
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

A Globally Convergent Filter Method for MPECs

Sven Leyffer and Todd S. Munson

Mathematics and Computer Science Division

Preprint ANL/MCS-P1457-0907

September 2007, Revised April 2009



Contents

1 Introduction 1

2 Motivation 2
2.1 The Alphabet Soup of MPEC Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Failures of the NLP Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 A Counterexample for SQPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Algorithm Statement 6
3.1 Outline of SLPEC-EQP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 An SLPEC-Filter Algorithm for MPECs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 SLPEC-Filter Convergence Proof 10
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Main Convergence Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 SLPEC-Filter Convergence Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Accelerating Local Convergence and Computational Considerations 19
5.1 Extension to SLPEC-EQP Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Computational Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Conclusions 21
Acknowledgments
References



A Globally Convergent Filter Method for MPECs∗

SVEN LEYFFER† AND TODD S. MUNSON‡

May 5, 2009

Abstract

We propose a new method for mathematical programs with complementarity constraints that is globally
convergent to B-stationary points. The method solves a linear program with complementarity constraints
to obtain an estimate of the active set. It then fixes the activities and solves an equality-constrained
quadratic program to obtain fast convergence. The method uses a filter to promote global convergence.
We establish convergence to B-stationary points.

Keywords: Mathematical Programs with Equilibrium Constraints, Mathematical Programs with Com-
plementarity Constraints, B-Stationarity, Sequential Linear Programming.

AMS-MSC2000: 90C33, 90C55

1 Introduction

Mathematical programs with equilibrium constraints (MPECs) arise is a wide variety of applications (Ferris
and Pang, 1997; Luo et al., 1996; Pang and Leyffer, 2004), as is evident from the rich set of test problems
(Leyffer, 2000; Dirkse, 2001). MPECs are conveniently expressed as

minimize
x,y

f(x, y)

subject to c(x, y) ≥ 0
0 ≤ y ⊥ F (x, y) ≥ 0,

(1.1)

where x ∈ IRp, y ∈ IRq, p + q = n, and f, c, and F are smooth functions from IRn to IR, IRm, and IRq,
respectively. More general constraints are readily included in (1.1). For convenience, we also abbreviate the
variables as z = (x, y).

Recently, many authors have suggested nonlinear programming (NLP) methods for solving MPECs,
(Anitescu, 2005; Benson et al., 2006; Friedlander et al., 2005; Fletcher and Leyffer, 2004; Fletcher et al.,
2006; Leyffer, 2003, 2006; Leyffer et al., 2006; Liu et al., 2005; Raghunathan and Biegler, 2005). These
methods can be very successful and have enabled us to solve much larger problems than previously possible.
However, the NLP approach does not preclude convergence to spurious stationary points. We have observed
failures of the NLP approach on some large and difficult problems arising in electricity markets (Chen et al.,
2006) that we believe are a manifestation of fundamental shortcomings of the NLP approach. The aim of
this paper is to present a new method that avoids these shortcomings.
∗Preprint ANL/MCS-P1457-0907.
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, leyffer@mcs.anl.gov.
‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, tmunson@mcs.anl.gov.
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Our algorithm is motivated by Bouligand stationarity, or B-stationarity; defined as follows, see, for
example (Scholtes, 2002).

Definition 1.1. A point (x∗, y∗) is called Bouligand stationary, or B-stationary, if d = 0 solves the linear
program with equilibrium constraints (LPEC) obtained by linearizing f , c, and F about (x∗, y∗),

minimize
d

g∗
T
d

subject to c∗ +A∗
T
d ≥ 0,

0 ≤ y∗ + dy ⊥ F ∗ +B∗
T
d ≥ 0,

where g∗ = ∇f(x∗, y∗), A∗ = ∇c(x∗, y∗), B∗ = ∇F (x∗, y∗), and d = (dx, dy) is a partition of the step
into its x- and y-components.

Our new method is related to recent sequential linear programming (SLP) methods that involve a second-
order equality-constrained quadratic programming (EQP) step. Such methods were originally proposed by
Fletcher and de la Maza (1989), and have recently received renewed interest. Chin and Fletcher (2003)
propose a filter to enforce global convergence, and Byrd et al. (2004) consider a penalty function approach.
The latter approach has also been implemented as SLIQUE. The key idea of these methods is to solve a
linear program at each iteration to predict the optimal active set. Given this prediction of the active set, an
EQP is solved to ensure fast convergence. These methods are computationally efficient, because there exist
efficient implementations for the solution of both subproblems (LP and EQP). SLP-EQP methods can be
regarded as a computationally efficient implementation of sequential quadratic programming methods.

Our main contribution is to regard the complementarity constraint as as a structural constraint, not as
a nonlinear equation. We believe this is an important ingredient in the derivation of robust methods for
MPECs. We extend popular SLP-EQP methods to MPECs. At each iteration of our method, we solve an
LPEC inside a trust region. The solution of the LPEC provides a first-order step and an estimate of the
optimal active set. We fix the active constraints predicted by the LPEC and then solve an EQP to ensure fast
convergence. Global convergence is promoted through the use of a three-dimensional filter that splits the
constraint violation into the complementarity constraints and the components corresponding to the general
constraints.

The remainder of this paper is organized as follows. In Section 2 we review stationarity concepts and
discuss their respective weakness by providing small examples. In Section 3 we define our new filter method
for solving MPECs, and in Section 4 we establish convergence to B-stationary points. In Section 5 we
describe how the method can be accelerated by adding an EQP phase.

Notation. We use subscripts to identify components of vectors, or matrices, and superscripts z(k) to indicate
iterates. Similarly, functions that are evaluated at particular points are denoted as f (k) := f(z(k)) and so
forth.

2 Motivation

The past five years have seen exciting algorithmic developments in MPECs. In particular, a range of new
stationarity concepts has been developed. Coinciding with these developments, NLP methods have been
shown to converge to certain stationary points. Upon closer inspection, however, most of the new stationarity
conditions turn out not preclude the existence of first-order descend directions, making their practical value
questionable.
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Even worse, NLP solvers do sometimes converge to such spurious stationary points. We have observed
this behavior in an application involving the Pennsylvania-Jersey-Maryland electricity market (Chen et al.,
2006). Surprisingly, the recent SQPEC method by Scholtes (2004) can also converge to spurious stationary
points, despite the fact that it preserves the complementarity condition as a structural constraint.

2.1 The Alphabet Soup of MPEC Stationarity

Many stationarity concepts have been proposed for MPECs; see Scheel and Scholtes (2000). Here, we argue
that all but one of these definitions are misleading, because they do not preclude the existence of descend
directions.

MPEC stationarity is defined in terms of the following first-order conditions.

