iter-
ation and evolution of application, interface, and com-
ponent design must be supported.

2. Have low adoption costs: neither a steep learning curve
nor complex, unusual, or proprietary software prereq-
uisites are allowable.

3. Have low abandonment costs. Bocca must be able to
trivially export individual components or entire ap-
plications as packages that may be configured, built,

used, and maintained as part of larger, Bocca-free projects

that run on petascale and exascale platforms.

4. Remain fully functional in the spartan development
environments typical for high-performance architectures.
HPC environments frequently lack adequate support
for graphical tools displaying on remote desktops and
often do not have the very latest versions of common
open-source tools available for production use.

5. Be queryable for syntax help and examples as well as
the current project state.

6. Support coexistence of distinct projects without inter-
ference in the same directory space. The user must
be able to specify the directory housekeeping rules to
facilitate peer-level integration among Bocca and non-
Bocca managed sources in larger projects.

Our solution is to design a command-line tool, similar in
look and feel to many version control systems. We address
the details of implementing this tool in the next section. The
tool performs various actions (create, remove, rename, etc.)
on a small set of subjects (component, port, class, interface,
application, etc.). All the CCA-related SIDL definitions are

generated by the tool once the user specifies the desired type
names, leaving the user to fill in domain-specific method
names and implementation code. Graphs (or trees) are a
natural choice for organizing SIDL entities and representing
their relationships. A small language for describing appli-
cation construction with a given set of components [3, 4] is
already in common use in the CCA community and is eas-
ily wrapped into Bocca. Critical for both maintenance and
rapid prototyping, Bocca has sufficient project data to han-
dle renaming or removing any SIDL entity and perform au-
tomatic updates of both the user-customized sources within
the project and the noneditable Bocca-generated sources.

4. IMPLEMENTATION

The primary goals for the design of Bocca are extensibility
and portability. From the very start, Bocca development has
involved multiple, geographically distributed participants,
and we envision having an increasing number of developers
contributing functionality and bug fixes. To facilitate this
distributed development model, Bocca allows the easy addi-
tion of new functionality with minimal changes to the exist-
ing code base. Python was chosen for the implementation
language of core Bocca functionality based on a combination
of criteria, including developer familarity, availability on tar-
get platforms, object-orientation, dynamic module handling,
built-in data structures and functionality, and ease of use.

Project representation.

Bocca uses a general graph data structure for represent-
ing projects and their elements based on a Python graph
package developed by R. Dick and K. Gaitanis [8]. The ver-
tices in the graph correspond to CCA project entities, or the
noun in a Bocca command. The UML diagram in Figure 6
shows the classes involved in the project graph representa-
tion. Each vertex type is implemented as a class that ex-
tends the default BVertex class. Directed edges between ver-
tices represent dependencies. For example, an edge between
a Component vertex and a Port vertex is used when a compo-
nent uses or provides that port. Edges are implemented in
a BEdge class, which can be annotated with the type of de-
pendency, for example, “extends,” “implements,” “uses,” or
“provides” (see example graph in Fig. 4). Unlike graphical
interface development environments, Bocca has the project
state in memory only during the execution of a command.
At the successful completion of each command that modifies
that state, the graph is stored by using Python’s cpickle
module. The graph is loaded in the beginning of command
execution and contains a complete description of the current
state of the project.

Command Dispatching.

The Bocca dispatcher loads the saved project graph and
performs some rudimentary command-line error checking
before instantiating the vertex type corresponding to the
noun specified on the command line. The convention for
each BVertex subclass is that its name is the capitalized
noun from the command-line, This allows new B Vertex sub-
classes (and thus commands) to be added by simply defining
a new Python module in the appropriate location, without
having to modify any existing Bocca classes.

Build System.

\r2 1]
Vertex \ Graph 10.* Edge
e : Edge v VertexDict e |vl:Vertex
0.* 1 |e: EdgeDict v2 : Vertex
add_e() : void
BVertex BGraph BEdge
symbol : string
kind : string —
version : string save() : int
data : dict load() : int
display() : void
defineArgs() : int
processArgs() : int
create() : int
change() : int | |
remove() : int .
rename() : int Project Package
display() : int
graphvizString() : int|
| |
Enum Application
Interface Sidiclass
Library Help
Port Component

Figure 6: Bocca class hierarchy used for internal
project representation.

