

Enabling Distributed Petascale Science

Andrew Baranovski1, Shishir Bharathi2, John Bresnahan3,4, Ann Chervenak2,
Ian Foster3,4,5, Dan Fraser3,4, Tim Freeman3,4, Dan Gunter6, Keith Jackson6,
Kate Keahey3,4, Carl Kesselman2, David E. Konerding6, Nick Leroy7,
Mike Link3,4, Miron Livny7, Neill Miller3, Robert Miller3, Gene Oleynik1,
Laura Pearlman2, Jennifer M. Schopf3,4, Robert Schuler2, Brian Tierney6

1 Fermi National Accelerator Laboratory
2 Information Sciences Institute, University of Southern California

3 Computation Institute, University of Chicago and Argonne National Laboratory
4 Mathematics and Computer Science Division, Argonne National Laboratory
5 Department of Computer Science, University of Chicago
6 Lawrence Berkeley National Laboratory
7 Department of Computer Science, University of Wisconsin, Madison

Contact Author: foster@mcs.anl.gov

Abstract. Petascale science is an end-to-end endeavour, involving not only the creation of
massive datasets at supercomputers or experimental facilities, but the subsequent analysis of
that data by a user community that may be distributed across many laboratories and
universities. The new SciDAC Center for Enabling Distributed Petascale Science (CEDPS) is
developing tools to support this end-to-end process. These tools include data placement
services for the reliable, high-performance, secure, and policy-driven placement of data within
a distributed science environment; tools and techniques for the construction, operation, and
provisioning of scalable science services; and tools for the detection and diagnosis of failures
in end-to-end data placement and distributed application hosting configurations. In each area,
we build on a strong base of existing technology and have made useful progress in the first
year of the project. For example, we have recently achieved order-of-magnitude improvements
in transfer times (for lots of small files) and implemented asynchronous data staging
capabilities; demonstrated dynamic deployment of complex application stacks for the STAR
experiment; and designed and deployed end-to-end troubleshooting services. We look forward
to working with SciDAC application and technology projects to realize the promise of
petascale science. More details can be found at www.cedps.net.

1. Petascale science is an end-to-end problem
At a recent workshop on computational science, the chair noted in his introductory remarks that if the
speed of airplanes had increased by the same factor as computers over the last 50 years, namely five
orders of magnitude, then we would be able to cross the US in less than a second. This analogy
communicates with great effectiveness the remarkable impact of continued exponential growth in
computational performance, which along with comparable improvements in solution methods is
arguably the foundation for the SciDAC program.

However, a participant was heard to exclaim following these remarks: “yes—but it would still take
two hours to get downtown!” The serious point that this speaker was making is that science is an end-
to-end problem and that accelerating just one single aspect of the problem solving process can
inevitably achieve only limited returns in terms of increased scientific productivity.

These concerns become particularly important as we enter the era of petascale science, by which
we mean science involving numerical simulations performed on supercomputers capable of a
petaflop/sec or higher performance, and/or experimental apparatus—such as the Large Hadron
Collider [4], DOE light sources and other Basic Energy Sciences user facilities [1], and ITER [3]—
capable of producing petabytes of data. Successful science using such devices demands not only that
we be able to construct and operate the simulation or experiment, but also that a distributed
community of participants be able to access, analyze, and ultimately make sense of the resulting
massive datasets. In the absence of appropriate solutions to the end-to-end problem, the utility of these
unique apparatus can be severely compromised.

The following example illustrates issues that can arise in such contexts. A team at the University of
Chicago recently used the FLASH3 code to perform the world’s largest compressible homogeneous
isotropic turbulence simulation [18]. Using 11 million CPU-hours on the LLNL BG/L computer over a
period of a week, they produced a total of 154 terabytes of data, contained in 75 million files.
Subsequently, they used GridFTP to move 23 terabytes of this data to computers at the University of
Chicago; using four parallel streams, this took some three weeks at around 20 megabyte/sec. Next,
they spent considerable time using local resources to analyze and visualize the data. In a final step,
they are making this unique dataset available for use by the community of turbulence researchers. In
each of these steps, they were ultimately successful—but they would be the first to argue that the
effort required to achieve their end-to-end goals of scientific publications and publicly available
datasets was excessive.