Definition 2.1. A point z∗ = (x∗, y∗) is called weakly stationary if there exist multipliers λ, µ, and ν such
that

g∗ −A∗T λ−B∗Tµ−

(
0
ν

)
= 0,

0 ≤ c∗ ⊥ λ ≥ 0,
0 ≤ y∗ ⊥ F ∗ ≥ 0,

y∗i > 0 ⇒ νi = 0, and F ∗j > 0 ⇒ µj = 0, ∀j = 1, . . . , q.

(2.1)

This weakest form of “stationarity” is tightened by considering the index set of degenerate complemen-
tarity conditions:

D(z) :=
{
i : yi = 0 = Fi(z)

}
(2.2)

Clearly, weakly stationary points allow trivial descend directions if µi < 0 or νi < 0 for some i ∈ D∗. Un-
fortunately, only strong stationarity precludes the existence of such descend directions. All other stationarity
concepts allow trivial descend directions and are, in our view, useless.

Definition 2.2. Let z∗ = (x∗, y∗), and D∗ := D(z∗) be the set of degenerate indices.

1. (x∗, y∗) satisfying (2.1) is called strongly stationary if

µi ≥ 0, and νi ≥ 0, ∀i ∈ D∗. (2.3)

2. (x∗, y∗) satisfying (2.1) is called A-stationary if

µi ≥ 0 or νi ≥ 0, ∀i ∈ D∗. (2.4)

3. (x∗, y∗) satisfying (2.1) is called C-stationary if

µiνi ≥ 0 ∀i ∈ D∗. (2.5)

4. (x∗, y∗) satisfying (2.1) is called M-stationary if(
µi > 0 and νi > 0

)
or µiνi = 0, ∀i ∈ D∗. (2.6)
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Figure 1: Relationships among MPEC stationarity concepts.

We visualize the relationships among these (confusing) stationarity concepts in Figure 1. Scheel and
Scholtes (2000) have shown that strong stationarity implies B-stationarity. However, the reverse is true only,
if the MPEC satisfies an MPEC linear independence constraint qualification (see remark following Defini-
tion 4.1) or if D∗ = ∅. If D∗ = ∅, then all stationarity concepts are equivalent. However, in the interesting
case where D∗ 6= ∅, it follows that A-, C- and M-stationary points allow trivial descend directions, making
these stationarity concepts too weak to be useful.

The first example, due to Scheel and Scholtes (2000), illustrates the failure of C-stationarity to exclude
descend directions. Consider

minimize
x,y

(x− 1)2 + (y − 1)2 subject to 0 ≤ x ⊥ y ≥ 0,

and observe that (0, 0) is a C-stationary point. Since the multipliers ν = µ = −2 < 0, however, the
objective can clearly be reduced by increasing either x or y; see Figure 2 (left).

Figure 2: Example with a C-stationary point with two descend directions (left), and example with an A- and
M-stationary point with two descend directions(right).

Similarly, one can construct trivial examples showing that A- and M-stationary points do not preclude
trivial descend directions. Consider

minimize
x,y

(x− 1)2 + y3 + y2 subject to 0 ≤ x ⊥ y ≥ 0. (2.7)
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In this case, the origin is A- and M-stationary, but again there exists a trivial descend direction, namely,
(1, 0), that reduces the objective by increasing x; see Figure 2 (right).

Remark 2.1. We refer to so-called A-, C-, and M-stationary points as spurious stationary points, because
they do not exclude the existence of first-order descend directions.

In the remainder of this section, we show that many popular methods for solving MPECs are attracted
to such spurious stationary points, motivating the development of new methods that avoid this pitfall.

2.2 Failures of the NLP Approaches

The NLP approach to MPECs reformulates the complementarity constraint as a set of nonlinear inequalities:

0 ≤ y ⊥ F (x, y) ≥ 0 ⇔


y ≥ 0
s− F (x, y) = 0
s ≥ 0
yT s ≤ 0.

(2.8)

There exists a range of other formulations that replace yT s ≤ 0 by a system of inequalities or various NCP
functions, see, for example, (Leyffer, 2006). Our observations generalize to these other NLP approaches.
The introduction of the slack variables s is necessary to avoid convergence to nonstationary points; see
(Fletcher et al., 2006, Example 7.2). Similarly, the complementarity condition yT s ≤ 0 should not be
written as an equation yT s = 0, which would degrade the speed of convergence of SQP methods to strongly
stationary points.

Next, we consider how NLP solvers behave when applied to the examples of the previous subsection.
We start by considering an SQP method applied to the first example and started at (x, y) = (1, 1), the
unconstrained minimum. We observe that SQP generates the sequence (x(k), y(k)) = ( 1

2k ,
1
2k ) that converges

linearly to the spurious stationary point (0, 0), while the multipliers diverge to infinity.
The second example shows that SQP methods may converge to so-called A- or M-stationary points.

Proposition 2.1 below shows that starting at (x0, y0) = (0, t) for any t > 0, SQP generates a sequence of
iterates that converges quadratically to the spurious stationary point (0, 0).

In general, replacing the structural complementarity constraint by a set of equations prevents the solvers
from “seeing around corners.” Thus, without modification, the NLP approaches are doomed to converge
to spurious stationary points. One could imagine remedies that monitor the sign of the complementarity
multipliers, but they would require sophisticated active-set strategies that may interfere with the performance
of the NLP solvers and are not readily implemented.

2.3 A Counterexample for SQPEC

Recently, Scholtes (2004) has considered optimization problems with combinatorial structure. One such ex-
ample involves MPECs, where the complementarity constraint is the combinatorial structure. Scholtes sug-
gests an SQP-like method that respects the combinatorial structure and shows local quadratic convergence
under reasonable assumptions. In the MPEC case, the method is a sequential quadratic programming with
equality constraints (SQPEC) method. Can this method avoid convergence to spurious stationary points?
Unfortunately, the answer to this question is no, as the following proposition shows.



6 Sven Leyffer and Todd S. Munson

Proposition 2.1. Consider solving the MPEC (2.7) by applying SQPEC (Scholtes, 2004). Starting at
(x0, y0) = (0, t) for 0 < t < 1, SQPEC generates the following sequence of iterates,

(x(k+1), y(k+1)) =

(
0,

3y(k)2

6y(k) + 2

)
,

which converges quadratically to the spurious M-stationary point (0, 0).

Proof. The gradient and Hessian of (2.7) are given by

∇f =

(
2(x− 1)
3y2 + 2y

)
and ∇2L = ∇2f =

[
2 0
0 6y + 2

]
,

respectively. Thus, the QPEC at (x(k), y(k)) is given by

minimize
d

2(x(k) − 1)dx + (3y(k)2 + 2y(k))dy + d2
x + (3y(k) + 2)d2

y

subject to 0 ≤ x(k) + dx ⊥ y(k) + dy ≥ 0.

