
 1

Abstract—A growing need for ultra-high-speed data transfers
has motivated continued improvements in the transmission
speeds of the physical network layer. As researchers develop
protocols and software to operate over such networks, they
often fail to account for security. The processing power
required to encrypt or sign packets of data can significantly
decrease transfer rates, and thus security is often sacrificed for
throughput. Emerging multicore processors provide a higher
ratio of CPUs to network interfaces and can, in principle, be
used to accelerate encrypted transfers by applying multiple
processing and network resources to a single transfer. We
discuss the attributes that network protocols and software must
have to exploit such systems. In particular, we study how
these attributes may be applied in the GridFTP code
distributed with the Globus Toolkit. GridFTP is a well-
accepted and robust protocol for high-speed data transfer. It
has been shown to scale to near-network speeds. While
GridFTP can provide encrypted and protected data transfers, it
historically suffers transfer performance penalties when these
features are enabled. We present configurations to the Globus
GridFTP server that can achieve fully encrypted high-speed
data transfers.

Index Terms—Secure data transfer, GridFTP, Encryption,
Parallel streams

I. INTRODUCTION
Multicore CPUs are an emerging technology that promises

to provide a high level of parallel processing within a single
computer system. Along with the growth in CPU cores, the
transmission speeds of the physical network hardware have
significantly improved. Harnessing these two hardware
improvements to accommodate the growing need for high-
speed data transfers presents a significant challenge. Data
transfers are typically treated as serial streams, while
multicore processing can be leveraged only in parallel. In
order to take advantage of these enhancements, applications
must be identified and threaded programming models created
that can properly scale to parallel CPUs while still interacting
with the network properly.

Protocols such as GridFTP [1] have proven to be able to
reliably transmit data at network speeds. However, achieving
these speeds requires the user to ignore important aspects of
security, such as data channel encryption and integrity

protection. The processing power required for these security
features adds a significant amount of latency to each packet
and thus slow transfer rates significantly. In this paper we
present techniques to harness the power of a multicore CPU to
do high-speed, fully encrypted data transfers.

The remainder of the paper is organized as follows. In
Section II we present related work. Section III explains the
problem of parallel processing using modern security
protocols. Section IV presents the programming model used in
the Globus Toolkit and explains why this is a successful
approach for utilizing multicore CPUs in an I/O system.
Section V presents a study showing the results of scaling up
the number of processors in a fully encrypted transfer to
achieve network speeds.

II. RELATED WORK
Hardware accelerators have been used to address the Secure

Socket Layer (SSL) performance problems. An accelerator is a
card that plugs into PCI slot or SCSI port and contains a co-
processor that performs part of SSL processing. Network
interface cards with offloaded SSL and IPSec [2] have also
been produced. We want to achieve high-speed secure
transfers with general-purpose hardware so that it can be used
more commonly. We expect that multicore processors will
become more common than SSL/IPSec offload engines.
Further, we would like to utilize for high-speed secure data
transfers the parallel and higher processing power that the
multicore technology promises to achieve. Offload techniques
do not help in achieving processing parallelism for secure
processing on a single node.

III. PARALLEL STREAMS
To achieve processing parallelism on safe or private

transfers, we must ensure that secure processing is performed
on different portions of the data stream at the same time.
Further, this simultaneous processing must be performed on
different CPUs. While simple in principle, this concept
presents interesting problems for network protocols and
software implementations. Encryption protocols that use
cipher block chaining, such as TLS/SSL [3], require that data
be decrypted in the same order that it was encrypted. Further,
the way that bytes in a stream are processed varies with their
position in the stream. Thus, not only does the value of the

Harnessing Multicore Processors for High-Speed
Secure Transfer

John Bresnahan,1,2,3 Rajkumar Kettimuthu,1,2 Mike Link,1,2 Ian Foster1,2,3

1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL

60439
2Computation Institute, University of Chicago, Chicago, IL 60637

3Department of Computer Science, University of Chicago, Chicago, IL 60637

{bresnaha, kettimut, mlink, foster}@mcs.anl.gov

 2

byte being processed matter, but also when it was processed.
These issues introduce difficulties when breaking up the

streams for parallelization. For the reasons described above,
we cannot take portions of a single data stream and process
them in parallel against the same security context. To properly
follow secure protocols, we cannot process any one byte until
the previous byte has been processed. Thus there can be no
parallelism against a single security context.