As this example illustrates, a complete solution to the end-to-end problem may require not only
methods for parallel petascale simulation and high-performance parallel I/O (both handled by the
FLASH3 code and associated parallel libraries), but also efficient and reliable methods for:

• high-performance remote visualization, to enable perusal of selected subsets and features
of large datasets data prior to download;

• high-speed reliable data placement, to transfer data from its site of creation to other
locations for subsequent analysis;

• terascale or faster local data analysis, to enable exploration of data that has been fetched
locally;

• building and operating scalable services, so that many users can request analyses of data
without having to download large subsets;

• troubleshooting the complex end-to-end system, which due to its myriad hardware and
software components can fail in a wide range of often hard-to-diagnose ways;

• securing the end-to-end system, in a manner that prevents (and/or can detect) intrusions
and other attacks, without preventing the high-performance data movement and
collaborative access that is essential to petascale science; and

• orchestrating these various activities, so that they can be performed routinely and
repeatedly.

Each of these requirements can be a significant challenge when working at the petascale. Thus, a
new SciDAC Center for Enabling Technology, the Center for Enabling Distributed Petascale Science
(CEDPS) was recently established to address three of these requirements: data placement, scalable
services, and troubleshooting. This center is intended to support the work of any SciDAC program that
involves the creation, movement, and/or analysis of large amounts of data.

2. Data placement
Large quantities of data must frequently be moved between computers in a petascale computing
environment, whether because there are insufficient resources to perform analysis on the platform that
generated the data, because analysis requires specialized resources or involves comparison with other
data, or because the data must be “published” (moved and augmented with metadata) to facilitate use
by the community. The requirement here is not simply high-performance data transfer, as supported
for example by GridFTP [8]. For example, consider the following scenarios:

(1) A team running the CCSM climate simulation code at ORNL wants to publish its output
data to the Earth System Grid (ESG) [11]. They must both transfer the output data to an
HPSS archive at NERSC (perhaps while the model is running), and also register each file in
a metadata catalog.

(2) Scientists who have run a combustion simulation at NERSC producing 100 TB of data want
to explore that data using visualization tools. This task requires that data be replicated to
five sites.

(3) Data produced by the CMS experiment at the LHC (at a sustained rate of 400 MB/s) must
be delivered to a Tier 1 site in the US where it is further processed and then distributed
among several US domestic and 20 non-US Tier-2 sites.

These scenarios, for which we can give many other examples across a wide range of DOE
applications, frequently involve many of the following elements:

• data registration and metadata tagging as well as data movement;
• data movement over high-speed long-haul networks from a diversity of sources and sinks,

including parallel file systems, running programs, and hierarchical storage;
• coordinated data movement across multiple sources, destinations, and intermediate locations,

and among multiple users and applications;
• the use of techniques such as storage reservation, data replication, online monitoring, and

operation retry to reduce the chances of failure, and/or to detect and recover from multiple
failure modalities; and

• a need for predictability and coordinated scheduling in spite of variations in load and
competing use of storage space, bandwidth to the storage system, and network bandwidth.

Not only must we be able to transfer data and manage end-point storage systems and resource
managers; we must also be able to support the coordinated orchestration of data across many
community resources. This requirement goes well beyond our current data transfer and storage
resource management capabilities.

We are working to address this requirement in CEDPS by creating a new class of data placement
services that can reliably position data appropriately across diverse systems and coordinate
provisioning, movement, and registration across multiple storage systems to enable efficient and
prioritized access by a community of users (see Figure 1). A single logical transfer may involve
multiple sources and destinations necessitating the use of intermediate store and forward storage
systems or the creation of optimized overlay networks such as user level multicast networks.
Concurrent independent placement operations may be prioritized and monitored in case of failures.

