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Abstract. Petascale science is an end-to-end endeavour, involving not only the creation of 
massive datasets at supercomputers or experimental facilities, but the subsequent analysis of 
that data by a user community that may be distributed across many laboratories and 
universities. The new SciDAC Center for Enabling Distributed Petascale Science (CEDPS) is 
developing tools to support this end-to-end process. These tools include data placement 
services for the reliable, high-performance, secure, and policy-driven placement of data within 
a distributed science environment; tools and techniques for the construction, operation, and 
provisioning of scalable science services; and tools for the detection and diagnosis of failures 
in end-to-end data placement and distributed application hosting configurations. In each area, 
we build on a strong base of existing technology and have made useful progress in the first 
year of the project. For example, we have recently achieved order-of-magnitude improvements 
in transfer times (for lots of small files) and implemented asynchronous data staging 
capabilities; demonstrated dynamic deployment of complex application stacks for the STAR 
experiment; and designed and deployed end-to-end troubleshooting services. We look forward 
to working with SciDAC application and technology projects to realize the promise of 
petascale science. More details can be found at www.cedps.net.  

1.  Petascale science is an end-to-end problem 
At a recent workshop on computational science, the chair noted in his introductory remarks that if the 
speed of airplanes had increased by the same factor as computers over the last 50 years, namely five 
orders of magnitude, then we would be able to cross the US in less than a second. This analogy 
communicates with great effectiveness the remarkable impact of continued exponential growth in 
computational performance, which along with comparable improvements in solution methods is 
arguably the foundation for the SciDAC program. 



 
 
 
 
 
 

However, a participant was heard to exclaim following these remarks: “yes—but it would still take 
two hours to get downtown!” The serious point that this speaker was making is that science is an end-
to-end problem and that accelerating just one single aspect of the problem solving process can 
inevitably achieve only limited returns in terms of increased scientific productivity.  

These concerns become particularly important as we enter the era of petascale science, by which 
we mean science involving numerical simulations performed on supercomputers capable of a 
petaflop/sec or higher performance, and/or experimental apparatus—such as the Large Hadron 
Collider [4], DOE light sources and other Basic Energy Sciences user facilities [1], and ITER [3]—
capable of producing petabytes of data. Successful science using such devices demands not only that 
we be able to construct and operate the simulation or experiment, but also that a distributed 
community of participants be able to access, analyze, and ultimately make sense of the resulting 
massive datasets. In the absence of appropriate solutions to the end-to-end problem, the utility of these 
unique apparatus can be severely compromised. 

The following example illustrates issues that can arise in such contexts. A team at the University of 
Chicago recently used the FLASH3 code to perform the world’s largest compressible homogeneous 
isotropic turbulence simulation [18]. Using 11 million CPU-hours on the LLNL BG/L computer over a 
period of a week, they produced a total of 154 terabytes of data, contained in 75 million files. 
Subsequently, they used GridFTP to move 23 terabytes of this data to computers at the University of 
Chicago; using four parallel streams, this took some three weeks at around 20 megabyte/sec. Next, 
they spent considerable time using local resources to analyze and visualize the data. In a final step, 
they are making this unique dataset available for use by the community of turbulence researchers. In 
each of these steps, they were ultimately successful—but they would be the first to argue that the 
effort required to achieve their end-to-end goals of scientific publications and publicly available 
datasets was excessive. 

As this example illustrates, a complete solution to the end-to-end problem may require not only 
methods for parallel petascale simulation and high-performance parallel I/O (both handled by the 
FLASH3 code and associated parallel libraries), but also efficient and reliable methods for: 

• high-performance remote visualization, to enable perusal of selected subsets and features 
of large datasets data prior to download; 

• high-speed reliable data placement, to transfer data from its site of creation to other 
locations for subsequent analysis; 

• terascale or faster local data analysis, to enable exploration of data that has been fetched 
locally; 

• building and operating scalable services, so that many users can request analyses of data 
without having to download large subsets; 

• troubleshooting the complex end-to-end system, which due to its myriad hardware and 
software components can fail in a wide range of often hard-to-diagnose ways; 

• securing the end-to-end system, in a manner that prevents (and/or can detect) intrusions 
and other attacks, without preventing the high-performance data movement and 
collaborative access that is essential to petascale science; and 

• orchestrating these various activities, so that they can be performed routinely and 
repeatedly. 