Bocca does not mandate a specific build system approach.
Instead, it defines a set of interfaces (in the builders Python
module) that allow the interaction with different build sys-
tems. This feature broadens the portability of the user’s
project to more exotic HPC platforms that do not wholly
support standard build tools. The initial Bocca implemen-
tation includes a GNU make-based build system that fully
automates the build of multi-language component projects.
New implementations can be added by implementing the
builders interfaces; the build system can be chosen with a
command-line option at the time of project creation.

Help System.

Bocca’s help system relies on Python documentation str-
ings, eliminating the need to maintain separate code docu-
mentation and help system. The dispatcher module treats
commands containing help or --help/-h differently from
other Bocca commands in order to provide appropriate help
even when the command is executed outside of a Bocca
project or the syntax is not correct. Since help information
is dynamically obtained from the modules corresponding to
each command, Bocca ensures that help will be available for
any new modules that simply document their implementa-
tions.

Code Generation.

Several Bocca commands require modifications to Bocca-
generated code, which may also contain code added by the
user. For example, when a port type is renamed, the SIDL

file containing the port definition must be updated, as well as
the SIDL and implementation files for any dependent project
entities, such as components using or providing the renamed
port type.

Bocca contains a splicers module, which provides classes
for managing changes to different types of source code. The
first concern of both Bocca and Babel code generators is
never to lose anything a user writes by hand. A block is a
set of lines that begins with a line key.begin(symbol) where
the key is a splicer type, and symbol is the SIDL symbol as-
sociated with the particular splice. Each block ends with a
line key.end(symbol). The code between these keys, pre-
sumably added by the user, is considered to be the splice. In
a Bocca-generated SIDL file, users can add method declara-
tions to interfaces and classes and fields in enum types within
the Bocca splicer block. For example, the splicer block for
the ModelPort in the example in Fig. 2 begins with a com-
ment containing bocca.splicer.begin(simPorts.Model).

Code Refactoring.

As discussed in Section 2.2, in addition to project creation,
Bocca automates other refactoring and maintenance tasks,
which constitute the bulk of a component’s lifecycle. For
example, simply renaming an interface or a component re-
quires updates to many files, including the SIDL definition,
header and source files in various languages, and makefiles.
Changes in SIDL symbols can also result in changes to the
project directory structure, which are typically tedious and
error prone when done manually. To automate support for
multilanguage refactoring operations, Bocca performs code
generation in all the languages supported by Babel (For-
tran, C, C++, Java, and Python). In addition to propagat-
ing refactoring and other changes through Bocca -generated
code, Bocca modifies the user’s implementation to reduce
further the amount of manual labor involved in each change.
The graph representation of the project structure is crucial
to maintaining a consistent project state by enabling each
change to a project element (e.g., a port) to be propagated
to all dependent project entities (e.g., ports that extend it
and components that use or provide it).

Bocca and Other Tools.

To support scripting, all Bocca commands return 0 upon
success or an appropriate error code otherwise. Bocca uses
two subdirectories for internal bookkeeping: BOCCA and .boc—
ca. These subdirectories exist at all levels of the project
directory structure. The visible BOCCA directory contains
user-editable project settings, which can be under revision
control if desired. The hidden .bocca directory contains
the saved binary project graph and other files that are not
meant to be edited by the user. The .bocca directory in-
cludes a project-specific file that contains the relative local
path with respect to top project directory. Before any Bocca
command is executed, these files are used to verify that the
command is being executed within a valid Bocca project di-
rectory. This approach aims to reduce problems caused by
manual changes to the directory structure.