In pursuing this goal, we build on much prior work, including our work on GridFTP [8] and
associated data services [14]; the NeST [10] and SRM [31] storage management services; and a
variety of research systems. We are extending the Data Replication Service (DRS), whose design was
motivated by the Lightweight Data Replicator [17] that the LIGO experiment has been using to
replicate one terabyte of data per day to eight sites in the US and Europe for over a year, creating 150
million file replicas to date.

Our data placement work addresses three classes of application requirements. First, we are
interested in placing data at locations that will be advantageous for the execution of computations and
workflows. By using a data placement service to perform staging operations asynchronously with
respect to a workflow or execution engine, rather than explicitly staging data at run time, we hope to
demonstrate improved application performance, as suggested in simulation [29].

Second, we are interested in using the data placement service to assist with efficient staging out of
data products. When an application runs on a compute resource such as a cluster or supercomputer,
data products must often be staged off the storage system associated with that computational resource
onto more permanent secondary or archival storage. These staging out operations can limit application
performance, particularly if the compute resource is storage-limited; using an asynchronous data
placement service to stage out data products should improve performance.

Figure 1: Elements involved in end-to-end data movement. Placement may require staging to intermediate
storage. Users perform analysis by making requests to science services with access to placed data.

Finally, we are interested in data placement services that maintain required levels of redundancy in
a distributed environment. For example, it might be the policy of the data placement service to enforce
the requirement that there should always be three copies of every data item stored in the system. If the
number of replicas of any data item falls below this threshold, the placement service is responsible for
creating additional replicas to meet this requirement. We are investigating all three classes of data
placement services, with an initial emphasis on the staging in and staging out scenarios [15].

In support of these scenarios, we have started work on a Managed Object Placement Service
(MOPS), with the goal of
transforming storage into a
managed resource. MOPS
allows users to negotiate
access to a certain quantity of
storage for a certain time and
with certain performance
characteristics. Its designa
and implementation leverage
GridFTP and NeST, among
other technologies.

As work on MOPS
proceeds, we also continue to
implement improvements to
the basic data management
components on which MOPS
depends. For example, recent
work at Argonne
incorporated pipelining in
GridFTP server-to-server

Figure 2: Pipelining optimizations in GridFTP: sending 1 GB partitioned
into equi-sized files over 60 ms RTT, 1 Gbits WAN

transfers to achieve a significant increase in transfer performance for lots of small files (LOSF) [13],
as illustrated in Figure 2. Previously, performance degraded rapidly for file size under 100 MB, but the
current optimizations allow users to experience GridFTP’s high performance transfer rates for any file
size above 100 KB.

In another effort, staff at FermiLab are working to implement data transfer consistency verification
features defined in the GridFTP-2 standard but not previously implemented in either Globus GridFTP
or the storage software dCache [22], used on the Open Science Grid [5]. These features are important
not only for verifying that individual transfers have completed correctly, but as a means of ensuring
consistency in replicated data across many compliant yet independently maintained storage providers
where consistency violations may occur because accidental or malicious data substitution as well as
hardware failures.

These different efforts provide important building blocks that we will leverage in the coming year
to create yet more ambitious end-to-end data placement solutions.

3. Server-side analysis
The role of the combined data placement service effort is to position data in physical locations that
facilitates its subsequent analysis. Driven by the need to deliver analysis to an ever expanding non-
expert user community, and a desire to incorporate analysis components as black boxes into complex
analysis chains, we see increasing adoption of an approach in which programs are packaged as
scalable science services that process (potentially many) requests to access and analyze data subsets
via well-defined service interfaces [20].

Because science services define a community wide interface to a critical piece of data analysis,
they must be able to process potentially many concurrent requests, as we illustrate in the following
scenarios:

1. The fusion code TRANSP, deployed as a service by the fusion community [30], is accessed by
tens to hundreds of remote users. Supporting such levels of access requires tools to manage
the allocation of resources for TRANSP execution, so that all users get acceptable service.

2. The PUMA biology data resource must perform millions of BLAST, BLOCKS, and other
computations to integrate new data into their database [32]. These tasks are memory- and
CPU-intensive, and require many hundreds of CPUs for days.

