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Abstract. We present a brief overview of optimization tools that are being developed for
SciDAC applications. We emphasize derivative-free and gradient-based methods since these
tools make minimal demands on the user and the application. We discuss the performance of
these tools and point out developments that have led to significant improvements in performance.
A parameter estimation problem that arises in nuclear fission is used to illustrate the challenges
that arise as we attack nonlinear, noisy, computationally-intensive optimization applications.

1. Introduction

The design of engineering systems and the simulation of scientific phenomena of DOE interest
invariably require the optimization of a mathematical model with respect to design parameters
and constraints. At present, however, there is a lack of optimization tools for high-performance,
parallel architectures, and thus scientists are severely limited in their ability to study and solve
complex simulation problems.

To address the need for optimization tools on high-performance, parallel architectures, we
have been developing TAO [4, 18] (Toolkit for Advanced Optimization). In this note we discuss
and emphasize derivative-free and gradient-based methods because these tools make minimal
demands on the user and the application. We discuss the performance of these tools and point
out developments that have led to significant improvements in performance.

We start by mentioning the wide range of optimization problems being addressed by members
of the TOPS Center for Enabling Technology. We then illustrate the challenges that arise as
we attack nonlinear, noisy, computationally intensive optimization applications by discussing a
parameter estimation problem that arises in nuclear fission. We end by discussing the scalability
of gradient-based optimization methods on mesh-based applications. In particular, we show that
the number of function and gradient evaluations required to solve a problem to a given accuracy
scales linearly with the number of variables.

2. Background

The mission of the TOPS Center for Enabling Technology is to enable scientists and engineers
to take full advantage of petascale hardware by overcoming the scalability bottlenecks that
traditional solvers impose, and assist them to move beyond one-off simulations to validation and
optimization As part of this mission, TOPS has been developing and maintaining a collection



of toolkits for scientific computing. These toolkits (Hypre, PETSc, SUNDIALS, SuperLU, TAO)
address most of the important areas in scientific computing.

At present, TOPS is working on a range of optimization problems (listed in Figure 2.1) in
SciDAC applications. We focus on a nonlinear estimation problem in nuclear physics to illustrate
some of the challenges we face as we start to work on petaflop applications.

¢ Nuclear Physics ¢ Quantum Chemistry
- Nonlinear eigenvalues - Energy minimization
- Parameter estimation - Transition states
- Least action pathways ¢ Accelerator Design

¢ Groundwater Flow - Shape optimization

p . . - Nonlinear eigenvalues
- Parameter estimation

Figure 2.1. Optimization problems in SciDAC applications

TAO [4, 18] contains sophisticated optimization tools for SciDAC applications. TAO uses
object-oriented techniques to leverage the parallel linear algebra infrastructure (parallel sparse
matrix data structures, preconditioners, solvers) offered by PETSc [14]. Other optimization
toolkits have employed object-oriented design, but their work does not address the reuse of
linear algebra toolkits and is restricted to uniprocessor environments.

TAO is available as open-source software, and has been tested on architectures ranging from
laptops and high-end workstations to high-performance clusters like the IBM BG/L system.
TAO is also being incorporated into other toolkits for computational science problems. We are
aware of three major toolkits that use TAO:

o TADM, a toolkit for estimating the parameters of discriminative models,
o BUSTER, a toolkit for the X-ray crystallographic determination of protein structures, and
o ELEFANT, a software framework for statistical machine learning.

The connection of TAO to statistical machine learning is of special importance, since this area
is likely to be of increasing importance in SciDAC applications.
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Figure 2.2. TAO applications: Semiconductor modeling (left) and variational surfaces (right)

TAO solvers are having an impact on the computational science community with applications
in a wide variety of areas, including semiconductor modelling, magnetic nanostructures,
subsurface remediation, and variational surfaces. Figure 2.2 shows images associated with
semiconductor modeling and variational surfaces. The image on the left is a cube of polymer
material with colored particles representing different monomer molecules. The bonds between
the particles are not visualized, but these bonds cause the deformation of the material. This



image is the result of preliminary parallel calculations that are being used as a basis for
comparison of multiscale models where particle models are coupled to continuum models (in
this case nonlinear elastic continuua). Additional details on most of these applications can be
found in the TAO site [18].

The focus of our research has been on large-scale problems that require high-performance
architectures. In particular, we have been working with computational chemists at both Pacific
Northwest National Laboratory and Sandia National Laboratories on optimization algorithms
for molecular geometry optimization. As a result of this collaboration TAO can be used as a
component in NWChem [13], a large (2.5 million lines of code) software suite that encompasses
multiple theories, algorithms, and methods in computational chemistry, and we have shown
[10] reductions in simulation times of more that 40% compared to the stand-alone chemistry
packages. This is a significant reduction because large molecular geometry simulations take
hours on massively parallel architectures.