5. RELATED WORK

Bocca is inspired largely by the same concerns as Ruby
Rails [13], a tool for creating database-backed web applica-
tions. Principles are also borrowed from the Extreme Pro-

gramming methodology, where it is assumed that all useful
code evolves from other useful code. The idea is to create an
entire running application given only brief user input, pro-
ducing code that is as close as possible to the developer’s
final goal. From there, the developer evolves the automati-
cally generated code into the desired product. Indeed both
Rails and Bocca accommodate the continuing evolution of
the code, recognizing that code that does not evolve is dead
code.

While Bocca provides some functionality normally avail-
able in IDEs, such as Visual Studio [11] and Eclipse [9], it
also differs significantly. Most general-purpose IDE frame-
works provide project management capabilities for develop-
ing general applications in a single language. Most are not
devoted to a particular software architecture, though a few
explicitly support component-based development (e.g. EJB
or Eclipse plugins). Unlike Bocca, most IDEs do not nor-
mally support portable multilanguage builds. In contrast to
general-purpose IDEs, neither Rails nor Bocca provide any
special way of editing or running user code. In fact, much of
the functionality of a general purpose IDE is orthogonal to
Bocca functionality. For example, the facile editing capabil-
ity for which IDEs are famous can be used alongside Bocca;
the build system tuned to CCA requirements, however, is
managed by Bocca, though it is directly callable from IDEs
which recognize make (or the chosen build system with which
the project has been configured).

Bocca and Rails belong to a different class of software
development tool than general-purpose IDEs. Both tools
concentrate not on code development per se but on creat-
ing and maintaining the necessary infrastructure to support
their targeted framework. In the case of Rails it is a partic-
ular database-backed CGI framework written in Ruby [12]
to generate web applications. Bocca generates the SIDL,
CCA, and build infrastructure necessary for a component
HPC application. The developer is participating in a frame-
work that is the means of delivering the intended application
but not the end. Both Rails and Bocca free the user from
the need to intimately understand the frameworks in which
their code is embedded.

6. QUANTIFYING BOCCA'SIMPACT

Quantitative studies of Bocca’s impact on developer pro-
ductivity are not yet possible, because of the rapid and it-
erative nature of Bocca ’s development. However, we can
quantify the artifacts whose creation, modifications, compi-
lation, and testing Bocca automates to a large extent. This
process can give us some idea of Bocca’s effectiveness in re-
ducing the complexity of developing component software.

We show in Table 1 the quantity and sizes of files gener-
ated or provided by Bocca in both the build system (using
the default builder plugin) and the application code gen-
erated to handle the complexity of assembling a multilan-
guage component simulation. For the four components and
three ports in our example, we see that the set of user-
customizable files is small and the code in them compact,
while the glue code is spread over a large number of big
files. Portable HPC software build systems are notoriously
difficult to create, debug, and maintain. Neither the CCA
standard nor the Babel tool prescribes complete build pro-
cesses that yield a running application or even a component
library. Bocca fills this void using the pattern set by the
builder-plugin of the user’s choice, completely hiding the

Table 1: Source complexity managed with Bocca.

| User customizable |

Files | Lines | Code type
7 74 SIDL Files
7 165 | Build system
7 1251 | Babel Impl source
0 331 | CCA source (inserted into Impl)
| Uneditable |
Files | Lines | Code type

24 486 Babel build system fragments
16 1054 | Bocca build system fragments
28 15501 | Babel source glue code

size and complexity of the build infrastructure required to
assemble the different makefile fragments into a complete
build process.

7. CONCLUSIONS

We have created Bocca to enable CCA users to proto-
type complete codes rapidly and then evolve those codes
over the life of their projects. We have demonstrated a path
to sharply decreased development times in HPC software
creation and maintenance using CCA technology, automat-
ing many necessary steps that heretofore could only be per-
formed manually. Bocca is an extensible, command-line-
based, interactive development environment for CCA that
is focused on five points:

e Automated collection and maintenance of CCA frame-
work related data for use in maintaining component
infrastructure and build tree.

e Loose integration, rather than re-creation, of existing
tools drawn from the larger HPC and open-source soft-
ware development worlds.

e Avoidance of lock-in: Bocca users are free to abandon
the Bocca tool and its meta-data and maintain their
code manually at any time.

e Fase of use, without resorting to multi-context graph-
ical views that inhibit automation and reduce porta-
bility.

e Portability and ease of maintenance of Bocca itself.