3. ESG, which already supports downloads of terabytes of data per day by a community of
1000s, plans to provide server-side processing functions [11]. A single user request may
require large amounts of computation and data access—and dozens of requests can be active
at one time.

Such scenarios frequently involve the following elements.
• The need to integrate

existing code into a services
framework, to enable
sharing of the code across
community members,
composition of analysis
capability into end–to-end
analysis chains, and the
isolation of clients from
details concerning the
location and implementation
of analysis functions.

• The ability to dynamically
and reliably configure and
deploy new analysis services
and to dynamically vary the Figure 3: Architecture of a scalable science service.

computational resources used by analysis services, in response to changing community load.
• The ability to manage how services are used by communities on a user-by-user and request-

by-request basis, and to monitor for performance degradation at that level.
As shown in Figure 3, a scalable science service that addresses these concerns will typically

include a service implementation, end-user client and management interfaces, and mechanisms for the
dynamic acquisition of computing, storage, and other resources in response to changing load.

Again, in developing tools to assist with the creation of such services we can build on considerable
prior technology both within the CEDPS team and elsewhere. These include pyGlobus [25] and
Introduce [24] for service authoring and the Workspace Service [26], Condor [27], MyCluster [34],
and Falkon [28] for dynamic provisioning.

In one set of initial experiments, we have worked to enable dynamic provisioning for applications
of the High Energy Nuclear Physics STAR experiment [6]. Our results illustrate both the challenges
and potential of dynamic provisioning. Comprising nearly two million lines of code, developed over
ten years by more than 100 scientists, and involving hundreds of dependencies, the STAR applications
rely heavily on the right combination of compiler versions and available libraries to work. Even when
the application compiles on a new platform, validating it is a controlled process subject to quality
assurance and regression testing to ensure physics reproducibility and result uniformity across
environments. These characteristics makes dynamic deployment of STAR applications onto new
platforms challenging: even if an available resource can be found, adapting it to application needs is a
complex and time-consuming process, making the investment cost-effective in practice only for
dedicated platforms.

Pool
node

Pool
node

Pool
node

Pool
node

Pool
node

Pool
node

Pool
node

Pool
node

Pool
node

Pool
node

Pool
node

Pool
node

VWS
ServiceSTAR Image

Base config: 1 GB
Application: 3 GB

Data: <1 GB
Blank: 3 GB

To overcome these challenges, we separate the two tasks of resource provisioning for STAR
applications and managing application tasks. We use several technologies in conjunction to vary the
set of platforms available to STAR scientists over time, as a function on demand. To experiment with
this strategy, we used the Workspace Service to dynamically provision STAR-enabled resources. The
Workspace Service uses the virtual machine technology (in this case, Xen [9]) to encapsulate a user
environment (a “workspace”). A STAR environment, once configured and validated inside a virtual
machine, can be deployed on many different platforms. In our experiment, the Workspace Service
deployed virtual STAR application nodes on demand in response to requests from an authorized client
(see Figure 4). On deployment, as part of the boot sequence, each virtual STAR node registered with a
local resource manager (in this case, Condor). The newly provisioned virtual resources thus became
available for local task deployment and management. In order to additionally enable remote clients to
submit tasks to the newly
provisioned nodes, the
manager node was also
configured with GRAM,
allowing remote access to
authorized Grid clients.

The scope of this
experiment was limited to a
small set of virtualization-
enabled platforms. However,
as more such platforms
become available, we can
expand the set of resources
used, allowing full-scale
production computations. We
are working with the STAR
community to run their
applications on both

Figure 4: Dynamic provisioning using the workspace service. A user
requests the workspace service to deploy STAR images and then interacts
with those images to run STAR applications

commercially available resources (specifically, the Amazon EC2 service) and to enable similar modes
of resource provisioning on Open Science Grid resources.