Each of these requirements can be a significant challenge when working at the petascale. Thus, a 
new SciDAC Center for Enabling Technology, the Center for Enabling Distributed Petascale Science 
(CEDPS) was recently established to address three of these requirements: data placement, scalable 
services, and troubleshooting. This center is intended to support the work of any SciDAC program that 
involves the creation, movement, and/or analysis of large amounts of data. 

 
 
 



 
 
 
 
 
 

2.  Data placement 
Large quantities of data must frequently be moved between computers in a petascale computing 
environment, whether because there are insufficient resources to perform analysis on the platform that 
generated the data, because analysis requires specialized resources or involves comparison with other 
data, or because the data must be “published” (moved and augmented with metadata) to facilitate use 
by the community. The requirement here is not simply high-performance data transfer, as supported 
for example by GridFTP [8]. For example, consider the following scenarios: 

(1) A team running the CCSM climate simulation code at ORNL wants to publish its output 
data to the Earth System Grid (ESG) [11]. They must both transfer the output data to an 
HPSS archive at NERSC (perhaps while the model is running), and also register each file in 
a metadata catalog. 

(2) Scientists who have run a combustion simulation at NERSC producing 100 TB of data want 
to explore that data using visualization tools. This task requires that data be replicated to 
five sites.  

(3) Data produced by the CMS experiment at the LHC (at a sustained rate of 400 MB/s) must 
be delivered to a Tier 1 site in the US where it is further processed and then distributed 
among several US domestic and 20 non-US Tier-2 sites. 

These scenarios, for which we can give many other examples across a wide range of DOE 
applications, frequently involve many of the following elements: 

• data registration and metadata tagging as well as data movement; 
• data movement over high-speed long-haul networks from a diversity of sources and sinks, 

including parallel file systems, running programs, and hierarchical storage; 
• coordinated data movement across multiple sources, destinations, and intermediate locations, 

and among multiple users and applications; 
• the use of techniques such as storage reservation, data replication, online monitoring, and 

operation retry to reduce the chances of failure, and/or to detect and recover from multiple 
failure modalities; and 

• a need for predictability and coordinated scheduling in spite of variations in load and 
competing use of storage space, bandwidth to the storage system, and network bandwidth. 

Not only must we be able to transfer data and manage end-point storage systems and resource 
managers; we must also be able to support the coordinated orchestration of data across many 
community resources. This requirement goes well beyond our current data transfer and storage 
resource management capabilities. 

We are working to address this requirement in CEDPS by creating a new class of data placement 
services that can reliably position data appropriately across diverse systems and coordinate 
provisioning, movement, and registration across multiple storage systems to enable efficient and 
prioritized access by a community of users (see Figure 1). A single logical transfer may involve 
multiple sources and destinations necessitating the use of intermediate store and forward storage 
systems or the creation of optimized overlay networks such as user level multicast networks. 
Concurrent independent placement operations may be prioritized and monitored in case of failures. 

In pursuing this goal, we build on much prior work, including our work on GridFTP [8] and 
associated data services [14]; the NeST [10] and SRM [31] storage management services; and a 
variety of research systems. We are extending the Data Replication Service (DRS), whose design was 
motivated by the Lightweight Data Replicator [17] that the LIGO experiment has been using to 
replicate one terabyte of data per day to eight sites in the US and Europe for over a year, creating 150 
million file replicas to date. 