We can solve this problem by creating many distinct
security contexts for a single data transfer. A simple way to
realize this approach with existing network protocols is by
using parallel streams. Parallel streams are common in data
transfers as a means of achieving network optimization [4,5].
In order to minimize penalties associated with TCP slow start
and dropped packets, many TCP streams are used for the same
logical transfer, thus reducing the penalties associated with
any one packet loss. This technique can also be leveraged for
use in parallel encryption. Each stream has its own security
context and is independent with regard to security processing.

IV. ASYNCHRONOUS EVENT MODEL
Solving this problem in software requires some type of

threaded I/O model. In order to get many parallel data streams
processing at once, multiple threads of execution must be
occurring on different CPUs. This type of parallelism can
happen via threads in a single user process or by making use
of multiple processes. The Globus Toolkit achieves such
parallelism via an asynchronous event model and thread pools
[6]. We present here the advantages of the asynchronous
thread pool model.

In an asynchronous event model, the software developer
posts I/O requests to the system. When the request is fulfilled
(or an error occurs), the user is notified via a callback function
defined in the developer’s own process space. Between the
time of posting the request and the time the application
receives the callback, the developer’s code is free to do
whatever it likes, including posting more I/O requests. The I/O
subsystem services the developer's request by creating
background threads. These threads handle the framing of I/O
and interact with the operating system to send and receive
messages without interfering with the developer's code.

The Globus Toolkit’s I/O library, Globus XIO [7], is a
protocol abstraction layer that allows developers to ignore the
specific protocol in use and just post requests for read and
write. Part of servicing secure protocol requests involves
signing or encrypting the posted data. In Globus XIO, this task
is performed as part of the event processing and is therefore
handled by one of the system’s background threads. If many
events are posted at once, as is the case for parallel TCP
protocols, many threads can be processing the posted events in
parallel.

As part of this work we set the default number of
background threads used by Globus XIO (which can be set by
the system administrator to any value) to the CPU count plus
one. Because of this asynchronous thread pool model, the
developer at no point needs to be aware of the number of
background threads. It is strictly a site optimization parameter.

The Globus GridFTP server is built on the asynchronous
event model above described. The GridFTP protocol uses
parallel streams on the data channel. Because of these two
facts we can achieve parallel secure processing. When the
number of parallel streams is greater than or equal to the
number of system CPUs, optimal processing parallelism
occurs. As previously stated, there is no mapping of data
stream to CPU. The Globus Toolkit does not dedicate a thread
to a parallel stream. Instead, events are posted to the I/O
subsystem, and many threads handle the events. In this way
the optimal number of threads is not tightly coupled to the
optimal number of streams.

V. EXPERIMENTS
To measure the effectiveness of our approach, we ran

several experiments across many different multicore and
multi-CPU machines of various architectures. Our goal is to
show that given enough CPUs in a single system, the Globus
GridFTP server can perform fully encrypted (private) transfers
at network speeds. Unfortunately, in some cases the number of
CPUs on a single system is inadequate to match the processing
requirements of secure transfers. In these cases we can still
achieve high-throughput secure data transfers by tying many
computers together in a striped transfer. Striped transfers
allow portions of the data to come from different network
endpoints. Thus, we can use CPUs in many machines for a
single data transfer and therefore scale up the processing
power in way similar to that of multicore CPUs.