4. Troubleshooting
The end-to-end systems with which we are concerned comprise many different hardware and software
components in different physical locations and administrative domains. Failures can occur and they
can be hard to diagnose. Experience with current DOE distributed system deployments has shown that
understanding behavior is a fundamental requirement, not just a desirable enhancement. For example,
in 2003 about 30% of all grid jobs failed on Grid2003 (the precursor to Open Science Grid) for
unknown reasons [21]. Middleware may also mask performance faults, when applications produce
correct results but experience degradation in performance.

To address these challenges, we are developing methods and tools that allow us to monitor, collect,
and respond to information about the individual and collective behavior of services in dynamic
environments. These tools include log management services that can be associated with individual
system and application components , a monitoring service to collect, archive, and analyze log and
event data from those components, and a trigger service that performs warnings on errors.

As is the case with data placement, we have already made useful progress in several areas. We list
three examples here. In the first, we have developed a first version of the log management service
based on the syslog-ng system [7], as shown in Figure 5. We have used this service to detect
performance anomalies [12], with NetLogger [33] used to access performance data.

A second activity has focused on improving the quality and consistency of available performance
information. Specifically, we have codified a set of logging “Best Practices” [2], and are modifying
the Globus Toolkit [19] to follow these practices. In defining these guidelines, we have worked with
the European EGEE project to achieve compatibility with their security logging guidelines [23], an
important requirement for LHC computing.

Third, we have extended the MDS4 Trigger Service to be more scalable and to allow better state
management. This Globus component can be configured to check for specified failure conditions in
monitored services and to notify
system administrators when failures
occur. It has been used by ESG for
over three years for system failure
notifications and to help diagnose
errors [16]. We have re-architected
this component to allow for
additional trigger services, a
separation of matching conditions
and actions taken upon failure
notification, and easier deployment
through a Web interface.

These efforts represent useful
steps towards our goal of end-to-end
troubleshooting for data movement
and service provisioning. Our next
steps will be focused on deploying
these tools more widely and gaining
more extensive operational
experience, as well as on
incorporating additional functionality
to help diagnose and prevent
common errors seen on deployed
systems.

Figure 5: Log file collection across distributed sites.

5. Summary
We have introduced the SciDAC Center for Enabling Distributed Petascale Science, CEDPS, which is
addressing three problems critical to enabling the distributed management and analysis of petascale
datasets: data placement, scalable services, and troubleshooting.

In data placement, we are developing tools and techniques for reliable, high-performance, secure,
and policy driven placement of data within a distributed science environment. We are constructing a
managed object placement service (MOPS)—a significant enhancement to today’s GridFTP—that
allows for management of the space, bandwidth, connections, and other resources needed to transfer
data to and/or from a storage system. Building on this base, we are developing end-to-end data
placement services that implement different data distribution and replication behaviors.

In scalable services, we are developing tools and techniques for the construction, operation, and
provisioning of scalable science services. We are creating service construction tools that take
application code (simulation or data analysis, program or library) and wrap it as a remotely accessible
service, with appropriate interfaces, authorization, persistence, provisioning, and other capabilities.
We are also constructing provisioning tools for dynamic management of the computing, storage, and
networking resources required to execute a service, and the configuration of those resources to meet
application requirements.

Finally, in troubleshooting, we are developing tools for the detection and diagnosis of failures in
end-to-end data placement and distributed application hosting configurations. We are constructing an
end-to-end monitoring architecture that uses instrumented services to provide detailed data for both
background collection and run-time event-driven collection. We are also constructing new monitoring
analysis tools able to detect failures and performance anomalies and predict system behaviors using
archived data and event logs.

In each area, we already have useful tools and are making good progress towards realizing project
goals. We look forward to working with other SciDAC projects to apply and evaluate our tools.

Acknowledgements
This work is supported through the U.S. Department of Energy Office of Science, Office of

Advanced Scientific Computing Research, through the SciDAC program. Work at Argonne is
supported under Contract DE-AC02-06CH11357; at FermiLab, under contract DE-AC02-07CH11359;
and Lawrence Berkeley National Laboratory, under Contract DE-AC02-05CH11231.