3. Parameter Estimation Problems in Nuclear Fission

The UNEDF project plans to use optimization techniques to determine parameters in the energy
density functional to fit experimental data . As we shall see, problems of interest require massive
amounts of computing that can only be provided by petascale architectures.

We emphasize parameter estimation problems associated with the HFODD code [7], which
solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using
the Cartesian deformed harmonic-oscillator basis.

Assume that &,...,&, are the parameters that need to be determined in the optimization
procedure. We gather all these parameters into a vector x € R", where R" is n-dimensional
Euclidean space.

The output of HFODD for the kth nucleus is a set of observables fi(z). The number of
observables depends on the nucleus. The following diagram formalizes this relationship.

r = = fil2)

In all cases a data vector y;, is associated with this nucleus, and we would like to determine the
vector of parameters x such that fi.(z) is close to yg. In the least-squares (or x2) approach the
optimization procedure seeks to minimize

m
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where || - || is the Euclidean norm and oy, is a set of weights, but other approaches are possible.

Determining a vector of parameters x that minimizes f, where f is defined by (3.1), is a
standard optimization problem. Since each evaluation of f is expensive, however, significant
computational challenges arise:

¢ Expensive evaluations of fi(z) (Uase ~ 12 hours)
o Large memory requirements (Usss ~ 0.5 GB)

© Many nuclei (about 2,000)

¢ A wide range of observables (binding energy, ... )
¢ Noisy function evaluations

o Lack of derivatives with respect to parameters

o

Several minima with different predictive power



In particular, for this problem the evaluation of f at a trial x may require 1,000 CPU days
(2000 x 12 hours). Hence, we cannot afford many function evaluations, even on petascale
architectures.

What are the best optimization techniques for these nonlinear, noisy, computationally
intensive problems? We review the state of the art in the next section, but we want to end
this section by examining the performance of HFODD in more detail.
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Figure 3.1. HFODD performance with Ussg

We were able to restructure the most intensive computations in HFODD to take advantage
of level-2 and level-3 BLAS routines, and as a result we obtained substantial decreases in
computation time with only a minor increase in memory usage. This is ongoing work, but
the data in Figure 3.1 (obtained by Carlos Bertulani) already shows a decrease of at least
45% in computing time, with about a 10% increase in memory usage. Any time reduction is
particularly significant because almost all of the time needed to solve the parameter estimation
problem (3.1) will be spent in HFODD calculations.

4. Noisy Bound-Constrained Optimization

The parameter estimation problem defined by the function (3.1), where fi requires the evaluation
of a computationally-intensive code (HFODD) is an example of a nonlinear, noisy optimization
problem. In general there may be bounds on the parameters that we need to determine, and
thus we consider the general bound-constrained optimization problem

min{f(x) :zp <z <azy},

where the function f : R” — R is nonlinear and noisy.

Algorithms for dealing with these noisy, nonlinear optimization problems are usually called
black-box methods because no assumptions are made on the code that is needed to evaluate f.
The most promising approaches for dealing with such problems fall under the general category
of derivative-free methods. These methods require the user to provide only function evaluations
and thus are easy to use. However, each evaluation of f is usually costly in terms of computing
time, and thus methods are needed that require a satisfactory level of accuracy with relatively
few function evaluations.

Our review of derivative-free methods shows serious shortcomings with most of the current
techniques. The techniques that have received the most attention in the optimization community



are geometry-based methods. The main reason for this interest is that there is a general
convergence theory for many (pattern search [19], generating-set search [11], mesh-adaptive
[1]) of these methods. However, geometry-based methods rely on a comparison of the current
function value f with previous values to determine algorithmic behavior at the current trial value.
Hence, these methods do not tend to model a function accurately and are likely to require a
large number of function evaluations to reach a satisfactory level of accuracy. More sophisticated
techniques are needed that can obtain a satisfactory level of accuracy with significantly fewer
function evaluations.

Model-based methods for derivative-free optimization construct a model of the optimization
problem based on function values at previous iterates and then use that model to generate the
next iterate. These models, usually called response surface models, are approximations to the
function that are considerably easier to evaluate than the original function. The traditional
response surface literature [12] constructs the response surface as a least-squares approximation
of low-order polynomials, but tensor-products of polynomials and splines are also used.