With each stripe we add not only additional CPU resources
but also additional memory and network resources. Because
these additional resources are not added as more cores are
added to a chip, this situation is not ideal. However, it does
provide a test bed for finding the approximate optimal number
of processors. Because transfer speeds are a function of the
bandwidth delay product [8], additional memory should not
influence the speed of the transfer. Upcoming multicore
technology promises to dramatically increase the number of
CPUs in a single system. By using many stripes in this way,
we can predict the effectiveness of these future systems with
some degree of accuracy.

A. Optimal Parameters on Different Architectures
Tables 1–3 show the results of experiments in which we use

the asynchronous event model to take advantage of multiple
CPUs. We ran two GridFTP servers on identical machines
connected with Gigabit Ethernet on a LAN. The tables show
how the use of one or two streams (P1 and P2, respectively)
affects transfer rates in a single threaded system versus an
asynchronous thread pool system with two threads. With one
thread and one stream, only one CPU is working at a time.
With one thread and two streams and with two threads and one
stream, we again see just one CPU working at a time. We do
not achieve concurrency until we have at least two threads and
at least two streams.

Four levels of security are tested in the experiments. The
row labeled clear has no data channel security at all; thus it
establishes an upper bound for the other experiments.
Authenticated data channel security has minimal security

 3

processing; since all processing is done at the beginning of the
transfer, little latency is added, and the transfer rates are about
equal to that of clear. Integrity requires security processing on
each packet, as does privacy; however privacy requires
substantially more processing.

Table 1: Pentium 1.1 GHz Dual Core

Security
Level

Single
P1

Single
P2

 Pool
P1

Pool
P2

Clear 814 818 816 818
Authenticated 812 814 813 816

Safe 169 178 164 285
Private 76 78 75 138

Table 2: Optron 64-bit 2.4 GHz Dual Core

Security
Level

Single
P1

Single
P2

 Pool
P1

Pool
P2

Clear 897 897 897 897
Authenticated 897 897 897 897

Safe 254 268 254 471
Private 100 101 100 196

Table 3: Itanium 1.2 Dual Processor

Security
Level

Single
P1

Single
P2

 Pool
P1

Pool
P2

Clear 903 905 903 906
Authenticated 899 899 899 899

Safe 488 517 488 770
Private 177 183 177 340

While two processors are not enough to perform safe or

private transfers at network speed, the results do show that
transfer speeds are significantly increased by processor
concurrency. The transfer rate almost doubles with the
addition of the second CPU. This result implies that, given
enough cores, GridFTP encrypted transfers can scale to
network speeds.

B. Decoupling Threads and Parallel Streams
While the number of streams in a transfer does affect the

CPU processing parallelism, it is also a network protocol
optimization parameter. It would not be ideal to have a tight
coupling of parallel data stream to the number of cores. In
particular, we do not want a situation where the number of
streams is optimal for the network but suboptimal for CPU
parallelism nor the other way around.

To gain insight into this situation, we ran the full cross-
product of transfer with thread counts ranging from one to
sixty-four and parallel streams ranging from one to sixty-four.
We ran the experiments on dual-core machines for both safe
and private transfers.

The results (Fig. 1) show that one thread per CPU and one
parallel stream per CPU provide the best performance. As the
number of threads increases, the performance for all levels of
parallel streams slowly decreases. This result shows that
without the benefit of a corresponding CPU, an additional

thread can have detrimental effects. Our results also show that
the relative differences for most levels of parallelism are not
affected by the thread count. This situation suggests that once
the minimal threshold for each parameter is exceeded; there is
little correlation between the two optimization parameters.