We note, that x(k) = 0 implies that dx = 0 is a solution of this QPEC. Using an inductive argument, it
follows that

dy = −3y(k)2 + 2y(k)

6y(k) + 2
⇒ y(k+1) = y(k) + dy =

3y(k)2

6y(k) + 2
> 0.

The last inequality shows that this is a local solution of the QPEC. Convergence to (0, 0) follows by taking
the limits, and convergence is clearly quadratic.

One can see that (0, 0) is a spurious stationary point, by observing that ∇f(0, 0) = (−2, 0), which
clearly indicates the existence of a descend direction if x is increased from zero. The unique B-stationary
point is (x∗, y∗) = (1, 0). 2

SQPEC converges to the spurious stationary limit (0, 0); but because it never gets there in finite time,
it cannot “look around the corner” to discover the descend direction (1, 0) that would allow convergence to
the B-stationary solution (1, 0). We note that this is not a counterexample to the results by Scholtes (2004),
because Scholtes investigates only local quadratic convergence. However, we still believe that this example
highlights a potential deficiency in an SQPEC method. In contrast, our SLPEC-EQP method would take one
step to the origin, solve an EQP, and then escape from the origin at the next iteration and converge after one
further EQP to the solution.

To our knowledge, currently no practical method guarantees convergence to B-stationary points under
reasonable assumptions. The only exception is the branch-and-bound method proposed by Bard (1988),
which is impractical even for medium-sized problems, because of the lack of suitable cutting planes. The
aim of this paper is to present a new method that fills this gap.

3 Algorithm Statement

In this section we define the key components of the algorithm and provide a formal algorithm statement.
We start by introducing the SLPEC method; later, we will indicate how EQP steps can be included. This
simplification is consistent with our global convergence result, which relies entirely on LPEC steps.
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3.1 Outline of SLPEC-EQP Algorithm

We start by defining the subproblems solved by our method and provide a rough outline of the SLPEC-EQP
method. At each iteration, we solve an LPEC inside a trust region of radius ρ > 0 around the current point
z = (x, y):

LPEC(z, ρ)


minimize

d
g(z)Td

subject to c(z) +A(z)Td ≥ 0,
0 ≤ y + dy ⊥ F (z) +B(z)Td ≥ 0,
‖d‖ ≤ ρ

where g(z) = ∇f(z), A(z) = ∇c(z), and B(z) = ∇F (z). Given a solution d 6= 0, we find the active sets
that are predicted by the LPEC:

Ac(z + d) :=
{
i : ci(z) + ai(z)Td = 0

}
(3.1)

Ay(z + d) :=
{
j : yj + dj = 0

}
(3.2)

AF (z + d) :=
{
j : Fj(z) + bj(z)Td = 0

}
(3.3)

and solve the corresponding EQP:

EQP(z + d)


minimize

d
g(z)Td+ 1

2d
TH(z)d

subject to ci(z) + ai(z)Td = 0, ∀i ∈ Ac(z + d)
yj + dj = 0, ∀j ∈ Ay(z + d)

Fj(z) + bj(z)Td = 0, ∀j ∈ AF (z + d).

We note that EQP(z + d) can be solved as a linear system of equations. Global convergence is promoted
through the use of a three-dimensional filter that separates the complementarity error and the nonlinear
infeasibility. A conceptual outline of our proposed algorithm is given below.

Outline of SLPEC-EQP Algorithm

Given an initial point z0 = (x0, y0), set k = 0, and ρ0 > 0.

while d 6= 0 do
Solve LPEC(z(k), ρk) for step d(k)

Identify the active sets Ac(z(k) + d(k)), Ay(z(k) + d(k)), and AF (z(k) + d(k)).
Solve EQP(z + d) for second-order step dqp.
if z(k) + dqp acceptable step then

Set z(k+1) := z(k) + dqp, and possibly increase ρk+1 = 2ρk.
else

Set z(k+1) := z(k), and decrease ρk+1 = ρk / 2.
end

end

The algorithm outlined above leaves a number of important open questions: How should the LPEC be
solved? What constitutes acceptance of a step? Most importantly, what happens if the LPEC or the EQP
has no solution? In a practical implementation we might also restrict the EQP step by a trust region or
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a proximal-point term, and we could use the SLPEC step if the EQP step fails, or we could consider a
piecewise line-search along an arc.

Our SLPEC-EQP method has one important advantage over the recent NLP approaches. The solution
of the LPEC matches exactly the definition of B-stationarity (see Section 2), and we therefore always work
with the correct tangent cone. In particular, if d = 0 solves the LPEC for some ρ > 0, then we can conclude
that the current point is B-stationary. To our knowledge, this is the only algorithm that guarantees global
convergence to B-stationary points.

We will start by analyzing the global convergence properties of an SLPEC method. The SLPEC-EQP
method will inherit the global convergence properties if we ensure that the EQP step realizes at least a
fraction of the progress predicted by the LPEC step. A detailed description of the SLPEC-EQP method is
given in Section 5.

3.2 Definitions and Notation

Our SLPEC method uses a filter (Fletcher and Leyffer, 2002; Fletcher et al., 2002a) to promote global con-
vergence to B-stationary points. Filter methods promote convergence by viewing an optimization problem
as a bi-objective optimization problem in which both the objective and the constraint violation are min-
imized. Unlike traditional filter methods, however, our SLPEC filter has three components. For a point
z(l) := (x(l), y(l)) we define

f (l) := f(z(l)), (3.4a)

h(l)
c := hc(z(l)) := ‖c(z(l))+‖∞, (3.4b)

h
(l)
F := hF (z(l)) := ‖min(y(l), F (z(l)))‖∞ (3.4c)

to measure the objective value, the infeasibility of the general constraints, and the complementarity con-
straint violation respectively. In the definition of h(l)

c , we have used the notation a+ := max(0, a). The use
of two infeasibility measures gives us greater flexibility to define a restoration phase later. For convenience,
we also define the total constraint violation as

h(z) := max (hc(z), hF (z)) := max
(
‖c(z)+‖∞ , ‖min(y, F (z))‖∞

)
. (3.5)

We note that we could have chosen any other norm to measure the constraint violation. The `∞-norm has
the advantage of simplifying the constants in the convergence proofs.

Definition 3.1. A filter is defined as follows:

1. A point z(k) := (x(k), y(k)) is said to dominate another point z(l) := (x(l), y(l)) if the triple (h(k)
c , h

(k)
F , f (k))

dominates (h(l)
c , h

(l)
F , f

(l)), namely,

f (k) < f (l), h(k)
c < h(l)

c , and h
(k)
F < h

(l)
F .

2. A filter for (1.1) is a list F of triples (h(l)
c , h

(l)
F , f

(l)) such that no triple dominates any other triple for
all l ∈ F .

