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Abstract—A growing need for ultra-high-speed data transfers 
has motivated continued improvements in the transmission 
speeds of the physical network layer. As researchers develop 
protocols and software to operate over such networks, they 
often fail to account for security. The processing power 
required to encrypt or sign packets of data can significantly 
decrease transfer rates, and thus security is often sacrificed for 
throughput. Emerging multicore processors provide a higher 
ratio of CPUs to network interfaces and can, in principle, be 
used to accelerate encrypted transfers by applying multiple 
processing and network resources to a single transfer. We 
discuss the attributes that network protocols and software must 
have to exploit such systems. In particular, we study how 
these attributes may be applied in the GridFTP code 
distributed with the Globus Toolkit. GridFTP is a well-
accepted and robust protocol for high-speed data transfer. It 
has been shown to scale to near-network speeds. While 
GridFTP can provide encrypted and protected data transfers, it 
historically suffers transfer performance penalties when these 
features are enabled. We present configurations to the Globus 
GridFTP server that can achieve fully encrypted high-speed 
data transfers. 
 

Index Terms—Secure data transfer, GridFTP, Encryption, 
Parallel streams 

I. INTRODUCTION 
Multicore CPUs are an emerging technology that promises 

to provide a high level of parallel processing within a single 
computer system. Along with the growth in CPU cores, the 
transmission speeds of the physical network hardware have 
significantly improved. Harnessing these two hardware 
improvements to accommodate the growing need for high-
speed data transfers presents a significant challenge. Data 
transfers are typically treated as serial streams, while 
multicore processing can be leveraged only in parallel. In 
order to take advantage of these enhancements, applications 
must be identified and threaded programming models created 
that can properly scale to parallel CPUs while still interacting 
with the network properly. 

Protocols such as GridFTP [1] have proven to be able to 
reliably transmit data at network speeds. However, achieving 
these speeds requires the user to ignore important aspects of 
security, such as data channel encryption and integrity 

protection. The processing power required for these security 
features adds a significant amount of latency to each packet 
and thus slow transfer rates significantly. In this paper we 
present techniques to harness the power of a multicore CPU to 
do high-speed, fully encrypted data transfers. 

The remainder of the paper is organized as follows. In 
Section II we present related work. Section III explains the 
problem of parallel processing using modern security 
protocols. Section IV presents the programming model used in 
the Globus Toolkit and explains why this is a successful 
approach for utilizing multicore CPUs in an I/O system. 
Section V presents a study showing the results of scaling up 
the number of processors in a fully encrypted transfer to 
achieve network speeds. 

II.   RELATED WORK 
Hardware accelerators have been used to address the Secure 

Socket Layer (SSL) performance problems. An accelerator is a 
card that plugs into PCI slot or SCSI port and contains a co-
processor that performs part of SSL processing. Network 
interface cards with offloaded SSL and IPSec [2] have also 
been produced. We want to achieve high-speed secure 
transfers with general-purpose hardware so that it can be used 
more commonly. We expect that multicore processors will 
become more common than SSL/IPSec offload engines. 
Further, we would like to utilize for high-speed secure data 
transfers the parallel and higher processing power that the 
multicore technology promises to achieve. Offload techniques 
do not help in achieving processing parallelism for secure 
processing on a single node. 

III. PARALLEL STREAMS 
To achieve processing parallelism on safe or private 

transfers, we must ensure that secure processing is performed 
on different portions of the data stream at the same time. 
Further, this simultaneous processing must be performed on 
different CPUs. While simple in principle, this concept 
presents interesting problems for network protocols and 
software implementations. Encryption protocols that use 
cipher block chaining, such as TLS/SSL [3], require that data 
be decrypted in the same order that it was encrypted. Further, 
the way that bytes in a stream are processed varies with their 
position in the stream. Thus, not only does the value of the 
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byte being processed matter, but also when it was processed. 
These issues introduce difficulties when breaking up the 

streams for parallelization. For the reasons described above, 
we cannot take portions of a single data stream and process 
them in parallel against the same security context. To properly 
follow secure protocols, we cannot process any one byte until 
the previous byte has been processed. Thus there can be no 
parallelism against a single security context. 

We can solve this problem by creating many distinct 
security contexts for a single data transfer. A simple way to 
realize this approach with existing network protocols is by 
using parallel streams. Parallel streams are common in data 
transfers as a means of achieving network optimization [4,5]. 
In order to minimize penalties associated with TCP slow start 
and dropped packets, many TCP streams are used for the same 
logical transfer, thus reducing the penalties associated with 
any one packet loss. This technique can also be leveraged for 
use in parallel encryption. Each stream has its own security 
context and is independent with regard to security processing.  