A model-based optimization method evaluates the function f at points x1, ..., in R™ and
constructs a model of the function f based on this data. The next point xxy1 is then determined
by minimizing the model subject to additional constraints on the final location of xy11. In our
experience model-based methods that use polynomial interpolation (Powell [15, 16] and Conn,
Scheinberg, and Toint [5, 6]) have the best performance among direct search methods.

We illustrate these ideas with the model-based methods of Conn, Scheinberg, and Toint [5, 6].
These methods use quadratic models, that is, functions of the form

q(x) = c+ g7 (x — x0) + 3z — 20) G (x — x0),
where g € R" is the gradient of the quadratic ¢ at the base point 2o and G € R"*™ is the Hessian
matrix of the quadratic. This approach requires evaluation of the function at 3(n + 1)(n + 2)
evaluations of f, since this is the number of evaluations needed to determine all the terms in the
quadratic. Unfortunately, this implies that the required number of evaluations grows quickly.
For example, if n = 10, then the quadratic model requires 66 evaluations. This is prohibitive
for the kind of computationally intensive optimization problems that we are considering.

In joint work with C. Shoemaker and S. Wild we have been exploring minimal norm quadratics
as defined by Powell [16]. Given m points x1, ..., T, we determine a minimal norm quadratic
q by requiring interpolation of the function at these points, and by requiring that the Hessian
matrix G of g satisfy

min {||G — Gol|% : q(zx) = f(zr), 1<k <m},

where G is the Hessian matrix of a previous model. If the points x1,...,z,, satisfy a mild
geometric restriction, then this minimal change quadratic exists and is unique. Moreover, the
quadratic is well defined for any number of points m with m > n + 1. Clearly, if m = n + 1,
then G = G, so that the Hessian matrix of the new quadratic is unchanged, while if m > n+1,
we can reasonably expect an improved Hessian matrix.

Preliminary experience with these ideas is encouraging. Below we illustrate the performance
of both geometry-based and model-based methods on a watershed model. Of course,
performance on one problem is not indicative of performance in general, but in our view, the
results in Figure 4.1 are representative. More testing will be needed to establish the validity of
this claim.

The watershed model is a nonlinear, noisy parameter estimation problem with several local
minimizers and 14 variables. The results in Figure 4.1 show the value of the fit f(zy) as a
function of the trial value zj for four methods. Two geometry-based methods are illustrated:
the pattern-search method is shown in black, and the Nelder-Mead method is shown in cyan.
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Figure 4.1. Performance of derivative-free methods on the watershed model

We are using the implementations available in MATLAB. Figure 4.1 also shows two model-based
methods: the Powell [17] code is shown in green, and our implementation of an optimization
method that uses minimal norm quadratics is shown in red.

Figure 4.1 illustrates various properties of derivative-free methods. Note, for example, that
both the pattern-search method and the Nelder-Mead method have long stretches where the
function value remains constant. This behavior can be expected in general, since geometry-
based methods do not take into account the relative values of the function and thus are slower
at adapting to nonlinear behavior. On the other hand, the model-based methods are able to
approximate the function and thus are likely to achieve a reduction in the function at most
iterations.

5. Gradient-Based Optimization Methods

In many nonlinear optimization problems, the user is able to provide the gradient V f of the
function (even if the problem is noisy, although in such cases we would not expect a highly
accurate gradient). We thus consider the bound-constrained optimization problem

min{f(z) : 2z <z <azy} (5.1)

under the assumption that the gradient V f is available.

A survey of the optimization literature shows that the most common methods for attacking
these problems are nonlinear conjugate gradient methods and that, although there are many
variations on these methods, the most popular and efficient methods are the following:

o Fletcher-Reeves (FR)
o Polak-Riviere (PR)
o Limited-memory variable-metric methods (LMVM)

FR and PR methods are well known to application scientists (see, for example, Numerical
Recipes), but LMVM methods are relatively unknown to many application scientists.

An extensive discussion of LMVM is not appropriate here, so we just note that these methods
determine an (inverse) metric Hy from information gathered during the previous m iterations
such that

o Hj is positive definite,
o storage of Hy requires 2mn locations, and
o computation of HV f(zy) costs (8m + 1)n flops.



Given the matrix Hy, the next iterate is obtained via

Tpy1 = — apHEV f(z),

with aj determined by a line search. The user is free to set the number m of extra vectors
to use, but in our experience, a relatively small number of vectors (m = 5) provides the best
performance.