3. We also define the minimum total constraint violation for a filter:

τ := min
l∈F

{
h(l)
}
.
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Dominance alone is not sufficient to ensure convergence of nonlinear solvers. In practice, we need to
add a small margin around the filter to ensure convergence.

Definition 3.2. We say that a point (x, y) is acceptable to the filter F if its corresponding triple (hc, hF , f)
satisfies

f ≤ f (l) − γh(l), or hc ≤ h(l)
c − γh(l), or hF ≤ h(l)

F − γh
(l), ∀l ∈ F , (3.6)

where 0 < γ < 1 is a small constant.

We note, that this three-dimensional definition differs from the usual two-dimensional filter in the sense
that the margin depends on the total constraint violation, rather than on the individual constraint violation.
This change allows us to prove convergence to feasible limit points in the next section. If we relax the final
two conditions in (3.6) to hc ≤ (1− γ)h(l)

c or hF ≤ (1− γ)h(l)
F , then we can no longer show that the limit

point is feasible, as it may be feasible with respect to one of the infeasibility measures, but not both.

Figure 3: Usual filter envelope (left) and filter envelope used in (3.6) (right).

Figure 3 shows the difference between the traditional filter envelope and the new filter envelope, which
has also been used in (Gould et al., 2004). The dashed line shows the margins. By changing the margin to
be proportional to the total constraint violation, we introduce implicit bounds on the constraint violation in
hc(z) and hF (z).

The filter ensures convergence only to a feasible limit point, and we require a sufficient reduction condi-
tion to ensure convergence to stationary points. We define the predicted and actual reduction in the objective
function over a step d as

∆f := f(z)− f(z + d) and ∆l := −∇f(z)Td,

respectively. However, we cannot expect that a sufficient reduction condition holds for points that are
far from the feasible set. This observation motivates the introduction of a so-called switching condition
(Wächter and Biegler, 2005b,a), which switches on a sufficient reduction condition, whenever we are close
to a feasible point. Formally, we require that

∆f ≥ σ∆l whenever (3.7)

∆l ≥ δh2 (3.8)

holds, where δ > 0 and 0 < γ ≤ σ < 1 are constants.
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A successful iteration of SLPEC for which (3.7) and (3.8) holds is called an f-type iteration, and a
successful iteration for which (3.8) does not hold is called an h-type iteration to indicate that the primary
purpose of the step is to decrease the constraint violation.

Our algorithm also requires a restoration phase if LPEC(z, ρ) is inconsistent, which may happen far
from the feasible set or because the trust-region parameter becomes too small. One can define a restoration
problem in several ways. For example,

minimize
x,y

‖c(x, y)+‖

subject to 0 ≤ y ⊥ F (x, y) ≥ 0
(3.9)

and
minimize

x,y,s
‖c(x, y)+‖+ ‖s− F (x, y)‖

subject to 0 ≤ y ⊥ s ≥ 0
(3.10)

are two possibilities. Problem (3.9) aims to reduce the general constraint violation hc(z) and may be more
suitable if we can guarantee the existence of solutions to the complementarity constraint for all x. Problem
(3.10) is more suitable whenever we cannot ensure that the complementarity constraint can be satisfied.
Both problems can be formulated as smooth LPECs, and the general algorithm proposed below can be used
to solve these problems. SLPEC will maintain feasibility of linear complementarity if started at a feasible
point, which implies that (3.10) does not require a recursive restoration phase.

3.3 An SLPEC-Filter Algorithm for MPECs

We formally state the SLPEC algorithm in pseudo-code below. The algorithm has an inner and an outer
loop. The inner loop reduces the trust-region radius until either an acceptable point is found or the problem
becomes inconsistent, in which case we enter the restoration phase. The outer loop generates the sequence
of iterates z(k) = (x(k), y(k)).

4 SLPEC-Filter Convergence Proof

This section establishes convergence to B-stationary point of our SLPEC-Filter algorithm. The extension to
an SLPEC-EQP procedure is described in Section 5.

4.1 Preliminaries

We start with some preliminary results. The disjunctive nature of MPECs means that every LPEC consists
of a finite collection of LP-pieces. To derive a more suitable version of B-stationary for our analysis, we
define the following active sets:

Ac(z) := {i|ci(z) = 0} (4.1)

Ay(z) := {j|yj = 0} (4.2)

AF (z) := {j|Fj(z) = 0} . (4.3)

The set of degenerate complementarity constraints is now given by

D(z) := Ay(z) ∩ AF (z).
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SLPEC Algorithm

Given (x0, y0), ρ ∈ [ρ, ρ], set k = 0; compute∇f (k),∇c(k), ∇F (k)

while not optimal do
reset trust-region radius ρ ∈ [ρ, ρ]
repeat

solve LPEC(z(k), ρ) for a first-order step d
if ∃ solution d of LPEC(z(k), µ) then

if d = 0 then terminate B-stationary point found
compute predicted reduction ∆l
evaluate f(z(k) + d), hc(z(k) + d), and hF (z(k) + d)
if z(k) + d acceptable to filter and (h(k)

c , h
(k)
F , f (k)) then

if ∆l(k) < δ(h(k))2 then
set ρk = ρ, d(k) = d, ∆l(k) = ∆l, ∆f (k) = ∆f
add (h(k)

c , h
(k)
F , f (k)) to the filter h-type iteration

else if ∆f ≥ σ∆l and ∆l ≥ δ(h(k))2 then
set ρk = ρ, d(k) = d, ∆l(k) = ∆q, ∆f (k) = ∆f f-type iteration

else
reduce trust-region radius ρ = ρ/2

else
reduce trust-region radius ρ = ρ/2

else
add (h(k)

c , h
(k)
F , f (k)) to filter

enter restoration phase to find acceptable/compatible point, z(k+1)

until new z(k+1) found
set k = k + 1, update gradients∇f (k), ∇c(k), ∇F (k) & test for convergence

In addition, we define the set of binding complementarity constraints, namely, those where strict comple-
mentarity holds and either yj = 0 or Fj(z) = 0 (but not both):

Ay+(z) := {j ∈ Ay(z)|Fj(z) > 0} (4.4)

AF+(z) := {j ∈ AF (z)|yj > 0} . (4.5)

Now we can state an equivalent condition for B-stationarity.

Proposition 4.1. A point z∗ is B-stationary if and only if d = 0 solves the collection of LPs given by

minimize
d

g∗
T
d

subject to c∗ +A∗
T
d ≥ 0,

F ∗i + b∗
T

i d ≥ 0 and di = 0, ∀i ∈ A∗y+
F ∗i + b∗

T

i d = 0 and y∗i + di ≥ 0, ∀i ∈ A∗F+

F ∗i + b∗
T

i d ≥ 0 and di = 0, ∀i ∈ Dy
F ∗i + b∗

T

i d = 0 and y∗i + di ≥ 0, ∀i ∈ DF ,
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for every partition (Dy,DF ) of D∗, that is, Dy ∩ DF = ∅ and Dy ∪ DF = D∗.