Our data placement work addresses three classes of application requirements. First, we are 
interested in placing data at locations that will be advantageous for the execution of computations and 
workflows. By using a data placement service to perform staging operations asynchronously with 
respect to a workflow or execution engine, rather than explicitly staging data at run time, we hope to 
demonstrate improved application performance, as suggested in simulation [29]. 



 
 
 
 
 
 

Second, we are interested in using the data placement service to assist with efficient staging out of 
data products. When an application runs on a compute resource such as a cluster or supercomputer, 
data products must often be staged off the storage system associated with that computational resource 
onto more permanent secondary or archival storage. These staging out operations can limit application 
performance, particularly if the compute resource is storage-limited; using an asynchronous data 
placement service to stage out data products should improve performance.  

Figure 1: Elements involved in end-to-end data movement. Placement may require staging to intermediate 
storage. Users perform analysis by making requests to science services with access to placed data.  

Finally, we are interested in data placement services that maintain required levels of redundancy in 
a distributed environment. For example, it might be the policy of the data placement service to enforce 
the requirement that there should always be three copies of every data item stored in the system. If the 
number of replicas of any data item falls below this threshold, the placement service is responsible for 
creating additional replicas to meet this requirement. We are investigating all three classes of data 
placement services, with an initial emphasis on the staging in and staging out scenarios [15].  

In support of these scenarios, we have started work on a Managed Object Placement Service 
(MOPS), with the goal of 
transforming storage into a 
managed resource. MOPS 
allows users to negotiate 
access to a certain quantity of 
storage for a certain time and 
with certain performance 
characteristics. Its designa 
and implementation leverage 
GridFTP and NeST, among 
other technologies. 

As work on MOPS 
proceeds, we also continue to 
implement improvements to 
the basic data management 
components on which MOPS 
depends. For example, recent 
work at Argonne 
incorporated pipelining in 
GridFTP server-to-server 

Figure 2: Pipelining optimizations in GridFTP: sending 1 GB partitioned 
into equi-sized files over 60 ms RTT, 1 Gbits WAN 



 
 
 
 
 
 

transfers to achieve a significant increase in transfer performance for lots of small files (LOSF) [13], 
as illustrated in Figure 2. Previously, performance degraded rapidly for file size under 100 MB, but the 
current optimizations allow users to experience GridFTP’s high performance transfer rates for any file 
size above 100 KB. 

In another effort, staff at FermiLab are working to implement data transfer consistency verification 
features defined in the GridFTP-2 standard but not previously implemented in either Globus GridFTP 
or the storage software dCache [22], used on the Open Science Grid [5]. These features are important 
not only for verifying that individual transfers have completed correctly, but as a means of ensuring 
consistency in replicated data across many compliant yet independently maintained storage providers 
where consistency violations may occur because accidental or malicious data substitution as well as 
hardware failures. 

These different efforts provide important building blocks that we will leverage in the coming year 
to create yet more ambitious end-to-end data placement solutions. 

3.  Server-side analysis 
The role of the combined data placement service effort is to position data in physical locations that 
facilitates its subsequent analysis. Driven by the need to deliver analysis to an ever expanding non-
expert user community, and a desire to incorporate analysis components as black boxes into complex 
analysis chains, we see increasing adoption of an approach in which programs are packaged as 
scalable science services that process (potentially many) requests to access and analyze data subsets 
via well-defined service interfaces [20]. 

Because science services define a community wide interface to a critical piece of data analysis, 
they must be able to process potentially many concurrent requests, as we illustrate in the following 
scenarios: 

1. The fusion code TRANSP, deployed as a service by the fusion community [30], is accessed by 
tens to hundreds of remote users. Supporting such levels of access requires tools to manage 
the allocation of resources for TRANSP execution, so that all users get acceptable service. 

2. The PUMA biology data resource must perform millions of BLAST, BLOCKS, and other 
computations to integrate new data into their database [32]. These tasks are memory- and 
CPU-intensive, and require many hundreds of CPUs for days. 