Priv

0

50

100

150

200

250

1 2 4 8 16 32 64

Thread Count

T
h

ro
u

g
h

p
u

t
in

 M
b
it

/
s

p=1

p=2

p=4

p=8

p=16

p=32

p=64

Safe

0

100

200

300

400

500

600

1 2 4 8 16 32 64

Thread Count

T
h

ro
u

g
h

p
u

t
in

 M
b
it

/
s

p=1

p=2

p=4

p=8

p=16

p=32

p=64

Fig. 1: Effect of parallel streams: private transfers (top) and
safe transfers (bottom)

C. Striping
The initial results suggest that a processor with more than

four cores is needed to sustain one gigabit per second of a
private data transfer on general-purpose hardware. Because we
did not have access to such a machine, the environment was
simulated by using the striping feature of the Globus GridFTP
server. We performed private and safe transfers using the
University of Chicago TeraGrid [9]. Each server was run on a
dual 64-bit Itanium 1.2 GHz processor with 4 MB of RAM.
Four stripes were used on both the sender and the receiver.
Since each node had two CPUs, there were eight CPUs in all.
Two types of configurations were used in each iteration of the
experiment, one where each stripe had one thread and one
where each had two threads. Because we were simulating a
case where a secure transfer has enough processing power to
move as fast as an insecure transfer, we ran clear and

 4

authenticated data single CPU transfers to establish the target
throughput. The results are shown in Fig. 2.

Fig. 2. Effect of striping on transfer rates

As expected, the results show that as we add stripes, the
transfer rates increase. If, however, one looks only at the CPU
count, the performance does not strictly increase. The results
show how stripes play a role. Because private data transfers
are more CPU intensive than safe data transfer, the effect of
the superfluous resources that come with an additional stripe is
less pronounced on the private data session. In a safe data
transfer the additional network resources are more available
since the processing latency is lower. Further, there is a
benefit to having an extra system CPU even when the I/O
subsystem has a single thread. Kernel-level services and the
TCP software stack use it on the GridFTP application’s behalf.

VI. SUMMARY
In this work we examined the trend in CPU hardware from a

data transfer point of view. We presented a programming
model and network protocol architecture that allows many
cores to be harnessed together to participate in a single,
coordinated data transfer. The additional processing power has
allowed us to solve a long-standing problem of having to
choose between insecure data channels or slow transfers. Our
results were gathered using the Globus GridFTP server.

From our results we see that private data transfer require six
CPUs to achieve network speeds and that safe transfers require
between two and four CPUs depending on the effects of
striping. Commodity general-purpose computer systems with
eight-core CPUs will be commonplace in the near future, and
the software solution that we have presented here is
immediately available.

ACKNOWLEDGMENTS
This work was supported in part by the Mathematical,

Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Dept. of Energy, under
Contract DE-AC02-06CH11357 and in part by SciDAC-2
CEDPS.

REFERENCES

[1] W. Allcock, GridFTP: Protocol Extensions to FTP for

the Grid, Global Grid ForumGFD-R-P.020, 2003.
[2] S. Kent and R. Atkinson, Security Architecture for the

Internet Protocol, IETF RFC 2401, 1998.
[3] T. Dierks and E. Rescorla, The Transport Layer Security

(TLS) Protocol Version 1.1, IETF RFC 4346, 2006.
[4] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.

Dumitrescu, I. Raicu, and I. Foster, The Globus Striped
GridFTP Framework and Server, SC'05, ACM Press,
2005.

[5] T. J. Hacker, B. D. Noble, and B. D. Athey, Improving
Throughput and Maintaining Fairness Using Parallel
TCP. IEEE InfoCom, 2004.

[6] http://www.globus.org/toolkit/docs/3.2/developer/globus-
async.html.

[7] W. Allcock, J. Bresnahan, R. Kettimuthu,. and J. Link,
J., The Globus eXtensible Input/Output System (XIO): A
Protocol-Independent I/O System for the Grid. Joint
Workshop on High-Performance Grid Computing and
High-Level Parallel Programming Models, 2005.

[8] T. Lakshman and U. Madhow. The Performance of
TCP/IP for Networks with High Bandwidth-Delay
Products and Random Loss. IEEE/ACM Transactions on
Networking, pages 336–350, June 1997.

[9] http://www.teragrid.org/.