The proof follows readily by observing that the partitions of D∗ represent the disjunctive nature of the
complementarity condition. Proposition 4.1 indicates a potential computational inefficiency of our method:
at every step, we may have to solve 2d LPs, where d = |D(k)| is the number of different LP pieces. However,
this assessment turns out to be overly pessimistic, as we indicate in Section 5.

Our convergence result uses a piecewise Mangasarian-Fromowitz constraint qualification (MFCQ). We
include its definition for the sake of completeness; see also (Scholtes, 2001).

Definition 4.1. We say that the MPEC (1.1) satisfies an MPEC-MFCQ if and only if, for every partition
(Dy,DF ) of D∗, the standard NLP defined as

minimize
(x,y)

f(x, y)

subject to c(x, y) ≥ 0,
yi = 0 and Fi(x, y) ≥ 0, ∀i ∈ A∗y+
yi ≥ 0 and Fi(x, y) = 0, ∀i ∈ A∗F+

yi = 0 and Fi(x, y) ≥ 0, ∀i ∈ Dy
yi ≥ 0 and Fi(x, y) = 0, ∀i ∈ DF

satisfies an MFCQ.

We note that a linear-independence constraint qualification (LICQ) for MPECs can be defined in a
similar way. Next, we generalize Fritz-John necessary optimality conditions to MPECs, by applying Fritz-
John conditions to every LP-piece.

Proposition 4.2. Let z∗ solve the MPEC (1.1), and assume that (1.1) satisfies an MPEC-MFCQ. Then the
following hold:

1. z∗ is a feasible point, that is c(z∗) ≥ 0, and 0 ≤ y∗ ⊥ F (z∗) ≥ 0.

2. For every partition (Dy,DF ) of D∗, the following holds:{
s|g∗T s < 0 (4.6a)

a∗
T

i s > 0 ∀i ∈ A∗c (4.6b)

si = 0 ∀i ∈ A∗y+ (4.6c)

b∗
T

i s = 0 ∀i ∈ A∗F+ (4.6d)

si = 0 and b∗
T

i s > 0 ∀i ∈ Dy (4.6e)

si > 0 and b∗
T

i s = 0 ∀i ∈ DF
}

= ∅. (4.6f)

Proof. The proof follows from the Fritz-John conditions on every LP piece, assuming that an MPEC-MFCQ
holds. 2

A consequence of Proposition 4.2 is that if z∞ is a feasible point that is not optimal, then there exists a
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partition (Dy,DF ) of D∞ such that the set{
s|g∞T

s < 0 (4.7a)

a∞
T

i s > 0 ∀i ∈ A∞c (4.7b)

si = 0 ∀i ∈ A∞y+ (4.7c)

b∞
T

i s = 0 ∀i ∈ A∞F+ (4.7d)

si = 0 and b∞
T

i s > 0 ∀i ∈ Dy (4.7e)

si > 0 and b∞
T

i s = 0 ∀i ∈ DF
}
6= ∅ (4.7f)

is not empty. In other words there exists an LP-piece that has a strictly interior descend direction along
which the objective can be reduced. Thus, there exist ε > 0 and a direction s with ‖s‖ = 1 and a partition
(Dy,DF ) of D∞ such that

g∞
T
s ≤ −ε (4.8a)

a∞
T

i s ≥ ε ∀i ∈ A∞c (4.8b)

si = 0 ∀i ∈ A∞y+ (4.8c)

b∞
T

i s = 0 ∀i ∈ A∞F+ (4.8d)

si = 0 and b∞
T

i s ≥ ε ∀i ∈ Dy (4.8e)

si ≥ ε and b∞
T

i s = 0 ∀i ∈ DF . (4.8f)

We will exploit this existence of descend directions in our convergence analysis.

4.2 Assumptions

To derive our convergence results, we make the following assumptions on the MPEC problem.

Assumption 4.1. The iterates remain in a compact set, Z.

Assumption 4.2. The problem functions f , c, and F are twice continuously differentiable on an open set
containing Z.

Assumption 4.3. Any limit point satisfies an MPEC-MFCQ, see Definition 4.1.

Assumption 4.4. The LPEC solver terminates at a B-stationary point.

These assumptions are quite mild. In particular, we do not assume that an MPEC-LICQ holds, an
assumption that is unreasonable in practice. The strongest assumption is Assumption 4.1, because it may be
difficult to derive bounds on the variables y. However, there exist sufficient conditions that ensure that such
bounds exist. For example, if the MPEC arises out of a bilevel optimization problem, where the lower-level
problem satisfies an MFCQ, then the multipliers of the lower-level problem are bounded. Thus, as long as
the primal variables are bounded, the dual variables are also bounded, and the variables of the MPEC are
bounded.

The last Assumption 4.4 is an assumption on the quality of the LPEC solver, which we believe is rea-
sonable. The mixed-integer approach (Pang et al., 2008) guarantees that this assumption holds.
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4.3 Main Convergence Result

Our main convergence result shows that the SLPEC method generates a subsequence that converges to a
stationary point or a local minimum of the infeasibility measure h(z).

Theorem 4.1. Let Assumptions 4.1–4.4 hold. Then it follows that the SLPEC-filter algorithm terminates
with one of the following mutually exclusive outcomes.

O1 The algorithm terminates at a B-stationary point; that is d = 0 solves LPEC(z(k), ρ) for some k.

O2 The algorithm generates an infinite sequence of iterates that has an accumulation point that is feasible
and B-stationary.

O3 The restoration phase fails to find a point that is acceptable to the filter.

Outcomes O1 and O2 correspond to normal termination of the algorithm. If the limit point fails to satisfy
an MPEC-MFCQ, then we can no longer guarantee B-stationarity, but the limit remains feasible. Outcome
O3 corresponds to the case where the complementarity constraints and/or the general constraints are locally
inconsistent. Unless we make very restrictive assumptions on the class of problem that we consider, this
outcome cannot be excluded.

Outline of Convergence Proof. We start by showing that feasibility of the LPEC implies bounds on
the predicted reduction and the infeasibility after the LPEC step (Lemma 4.1). Next, we show that in a
neighborhood of a feasible but not stationary point, the LPEC will generate a step that is acceptable to the
filter and reduces the objective function, resulting in an f-type step (Lemma 4.2). This lemma allows us
to show that the inner iteration terminates finitely (Lemma 4.3). Thus, the algorithm generates an infinite
sequence, and we show that there exists a limit point that is feasible (Lemma 4.4). Finally, we prove
Theorem 4.1 by considering the two mutually exclusive cases: an infinite number or a finite number of
h-type steps.