3. ESG, which already supports downloads of terabytes of data per day by a community of 
1000s, plans to provide server-side processing functions [11]. A single user request may 
require large amounts of computation and data access—and dozens of requests can be active 
at one time. 

Such scenarios frequently involve the following elements. 
• The need to integrate 

existing code into a services 
framework, to enable 
sharing of the code across 
community members, 
composition of analysis 
capability into end–to-end 
analysis chains, and the 
isolation of clients from 
details concerning the 
location and implementation 
of analysis functions. 

• The ability to dynamically 
and reliably configure and 
deploy new analysis services 
and to dynamically vary the Figure 3: Architecture of a scalable science service.



 
 
 
 
 
 

computational resources used by analysis services, in response to changing community load. 
• The ability to manage how services are used by communities on a user-by-user and request-

by-request basis, and to monitor for performance degradation at that level. 
As shown in Figure 3, a scalable science service that addresses these concerns will typically 

include a service implementation, end-user client and management interfaces, and mechanisms for the 
dynamic acquisition of computing, storage, and other resources in response to changing load. 

Again, in developing tools to assist with the creation of such services we can build on considerable 
prior technology both within the CEDPS team and elsewhere. These include pyGlobus [25] and 
Introduce [24] for service authoring and the Workspace Service [26], Condor [27], MyCluster [34], 
and Falkon [28] for dynamic provisioning.  

In one set of initial experiments, we have worked to enable dynamic provisioning for applications 
of the High Energy Nuclear Physics STAR experiment [6]. Our results illustrate both the challenges 
and potential of dynamic provisioning. Comprising nearly two million lines of code, developed over 
ten years by more than 100 scientists, and involving hundreds of dependencies, the STAR applications 
rely heavily on the right combination of compiler versions and available libraries to work. Even when 
the application compiles on a new platform, validating it is a controlled process subject to quality 
assurance and regression testing to ensure physics reproducibility and result uniformity across 
environments. These characteristics makes dynamic deployment of STAR applications onto new 
platforms challenging: even if an available resource can be found, adapting it to application needs is a 
complex and time-consuming process, making the investment cost-effective in practice only for 
dedicated platforms.  
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To overcome these challenges, we separate the two tasks of resource provisioning for STAR 
applications and managing application tasks. We use several technologies in conjunction to vary the 
set of platforms available to STAR scientists over time, as a function on demand. To experiment with 
this strategy, we used the Workspace Service to dynamically provision STAR-enabled resources. The 
Workspace Service uses the virtual machine technology (in this case, Xen [9]) to encapsulate a user 
environment (a “workspace”). A STAR environment, once configured and validated inside a virtual 
machine, can be deployed on many different platforms. In our experiment, the Workspace Service 
deployed virtual STAR application nodes on demand in response to requests from an authorized client 
(see Figure 4). On deployment, as part of the boot sequence, each virtual STAR node registered with a 
local resource manager (in this case, Condor). The newly provisioned virtual resources thus became 
available for local task deployment and management. In order to additionally enable remote clients to 
submit tasks to the newly 
provisioned nodes, the 
manager node was also 
configured with GRAM, 
allowing remote access to 
authorized Grid clients. 

The scope of this 
experiment was limited to a 
small set of virtualization-
enabled platforms. However, 
as more such platforms 
become available, we can 
expand the set of resources 
used, allowing full-scale 
production computations. We 
are working with the STAR 
community to run their 
applications on both 

Figure 4: Dynamic provisioning using the workspace service. A user 
requests the workspace service to deploy STAR images and then interacts 
with those images to run STAR applications



 
 
 
 
 
 

commercially available resources (specifically, the Amazon EC2 service) and to enable similar modes 
of resource provisioning on Open Science Grid resources. 