The main claim that we make in this section is that LMVM methods vastly outperform
FR and PR methods if we use the number of evaluations of (f,Vf) as the metric. We use
performance profiles [8] to compare the TAO implementations of these methods on a set of
nonlinear variational problems with dimensions ranging from 2,500 to 40,000. The results are
shown in Figure 5.1.

Given a set of problems P and a set of solvers S, a performance profile is a plot of the
probability distribution function

1
ps(T) = Wsize{p EP irps < T},

where |P| is the number of problems, r, s is the performance ratio

Hp,s
min{p,s: s €S}

Tp,s =

and s is the number of evaluations of (f, Vf) required for convergence. Clearly, the fastest
solver has r, s = 1, and the solver fails if 7, ; = oco.

Performance profiles for nonlinear CG methods
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Figure 5.1. Performance profiles for the TAO methods (logarithmic scale)

Figure 5.1 shows that LMVM is the fastest solver on about 95% of the problems. Additional
information can be obtained by examining the difference in performance between these methods
for other values of the performance ratio 7. For example, Figure 5.1 also shows that the FR and
PR methods are at least twice as slow as LMVM on about 60% of the problems. Moreover, the
FR and PR methods are at least four times as slow as LMVM on about half of the problems.

6. Scalability on Mesh-Based Optimization Problems

We now examine how LMVM methods perform on mesh-based optimization problems that arise
as discretizations of infinite-dimensional problems of the form

min {f(v) : vy <v <wy}, (6.1)



where v : RP — RY is a function defined on some domain D C RP, and vy, and vy are, respectively,
the lower and upper (pointwise) bounds on v. In these cases, discretization of the domain D
leads to a large optimization problem of the form (5.1) where the variables x represent the values
of v at the mesh points of the discretization of D. If there are m mesh points, then the number
of variables is n = mq. We use the term mesh-based optimization problem to refer to problems
of the form (6.1) that require determination of a function v on a mesh.

An interesting mesh-based variational problem is that of minimizing the Gibbs free energy
for a homogeneous superconductor with a vector potential perpendicular to the superconductor.
This (Ginzburg-Landau) problem requires the minimization of the functional

/D{—\v(:c)y? + 3lo(@)|* + [V = iA@)] o(@)|* + £ |(V x A)(2)]*} da

where v : R? — C is the order parameter and A : R? — R? is the vector potential. Figure 6.1 is
a plot of the magnitude |v| of the order parameter. This problem has four variables per mesh
point, two variables for the real and complex parts of the order parameter, and two variables
for the two components of the vector potential. Hence, this problem has 4n variables for a mesh
with n mesh points.

Figure 6.1. Order potential for the Ginzburg-Landau problem

We explore scalable algorithms for mesh-based optimization problems in the sense that the
number of evaluations of (f, V f) required to solve the problem grows linearly with the number
of variables n. Note that LMVM methods may require more than one evaluation of (f, Vf) at
each iteration because the line search may not find an acceptable point at the first trial point.

The advantage of using evaluations of (f, V f) as a measure of scalability is that this measure
is independent of the architecture; that is, we obtain the same results on both workstations and
clusters. We also require that the computing time grow linearly with n; for LMVM methods this
follows if the evaluation of f and Vf is linear with n.

Results for several benchmark problems [2] are shown in Figure 6.2. These results show
that the number of operations grow linearly with n. Surprisingly, the number of evaluations
of (f,Vf) also grow linearly with n. We expect this kind of behavior from Newton’s method
because there are mesh independence results for Newton’s method [9], but we are not aware of
mesh independence results for gradient-based optimization methods.

For these results we started with a coarse mesh with 52 = 25 mesh points and refined the mesh
by doubling the number of grid points in each direction. The finest mesh had 1535% ~ 2.3 10°
mesh points.

The results in Figure 6.2 were obtained by using mesh sequencing; that is, an interpolated
coarse mesh solution was used as the initial starting point for a finer mesh. This is a standard
technique for solving systems of nonlinear (partial differential) equations, but with few exceptions
it is not used for solving mesh-based optimization problems. See Bank, Gill and Marcia [3] for
a recent exception.
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Figure 6.2. Scalability of limited-memory variable-metric methods

The termination criteria at each level could be defined in terms of the gradient V f, but we
prefer a termination test in terms of the function value. Thus, given a tolerance 74 > 0 (in our
results we used 75 = 107%), we terminate the LMVM algorithm if

|f(zr 4 arpr) — flow)| < 1l f ()], |V f (z) ol < 7l f ()]

This test guarantees that the function value has achieved a reasonable level of accuracy on each
level. Note, in particular, that this test is not sensitive to the mesh size in the sense because
the function value will not change significantly as the mesh size is decreased.
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