4.4 SLPEC-Filter Convergence Proof

Our convergence proof follows the filter convergence proofs of Chin and Fletcher (2003) and Fletcher et al.
(2002b), though it requires extra care to handle the disjunctive nature of the subproblems and the fact that
we are using a three-dimensional filter. We start by extending a lemma about properties of the LPEC step.

Lemma 4.1. Let M > 0 be a constant such that

‖sT∇f(z)s‖ ≤M, ‖sT∇Fj(z)s‖ ≤M, and ‖sT∇ci(z)s‖ ≤M, ∀s : ‖s‖∞ = 1

for all i = 1, . . . ,m and j = 1, . . . , q, and let d 6= 0 solve LPEC(z(k), ρ). Then it follows that for all
i = 1, . . . ,m and j = 1, . . . , q

ci(z(k) + d) ≥ −ρ2M (4.9a)

hc(z(k) + d) ≤ ρ2M (4.9b)

|Fj(z(k) + d)| ≤ ρ2M (4.9c)

y(k) + dy ≥ 0 (4.9d)

hF (z(k) + d) ≤ min(ρ|Z|, ρ2M) (4.9e)

∆f ≥ ∆l − ρ2M, (4.9f)
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where |Z| is the radius of the bounded set Z.

Proof. Taylor’s theorem implies that there exists a point ξi along the line segment from z(k) to z(k) + d such
that

ci(z(k) + d) = c
(k)
i + a

(k)T

i d+
1
2
dT∇2ci(ξi)d ≥ −ρ2M,

where the inequality follows from the feasibility of LPEC(z(k), ρ) and the fact that ‖d‖∞ ≤ ρ. The bound
(4.9b) follows from the definition of the constraint violation (3.4).

The bound (4.9c) can be shown similar to the bound (4.9a), and (4.9d) follows from the feasibility of the
LPEC. To prove (4.9d), we distinguish three cases. If y(k)

j + dj = 0, then we conclude that the minimum

of component j is bounded by ρ2M from (4.9c). If y(k)
j + dj > 0 and Fj(z(k) + d) < 0, then the bound

follows again from (4.9c); and if y(k)
j + dj > 0 and Fj(z(k) + d) > 0, then the minimum of component j is

bounded by min(|Z|ρ, ρ2M).
Taylor’s theorem implies that there exists ξ along the line segment from z(k) to z(k) + d such that

f(z(k) + d) = f (k) + g(k)T
d+

1
2
dT∇2f(ξ)d.

Rearranging this equation and exploiting the definition ∆l = −g(k)T
d, we have that

∆f = ∆l − 1
2
dT∇2f(ξ)d ≥ ∆l − ρ2M.

2

Next, we show that near a feasible and nonstationary point, the LPEC step will be a filter-acceptable
f-type step.

Lemma 4.2. Let z∞ be a feasible but not stationary point. Then there exist a neighborhood N∞ of z∞

and constants ε > 0 such that (4.8) holds, κ > 0, and µ > 0 such that for any z ∈ N∞ the LPEC(z, ρ) is
compatible and produces a filter-acceptable f-type step for all trust-region radii ρ in the range

µh(z) ≤ ρ ≤ κ. (4.10)

Proof. Let z ∈ N∞. We start by showing that the LPEC(z, ρ) is compatible. Consider the equality con-
straints in LPEC(z, ρ) induced by the complementarity constraint. Because the MPEC satisfies an MPEC-
MFCQ, it follows that the constraint normals ej , bk(z) for j ∈ A∞F and k ∈ A∞y are linearly independent.
We denote the basis matrix by B := [ej : bk(z)], and its generalized inverse by B+ := (BTB)−1BT . The
closest point to the linearized equality constraints to d = 0 is given by p = −B+l(z), where l(z) is the
right-hand side of the linearized equality constraints yj + dj = 0 for j ∈ A∞F and Fk(z) + bk(z)Td = 0 for
k ∈ A∞y . We denote the length of p by p̂ := ‖p‖2 and observe that p̂ = O(h(z)) from the definition of p.
We can therefore choose µ > 0 such that

ρ > p̂ = O(h(z)) = µh(z). (4.11)

Because z∞ is not stationary, there exists ε > 0 and a direction s∞ with ‖s∞‖2 = 1 such that (4.8)
holds. We now form the closest unit vector to s∞ in the null space of BT as

s = (I −BB+)s∞ / ‖(I −BB+)s∞‖2
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and observe that there exists a possibly smaller neighborhood N∞ such that

sT g ≤ −ε (4.12)

sTai ≥ ε ∀i ∈ A∞c (4.13)

sT bi ≥ ε ∀i ∈ A∞F (4.14)

sj ≥ ε ∀j ∈ A∞y (4.15)

holds for any z ∈ N∞.
Now consider the solution to LPEC(z, ρ) along the line segment

dα = p+ α(ρ− p̂)s for α ∈ [0, 1]

for fixed ρ > p̂. It follows that dα satisfies the equality constraints by construction. The orthogonality of p
and s and ρ > p̂ ensures that for α = 1

‖d1‖ =
√
p̂2 + (ρ− p̂)2 =

√
ρ2 − 2ρp̂+ 2p̂2 ≤ ρ,

so that d1 satisfies the trust-region constraint of LPEC(z, ρ).
Next, we show that we can ignore the inactive constraints, i 6∈ A∞c , for a suitable value of ρ. It follows

that there exist constants c̄, ā > 0 independent of ρ such that

ci ≥ c̄ and aTi s ≤ ā ∀i 6∈ A∞c

for every s such that ‖s‖2 ≤ 1 by continuity of ci(z) and boundedness of ai(z). This implies the bound

ci + ρaTi s ≥ c̄− ρā.

Thus, the inactive constraints are satisfied as long as

ρ ≤ c̄

ā
. (4.16)

A similar result holds for the inactive complementarity constraints, and we can adjust the constants c̄, ā > 0
accordingly.

Now we consider the active inequality constraints (again for the sake of simplicity we consider only the
active general constraints, but we note that a similar result holds for the active complementarity constraints).
For i ∈ A∞c we obtain from (4.8) that

ci + aTi d1 = ci + aTi + (ρ− p̂)aTi ≤ ci + aTi + (ρ− p̂)ε.

Thus, if

ρ ≥ p̂− ci + aTi p

ε
, (4.17)

then the active constraints are also feasible. The right-hand side of this inequality is O(h(c)). Thus, there
exist µ > 0 and κ > 0 such that for µh(z) ≤ ρ ≤ κ, LPEC(z, ρ) is compatible.