IV. ASYNCHRONOUS EVENT MODEL 
Solving this problem in software requires some type of 

threaded I/O model. In order to get many parallel data streams 
processing at once, multiple threads of execution must be 
occurring on different CPUs. This type of parallelism can 
happen via threads in a single user process or by making use 
of multiple processes. The Globus Toolkit achieves such 
parallelism via an asynchronous event model and thread pools 
[6]. We present here the advantages of the asynchronous 
thread pool model. 

In an asynchronous event model, the software developer 
posts I/O requests to the system. When the request is fulfilled 
(or an error occurs), the user is notified via a callback function 
defined in the developer’s own process space. Between the 
time of posting the request and the time the application 
receives the callback, the developer’s code is free to do 
whatever it likes, including posting more I/O requests. The I/O 
subsystem services the developer's request by creating 
background threads. These threads handle the framing of I/O 
and interact with the operating system to send and receive 
messages without interfering with the developer's code. 

The Globus Toolkit’s I/O library, Globus XIO [7], is a 
protocol abstraction layer that allows developers to ignore the 
specific protocol in use and just post requests for read and 
write. Part of servicing secure protocol requests involves 
signing or encrypting the posted data. In Globus XIO, this task 
is performed as part of the event processing and is therefore 
handled by one of the system’s background threads. If many 
events are posted at once, as is the case for parallel TCP 
protocols, many threads can be processing the posted events in 
parallel. 

As part of this work we set the default number of 
background threads used by Globus XIO (which can be set by 
the system administrator to any value) to the CPU count plus 
one. Because of this asynchronous thread pool model, the 
developer at no point needs to be aware of the number of 
background threads. It is strictly a site optimization parameter. 

The Globus GridFTP server is built on the asynchronous 
event model above described. The GridFTP protocol uses 
parallel streams on the data channel. Because of these two 
facts we can achieve parallel secure processing. When the 
number of parallel streams is greater than or equal to the 
number of system CPUs, optimal processing parallelism 
occurs. As previously stated, there is no mapping of data 
stream to CPU. The Globus Toolkit does not dedicate a thread 
to a parallel stream. Instead, events are posted to the I/O 
subsystem, and many threads handle the events. In this way 
the optimal number of threads is not tightly coupled to the 
optimal number of streams. 

V.   EXPERIMENTS 
To measure the effectiveness of our approach, we ran 

several experiments across many different multicore and 
multi-CPU machines of various architectures. Our goal is to 
show that given enough CPUs in a single system, the Globus 
GridFTP server can perform fully encrypted (private) transfers 
at network speeds. Unfortunately, in some cases the number of 
CPUs on a single system is inadequate to match the processing 
requirements of secure transfers. In these cases we can still 
achieve high-throughput secure data transfers by tying many 
computers together in a striped transfer. Striped transfers 
allow portions of the data to come from different network 
endpoints. Thus, we can use CPUs in many machines for a 
single data transfer and therefore scale up the processing 
power in way similar to that of multicore CPUs. 

With each stripe we add not only additional CPU resources 
but also additional memory and network resources. Because 
these additional resources are not added as more cores are 
added to a chip, this situation is not ideal. However, it does 
provide a test bed for finding the approximate optimal number 
of processors. Because transfer speeds are a function of the 
bandwidth delay product [8], additional memory should not 
influence the speed of the transfer. Upcoming multicore 
technology promises to dramatically increase the number of 
CPUs in a single system. By using many stripes in this way, 
we can predict the effectiveness of these future systems with 
some degree of accuracy. 

A. Optimal Parameters on Different Architectures 
Tables 1–3 show the results of experiments in which we use 

the asynchronous event model to take advantage of multiple 
CPUs. We ran two GridFTP servers on identical machines 
connected with Gigabit Ethernet on a LAN. The tables show 
how the use of one or two streams (P1 and P2, respectively) 
affects transfer rates in a single threaded system versus an 
asynchronous thread pool system with two threads. With one 
thread and one stream, only one CPU is working at a time.  
With one thread and two streams and with two threads and one 
stream, we again see just one CPU working at a time. We do 
not achieve concurrency until we have at least two threads and 
at least two streams. 

Four levels of security are tested in the experiments. The 
row labeled clear has no data channel security at all; thus it 
establishes an upper bound for the other experiments.   
Authenticated data channel security has minimal security 
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processing; since all processing is done at the beginning of the 
transfer, little latency is added, and the transfer rates are about 
equal to that of clear. Integrity requires security processing on 
each packet, as does privacy; however privacy requires 
substantially more processing. 