4.  Troubleshooting 
The end-to-end systems with which we are concerned comprise many different hardware and software 
components in different physical locations and administrative domains. Failures can occur and they 
can be hard to diagnose. Experience with current DOE distributed system deployments has shown that 
understanding behavior is a fundamental requirement, not just a desirable enhancement. For example, 
in 2003 about 30% of all grid jobs failed on Grid2003 (the precursor to Open Science Grid) for 
unknown reasons [21]. Middleware may also mask performance faults, when applications produce 
correct results but experience degradation in performance. 

To address these challenges, we are developing methods and tools that allow us to monitor, collect, 
and respond to information about the individual and collective behavior of services in dynamic 
environments. These tools include log management services that can be associated with individual 
system and application components , a monitoring service to collect, archive, and analyze log and 
event data from those components, and a trigger service that performs warnings on errors. 

As is the case with data placement, we have already made useful progress in several areas. We list 
three examples here. In the first, we have developed a first version of the log management service 
based on the syslog-ng system [7], as shown in Figure 5. We have used this service to detect 
performance anomalies [12], with NetLogger [33] used to access performance data. 

A second activity has focused on improving the quality and consistency of available performance 
information. Specifically, we have codified a set of logging “Best Practices” [2], and are modifying 
the Globus Toolkit [19] to follow these practices. In defining these guidelines, we have worked with 
the European EGEE project to achieve compatibility with their security logging guidelines [23], an 
important requirement for LHC computing. 

Third, we have extended the MDS4 Trigger Service to be more scalable and to allow better state 
management. This Globus component can be configured to check for specified failure conditions in 
monitored services and to notify 
system administrators when failures 
occur. It has been used by ESG for 
over three years for system failure 
notifications and to help diagnose 
errors [16]. We have re-architected 
this component to allow for 
additional trigger services, a 
separation of matching conditions 
and actions taken upon failure 
notification, and easier deployment 
through a Web interface. 

These efforts represent useful 
steps towards our goal of end-to-end 
troubleshooting for data movement 
and service provisioning. Our next 
steps will be focused on deploying 
these tools more widely and gaining 
more extensive operational 
experience, as well as on 
incorporating additional functionality 
to help diagnose and prevent 
common errors seen on deployed 
systems.  

Figure 5: Log file collection across distributed sites.



 
 
 
 
 
 

 
 

5.  Summary 
We have introduced the SciDAC Center for Enabling Distributed Petascale Science, CEDPS, which is 
addressing three problems critical to enabling the distributed management and analysis of petascale 
datasets: data placement, scalable services, and troubleshooting. 

In data placement, we are developing tools and techniques for reliable, high-performance, secure, 
and policy driven placement of data within a distributed science environment. We are constructing a 
managed object placement service (MOPS)—a significant enhancement to today’s GridFTP—that 
allows for management of the space, bandwidth, connections, and other resources needed to transfer 
data to and/or from a storage system. Building on this base, we are developing end-to-end data 
placement services that implement different data distribution and replication behaviors. 

In scalable services, we are developing tools and techniques for the construction, operation, and 
provisioning of scalable science services. We are creating service construction tools that take 
application code (simulation or data analysis, program or library) and wrap it as a remotely accessible 
service, with appropriate interfaces, authorization, persistence, provisioning, and other capabilities. 
We are also constructing provisioning tools for dynamic management of the computing, storage, and 
networking resources required to execute a service, and the configuration of those resources to meet 
application requirements. 

Finally, in troubleshooting, we are developing tools for the detection and diagnosis of failures in 
end-to-end data placement and distributed application hosting configurations. We are constructing an 
end-to-end monitoring architecture that uses instrumented services to provide detailed data for both 
background collection and run-time event-driven collection. We are also constructing new monitoring 
analysis tools able to detect failures and performance anomalies and predict system behaviors using 
archived data and event logs. 

In each area, we already have useful tools and are making good progress towards realizing project 
goals. We look forward to working with other SciDAC projects to apply and evaluate our tools. 
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