Next, we consider the predicted reduction. It follows from (4.8) that

g∞
T
d1 = g∞

T
p+ (ρ− p̂)g∞T

s ≤ O(p̂)− (ρ− p̂)ε.
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Feasibility of d1 and p̂ = O(h(z)) imply that the predicted reduction satisfies ∆l ≥ ρε− ξh(z) for some ξ
sufficiently large. Thus,

∆l ≥ 1
2
ρε, if ρ ≥ 2ξh(z)/ε (4.18)

which can be achieved by making µ sufficiently large in (4.11). It follows from (4.18) and (4.9f) that

∆f
∆l
≥ 1− ρ2M

∆l
≥ 1− 2ρM

ε
.

Thus, if ρ ≤ (1− σ)ε/(2M), then the sufficient reduction condition (3.7) holds. From (3.7), it follows that

∆f − γh(z + d) ≥ 1
2
σρε− γρ2M ≥ 0

if ρ ≤ σε/(2γM).
It remains to be shown that the step is also acceptable to the filter. The mechanism of the filter ensures

that τ > 0, because any step starting from a point z with zero constraint violation (h(z) = 0) satisfies
the switching condition (3.8) and is therefore an f-type step. It follows from (3.5), (4.9b), and (4.9e) that
h(z+d) ≤ ρ2M . Thus, if ρ ≤

√
βτ/M , then h(z+d) ≤ τ is acceptable to the filter, where β = 1−γ > 0.

Putting all the bounds on ρ together, we observe that if

µh(z) ≤ ρ ≤ min

(
σε

2γM
,
(1− σ)ε

2M
,
c̄

ā
,

√
βτ

M

)
,

then the LPEC(z, ρ) is consistent, and the conditions for a successful f-type step are satisfied. We note that
the right-hand side of this range is a constant κ > 0, independent of ρ. 2

The next lemma shows that the algorithm is well defined and that the inner iteration terminates finitely.
Thus, if the algorithm does not terminate finitely, it generates an infinite sequence that has an accumulation
point as a consequence of Assumption 4.1.

Lemma 4.3. Let Assumptions 4.1–4.3 hold. Then it follows that the inner iteration terminates in a finite
number of steps.

Proof. If z(k) is B-stationary, then d = 0 solves LPEC(z(k), ρ) for any ρ > 0, and the inner iteration
terminates. Hence, in the remainder of the proof we can assume that z(k) is not B-stationary.

The proof is by contradiction. We assume that the inner iteration does not terminate finitely. Then it
follows that ρ→ 0 from the mechanism of the algorithm. We distinguish two cases, depending on whether
the current point is infeasible.

Case 1: The current point is infeasible, that is h(k) > 0. Then there exists an index i such that c(k)i =
−h(k), or there exists an index or j such that |min(y(k)

j , F
(k)
j )| = h(k). Consider the case that c(k)i = −h(k).

Then

c
(k)
i + a

(k)T

i d ≤ c(k)i + ρ‖a(k)
i ‖1 < 0, for all ρ such that ρ <

−c(k)i

‖a(k)
i ‖1

.

If ‖a(k)
i ‖1 = 0, then the result holds for any ρ > 0. Thus, the LPEC is not consistent for ρ sufficiently small.

If, on the other hand, |min(y(k)
j , F

(k)
j )| = h(k), we can distinguish three cases: F (k)

j = −h(k), F (k)
j = h(k),

and y(k)
j = h(k). In all three cases, we again observe that the LPEC will be inconsistent for a sufficiently
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small ρ using a similar argument. Thus, we enter the restoration after a finite number of iterations, which
contradicts the assumption that the inner iteration is infinite.

Case 2: The current point is feasible, that is h(k) = 0. Again, if the inner iteration does not terminate
finitely, then it follows that ρ → 0. Because z(k) is not a stationary point (the algorithm would have
terminated with Outcome O1), we can apply Lemma 4.2. Thus, the conditions for a successful f-type step
are satisfied for 0 ≤ ρ ≤ κ, and the inner iteration terminates finitely. 2

A consequence of Lemma 4.3 is that if the algorithm does not terminate with Outcome O1 or O3, then
it generates an infinite sequence of iterates, and there exists an accumulation point due to Assumption 4.1.
Next, we show that the filter envelope forces iterates toward a feasible point. The result is a straightforward
extension of Lemma 1 in (Chin and Fletcher, 2003).

Lemma 4.4. The SLPEC-Filter algorithm generates a feasible limit point.

Proof. If the algorithm generates an infinite number of h-type steps, then feasibility of the subsequence on
which (h(k)

c , h
(k)
F , f (K)) is entered into the filter follows from Lemma 1 in (Chin and Fletcher, 2003). If the

algorithm generates a finite number of h-type steps, then feasibility follows from the boundedness of f (k)

and the switching condition (3.8), which ensures that h(k) → 0 (otherwise, f would be unbounded below).
2

We are now in a position to prove our main convergence result.

Proof of Theorem 4.1. We need to consider only Outcome O2, because in the other two cases we either
obtain a stationary point or conclude that the constraints are locally inconsistent. The convergence proof is
divided into two parts, depending on whether the algorithm generates an infinite or finite number of h-type
steps.

Case 1: Algorithm 2 generates an infinite number of h-type steps. We consider the subsequence of h-
type iterations and observe that h(k) → 0, and consequently τk → 0 (because only h-type steps can reset τk).
It follows that there exists a subsequence such that h(k)− = τk+1 < τk for which z(k) → z∞. We assume
that z∞ is not stationary and seek a contradiction. We now apply Lemma 4.2, which implies that there exists
a neighborhood of z∞ in which the conditions for an f-type step are satisfied. Thus, for k sufficiently large,
z(k) ∈ N∞, and if ρ is chosen such that

µh(k) ≤ ρ ≤ min

{√
βτk
M

,κ

}
, (4.19)

then we take an f-type step at z(k). Observe that, in the limit, h(k) < τk → 0 and the right-hand side in
(4.19) is more than twice the left-hand side. Thus, the mechanism of the algorithm that selects ρ ≥ ρ̄ and
then halves the trust region will locate a value of ρ in this range.

It remains to show that we cannot produce an h-type step for a larger value of ρ. The argument is easy
in the SLP case, because the predicted reduction ∆l is monotonically decreasing in ρ. Unfortunately, the
LPEC that we solve is nonconvex, and we cannot employ this argument, unless we assume that we solve the
LPECs to global optimality, which is unrealistic. Instead, we directly consider the disjunctions implied by
the complementarity constraints.