References
1. BES Scientific User Facilities, http://www.sc.doe.gov/bes/BESfacilities.htm, 2007.
2. Grid Logging Best Practices Guide, CEDPS, http://www.cedps.net/wiki/images/6/6f/CEDPS-

troubleshooting-bestPractices-16.doc, 2007.
3. ITER, www.iter.org, 2006.
4. LHC - The Large Hadron Collider Project, http://lhc.web.cern.ch, 2007.
5. Open Science Grid, http://www.opensciencegrid.org/, 2007.
6. The STAR Experiment, www.star.bnl.gov, 2007.
7. The syslog-ng Logging System, http://www.balabit.com/products/syslog-ng/, 2007.
8. Allcock, B., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raicu, I. and Foster, I.

The Globus Striped GridFTP Framework and Server SC'2005, 2005.
9. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebar, R., Pratt, I. and

Warfield, A. Xen and the Art of Virtualization ACM Symposium on Operating Systems
Principles, 2003, 164-177.

http://www.sc.doe.gov/bes/BESfacilities.htm
http://www.cedps.net/wiki/images/6/6f/CEDPS-troubleshooting-bestPractices-16.doc
http://www.cedps.net/wiki/images/6/6f/CEDPS-troubleshooting-bestPractices-16.doc
http://www.iter.org/
http://lhc.web.cern.ch/
http://www.opensciencegrid.org/
http://www.star.bnl.gov/
http://www.balabit.com/products/syslog-ng/

10. Bent, J., Venkataramani, V., LeRoy, N., Roy, A., Stanley, J., Arpaci-Dusseau, A.C., Arpaci-
Dusseau, R.H. and Livny, M. NeST: A Grid Enabled Storage Appliance Grid Resource
Management: State of the Art and Future Trends, 2004.

11. Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A., Cinquini, L.,
Drach, B., Foster, I., Fox, P., Garcia, J., Kesselman, C., Markel, R., Middleton, D., Nefedova,
V., Pouchard, L., Shoshani, A., Sim, A., Strand, G. and Williams, D. The Earth System Grid:
Supporting the Next Generation of Climate Modeling Research. Proceedings of the IEEE, 93
(3). 485-495. 2005.

12. Bresnahan, J., Brown, A., Gunter, D., Schopf, J.M., Swany, M. and Tierney, B.L., Log
Summarization and Anomaly Detection for Troubleshooting Distributed Systems in IEEE/ACM
International Conference on Grid Computing (Grid2007), (Austin, TX, 2007).

13. Bresnahan, J., Link, M., Kettimuthu, R., Fraser, D. and Foster, I. GridFTP Pipelining TeraGrid
Conference, Madison, WI, 2007.

14. Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W., Iamnitchi, A., Kesselman, C.,
Kunst, P., Ripenu, M., Schwartzkopf, B., Stockinger, H., Stockinger, K. and Tierney, B. Giggle:
A Framework for Constructing Scalable Replica Location Services SC'02: High Performance
Networking and Computing, http://www.globus.org/research/papers.html#giggle, 2002.

15. Chervenak, A., Deelman, E., Livny, M., Su, M.-H., Schuler, R., Bharathi, S., Mehta, G. and
Vahi, K. Data Placement for Scientific Applications in Distributed Environments 8th
IEEE/ACM International Conference on Grid Computing (Grid 2007), Austin, TX, 2007.

16. Chervenak, A., Schopf, J.M., Pearlman, L., Su, M.-H., Bharathi, S., Cinquini, L., D’Arcy, M.,
Miller, N. and Bernholdt, D. Monitoring the Earth System Grid with MDS4 2nd IEEE Intl.
Conference on e-Science and Grid Computing (e-Science 2006), Amsterdam, Netherlands,
2006.

17. Chervenak, A., Schuler, R., Kesselman, C., Koranda, S. and Moe, B., Wide Area Data
Replication for Scientific Collaborations. in 6th IEEE/ACM Int'l Workshop on Grid Computing
(2005).