Bocca may be viewed as an integration platform or as a
piece of an even bigger integration platform for CCA-based
software development. Directions of ongoing research in the
CCA arena that would provide natural extensions to the
Bocca tool include automated generation of proxy compo-
nents (for use in debugging, regression testing, and develop-
ing parallel performance models) and tools for mostly au-
tomated wrapping of legacy code into CCA interfaces and
components using simple patterns. Also beneficial would be
tools to do more automated refactoring of complex existing
codes by reaching inside to replace all calls on a library with
calls on CCA interfaces. These tools would allow more plug-
and-play experimentation with existing codes and would be
especially useful for perfecting componentization in difficult

implementation languages such as Java and C++ (see Sec-
tion 4).

Future development will be directed at broadening the
range of applicability and increasing HPC user acceptance
of Bocca and CCA tools in general. Builder plug-ins to
support other build tools on exotic hardware will be required
by many HPC projects. A lightweight graphical or even web-
based interface layer driving the Bocca command-line will
lower the barrier to first adoption and be a welcome addition
to a CCA tutorial.

Acknowledgments

This work was supported by the Mathematical, Information,
and Computational Sciences Division subprogram of the Of-
fice of Advanced Scientific Computing Research, Office of
Science, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357; Oak Ridge National Laboratory, managed by
UT-Battelle, LLC, for the U.S. Dept. of Energy under con-
tract DE-AC05-000R22725.

8. REFERENCES
[1] CCA tutorials.

http://wuw.cca-forum.org/tutorials/.

[2] Graphviz - Graph Visualization Software.
http://www.graphviz.org/.

[3] B. A. Allan and R. C. Armstrong. CCA tutorial:
Introduction to the Ccaffeine framework. http:
//www.cca-forum.org/tutorials/archives/2002/
tutorial-2002-06-24/tultorialModFramework.pdf,
2002.

[4] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray,
D. E. Bernholdt, and J. A. Kohl. The CCA core
specification in a distributed memory SPMD
framework. Concurrency and Computation: Practice
and Ezperience, (14):1-23, 2002.

[5] Babel homepage.
http://www.llnl.gov/CASC/components/babel.html.

[6] D. E. Bernholdt, R. C. Armstrong, and B. A. Allan.
Managing complexity in modern high end scientific
computing through component-based software
engineering. In Proc. of HPCA Workshop on
Productivity and Performance in High-End Computing
(PPHEC 2004), Madrid, Spain. IEEE Computer
Society, 2004.

[7] D. E. Bernholdt and et al. A component architecture
for high-performance scientific computing. Intl. J.
High Perf. Comp. Appl., 20(2):163-202, 2006.

[8] R. Dick and K. Gaitanis. graph - Directed and
undirected graph data structures and algorithms.
http://ziyang.ece.northwestern.edu/ dickrp/
python/mods.html, 2005.

[9] Eclipse Foundation. Eclipse.
http://wuw.eclipse.org, 2007.

[10] E. R. Gansner and S. C. North. An open graph
visualization system and its applications to software
engineering. Software — Practice and Experience,
30(11):1203-1233, 2000.

[11] Microsoft. VisualStudio. http://msdn2.microsoft.
com/en-us/vstudio/default.aspx, 2007.

[12] D. Thomas, C. Fowler, and A. Hunt. Programming
Ruby: The Pragmatic Programmers’ Guide. Pragmatic
Bookshelf, second edition, Oct. 2004.

[13] D. Thomas, D. H. Hansson, L. Breedt, M. Clark, J. D.
Davidson, J. Gehtland, and A. Schwarz. Agile Web
Development with Rails. PragmaticProgammer, second
edition, Dec. 2006.

[14] G. V. Vaughn, B. Ellison, T. Tromey, and I. L. Taylor.
GNU Autoconf, Automake and Libtool. New Riders
Publishing, Thousand Oaks, CA, 2000.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (”Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-ACO02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