Table 1: Pentium 1.1 GHz Dual Core 
 

Security 
Level 

Single 
P1 

Single
P2 

 Pool 
P1 

Pool 
P2 

Clear 814 818 816 818 
Authenticated 812 814 813 816 

Safe 169 178 164 285 
Private 76 78 75 138 

 

Table 2: Optron 64-bit 2.4 GHz Dual Core 
 

Security 
Level 

Single 
P1 

Single
P2 

 Pool 
P1 

Pool 
P2 

Clear 897 897 897 897 
Authenticated 897 897 897 897 

Safe 254 268 254 471 
Private 100 101 100 196 

 

Table 3: Itanium 1.2 Dual Processor 
 

Security 
Level 

Single 
P1 

Single
P2 

 Pool 
P1 

Pool 
P2 

Clear 903 905 903 906 
Authenticated 899 899 899 899 

Safe 488 517 488 770 
Private 177 183 177 340 

 
While two processors are not enough to perform safe or 

private transfers at network speed, the results do show that 
transfer speeds are significantly increased by processor 
concurrency. The transfer rate almost doubles with the 
addition of the second CPU. This result implies that, given 
enough cores, GridFTP encrypted transfers can scale to 
network speeds. 

B. Decoupling Threads and Parallel Streams 
While the number of streams in a transfer does affect the 

CPU processing parallelism, it is also a network protocol 
optimization parameter. It would not be ideal to have a tight 
coupling of parallel data stream to the number of cores. In 
particular, we do not want a situation where the number of 
streams is optimal for the network but suboptimal for CPU 
parallelism nor the other way around. 

To gain insight into this situation, we ran the full cross-
product of transfer with thread counts ranging from one to 
sixty-four and parallel streams ranging from one to sixty-four. 
We ran the experiments on dual-core machines for both safe 
and private transfers. 

The results (Fig. 1) show that one thread per CPU and one 
parallel stream per CPU provide the best performance. As the 
number of threads increases, the performance for all levels of 
parallel streams slowly decreases. This result shows that 
without the benefit of a corresponding CPU, an additional 

thread can have detrimental effects. Our results also show that 
the relative differences for most levels of parallelism are not 
affected by the thread count. This situation suggests that once 
the minimal threshold for each parameter is exceeded; there is 
little correlation between the two optimization parameters. 
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Fig. 1: Effect of parallel streams: private transfers (top) and 
safe transfers (bottom) 

C. Striping 
The initial results suggest that a processor with more than 

four cores is needed to sustain one gigabit per second of a 
private data transfer on general-purpose hardware. Because we 
did not have access to such a machine, the environment was 
simulated by using the striping feature of the Globus GridFTP 
server. We performed private and safe transfers using the 
University of Chicago TeraGrid [9]. Each server was run on a 
dual 64-bit Itanium 1.2 GHz processor with 4 MB of RAM. 
Four stripes were used on both the sender and the receiver. 
Since each node had two CPUs, there were eight CPUs in all. 
Two types of configurations were used in each iteration of the 
experiment, one where each stripe had one thread and one 
where each had two threads. Because we were simulating a 
case where a secure transfer has enough processing power to 
move as fast as an insecure transfer, we ran clear and 
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authenticated data single CPU transfers to establish the target 
throughput. The results are shown in Fig. 2.  

Fig. 2. Effect of striping on transfer rates 
 

As expected, the results show that as we add stripes, the 
transfer rates increase. If, however, one looks only at the CPU 
count, the performance does not strictly increase. The results 
show how stripes play a role. Because private data transfers 
are more CPU intensive than safe data transfer, the effect of 
the superfluous resources that come with an additional stripe is 
less pronounced on the private data session. In a safe data 
transfer the additional network resources are more available 
since the processing latency is lower. Further, there is a 
benefit to having an extra system CPU even when the I/O 
subsystem has a single thread. Kernel-level services and the 
TCP software stack use it on the GridFTP application’s behalf. 

VI. SUMMARY 
In this work we examined the trend in CPU hardware from a 

data transfer point of view. We presented a programming 
model and network protocol architecture that allows many 
cores to be harnessed together to participate in a single, 
coordinated data transfer. The additional processing power has 
allowed us to solve a long-standing problem of having to 
choose between insecure data channels or slow transfers. Our 
results were gathered using the Globus GridFTP server.  

From our results we see that private data transfer require six 
CPUs to achieve network speeds and that safe transfers require 
between two and four CPUs depending on the effects of 
striping. Commodity general-purpose computer systems with 
eight-core CPUs will be commonplace in the near future, and 
the software solution that we have presented here is 
immediately available. 
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