18. Fisher, R.T., Kadanoff, L., Lamb, D.Q., Constantin, P., Foster, I., Cattaneo, F., Papka, M.E.,
Dubey, A., Plewa, T., Rich, P., Antypas, K., Abarzhi, S.I., Asida, S.M., Calder, A.C., Reid,
L.B., Sheeler, D., Gallagher, J.B., Glendenin, C.C. and Needham, S.G. Terascale Turbulence
Computation on BG/L Using the FLASH3 Code. IBM Systems Journal. 2007.

19. Foster, I. Globus Toolkit Version 4: Software for Service-Oriented Systems. Journal of
Computational Science and Technology, 21 (4). 523-530. 2006.

20. Foster, I. Service-Oriented Science. Science, 308. 814-817. 2005.
21. Foster, I. and others. The Grid2003 Production Grid: Principles and Practice IEEE International

Symposium on High Performance Distributed Computing, IEEE Computer Science Press,
www.ivdgl.org/grid2003, 2004.

22. Fuhrmann, P., dCache, the commodity cache. in 12th NASA Goddard and Twenty First IEEE
Conference on Mass Storage Systems and Technologies, (2004).

23. Groep, D. Middleware Security Audit Logging Guidelines EGEE Document 2006-11-07,
https://edms.cern.ch/document/793208, 2006.

24. Hastings, S.L., Oster, S., Langella, S., Ervin, D.W., Kurc, T.M. and Saltz, J.H. Introduce: An
Open Source Toolkit for Rapid Development of Strongly Typed Grid Services. Journal of Grid
Computing. 2007.

25. Jackson, K. pyGlobus: a Python Interface to the Globus Toolkit. Concurrency and
Computation: Practice and Experience, 14 (13-15). 1075-1084. 2002.

26. Keahey, K., Foster, I., Freeman, T. and Zhang, X. Virtual Workspaces: Achieving Quality of
Service and Quality of Life in the Grid. Scientific Programming, 13 (4). 265-275. 2005.

27. Litzkow, M.J., Livny, M. and Mutka, M.W. Condor - A Hunter of Idle Workstations. in 8th
International Conference on Distributed Computing Systems, 1988, 104-111.

http://www.globus.org/research/papers.html#giggle
http://www.ivdgl.org/grid2003

28. Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I. and Wilde, M., Falkon: a Fast and Light-weight
tasK executiON framework for Grid Environments. in SC'2007, (2007), ACM.

29. Ranganathan, K. and Foster, I. Simulation Studies of Computation and Data Scheduling
Algorithms for Data Grids. Journal of Grid Computing, 1 (1). 2003.

30. Schissel, D.P., Keahey, K., Araki, T., Burruss, J.R., Feibush, E., Flanagan, S.M., Foster, I.,
Fredian, T.W., Greenwald, M.J., Klasky, S.A., Leggett, T., Li, K., McCune, D.C., Lane, P.,
Papka, M.E., Peng, Q., Randerson, L., Sanderson, A., Stillerman, J., Thompson, M.R. and
Wallace, G., The National Fusion Collaboratory Project: Applying Grid Technology for
Magnetic Fusion Research. in Workshop on Case Studies on Grid Applications, (2004).

31. Shoshani, A., Sim, A. and Gu, J. Storage Resource Managers: Essential Components for the
Grid. in Nabrzyski, J., Schopf, J.M. and Weglarz, J. eds. Grid Resource Management: State of
the Art and Future Trends, Kluwer Academic Publishers, 2003.

32. Sulakhe, D., Rodriguez, A., D'Souza, M., Wilde, M., Nefedova, V., Foster, I. and Maltsev, N.
GNARE: An Environment for Grid-Based High-Throughput Genome Analysis. Journal of
Clinical Monitoring and Computing. 2005.

33. Tierney, B. and Gunter, D. NetLogger: A Toolkit for Distributed System Performance Tuning
and Debugging. Lawrence Berkeley National Laboratory, LBNL-51276, 2003.

34. Walker, E., Gardner, J.P., Litvin, V. and Turner, E.L. Creating personal adaptive clusters for
managing scientific jobs in a distributed computing environment Challenges of Large
Applications in Distributed Environments, IEEE, 2006.