On the sequence of h-type steps, it follows that ∆l(k) < δ(h(k))2, which implies that ∆l(k) → 0, because
h(k) → 0. If the trust-region radius is bounded away from zero, i.e. if δk ≥ ρ > 0, then it follows that the
limit is B-stationary, because d = 0 solves the limiting LPEC.
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In the remainder, we consider a sequence of h-type steps such that ρk → 0. If D(z∞) = ∅, then it
follows that for k sufficiently large, we have a sequence of h-type steps on the same LP piece. Now observe,
that Lemma 4.2 shows that the conditions for an f-type step are satisfied, and that the predicted reductions
∆l is monotonically decreasing, because we stay on the same LP piece. Thus, we cannot accept an h-type
step for a larger value of ρ, and we obtain a contradiction to the assumption that all steps are h-type steps.

Finally, we consider the situation, where D(z∞) 6= ∅. Because z(k) → z∞ it follows that D(z(k)) ⊂
D(z∞) for k sufficiently large. In fact, because we reset the trust-region radius ρ ≥ ρ̄ on every major
iteration, and z(k) → z∞ it follows that there exists a range of radii such that D(z(k)) = D(z∞). We will
now solve 2|D(z∞)| LPs, and on each LP segment. We observe that ∆l is monotonic in ρ, so that we cannot
generate an h-type step before finding an f-type step, which contradicts the fact that the sequence is made
up entirely of h-type steps.

Case 2: Algorithm 2 generates a finite number of h-type steps. In this case, we can assume that all
iterations are f-type iterations for k sufficiently large. Thus, (h(k+1)

c , h
(k+1)
F , f (k+1)) is always acceptable to

(h(k)
c , h

(k)
F , f (k)), and the sufficient reduction condition ∆f (k) ≥ σ∆l(k) > 0 is satisfied. This implies that

the sequence {f (k)} is monotonically decreasing and that h(k) → 0, so that the limit point z∞ is feasible.
Now assume that z∞ is not stationary and seek a contradiction. Lemma 4.2 implies that for any ρ in the
range

µh(k) ≤ ρ ≤ min

{√
βτk
M

,κ

}
the conditions for a successful f-type step are satisfied. We note that the upper bound of this range is now a
constant, say ρ̂, because τk is reset only in h-type steps. Thus, the inner iteration will choose a trust-region
radius ρ ≥ min(ρ̄, ρ̂), which is bounded away from zero. The sufficient reduction condition becomes

∆f (k) ≥ 1
2
σρε ≥ 1

2
σεmin(ρ̄, ρ̂).

It follows that f (k) is unbounded below, which contradicts Assumptions 4.1 and 4.3. 2

5 Accelerating Local Convergence and Computational Considerations

In this section we present an extension of the SLPEC algorithm of the previous section that includes EQP
steps, and we discuss some computational aspects of our method.

5.1 Extension to SLPEC-EQP Methods

The SLPEC algorithm defined in Section 3 and analyzed in Section 4 provides only a linear rate of conver-
gence. However, we can easily add an EQP phase that allows us to achieve faster rate of local convergence.
The resulting SLPEC-EQP algorithm is defined below in pseudo-code.

The algorithm computes a Cauchy step, which is the first minimum of the quadratic model along the
LPEC-step d = dlp for 0 < α ≤ 1:

qk(αd) := f (k) + αg(k)T
d+ α2 1

2
dTH(k)d.

We use the Cauchy step to estimate the active set, and we define the EQP step, denoted by dqp.
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SLPEC-EQP Algorithm

Given (x0, y0), ρ ∈ [ρ, ρ], set k ← 0; compute∇f (k), ∇c(k),∇F (k)

while not optimal do
reset trust-region radius ρ ∈ [ρ, ρ]
repeat

solve LPEC(z(k), ρ) for a first-order step dlp
if ∃ solution dlp of LPEC(z(k), µ) then

if d = 0 then terminate B-stationary point found
compute the Cauchy-step dc := αcdlp
find the active sets Ac(z(k) + dc), Ay(z(k) + dc), and AF (z(k) + dc).
solve EQP(z(k) + dc) and let the solution be dqp
compute predicted reduction ∆q
evaluate f(z(k) + dqp), hc(z(k) + dqp), and hF (z(k) + dqp)
if z(k) + d acceptable to filter and (h(k)

c , h
(k)
F , f (k)) then

if ∆q < δ(h(k))2 then
set ρk = ρ, d(k) = dqp, ∆q(k) = ∆q, ∆f (k) = ∆f
add (h(k)

c , h
(k)
F , f (k)) to the filter h-type iteration

else if ∆f ≥ σ∆q and ∆q ≥ δ(h(k))2 then
set ρk = ρ, d(k) = d, ∆q(k) = ∆q, ∆f (k) = ∆f f-type iteration

else
reduce trust-region radius ρ = ρ/2

else
reduce trust-region radius ρ = ρ/2

else
add (h(k)

c , h
(k)
F , f (k)) to filter

enter restoration phase to find acceptable/compatible point, z(k+1)

until new z(k+1) found
set k = k + 1, update gradients∇f (k), ∇c(k), ∇F (k) & test for convergence

In practice, we may also try to take the LPEC step. If we are far from the solution, then this step may be
acceptable to the filter. Because this step has already been computed, the additional cost in trying this step
is negligible.

5.2 Computational Considerations

We finish by providing some computational considerations. It should be clear that the algorithm closely
resembles filter-SLQP methods that have been proposed by Chin and Fletcher (2003). This similarity is
deliberate: it allows us to reuse an SLQP code to solve MPECs by simply replacing the step-computation
through an LP by an LPEC.

At first sight, the SLPEC approach may appear computationally intractable because of the potential
existence of 2d LP-pieces that have to be solved at every iteration, where d = |D| is the number of degenerate
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indices. In many cases, however, we do not require the solution of all LP pieces. For example, if the current
point is not stationary, then descend along any piece is sufficient to ensure convergence. Thus we do not
need to solve the LPEC to global optimality, and instead we expect to be able to make progress by solving
a small number of LPs at most.

In fact, if the current iterate satisfies an MPEC-LICQ, then it follows that there exists a common multi-
plier, and we can find a descend direction after a single LP solve. The same holds if the solution satisfies an
MPEC-LICQ. In this case we can again compute a common multiplier and verify optimality after a single
LP solve. Thus we do not believe that the computational burden of our method will become prohibitive.

6 Conclusions

We have presented a new algorithm for solving MPECs and have established global convergence under
mild conditions. The algorithm solves an LPEC to predict the optimal active set and fixes the activities and
solves an equality-constrained QP to accelerate local convergence. Global convergence is promoted through
the use of a filter that distinguishes the general constraint infeasibility and the complementarity constraint
violation.

We have also provided examples that show that commonly used stationarity concepts do not preclude
the existence of trivial descend directions. These spurious stationarity concepts have been referred to as A-,
C-, and M-stationarity. We have shown that popular methods such as NLP approaches and even SQPEC
method are attracted to these spurious stationary points.

Our results can be extended in various ways. Clearly, we could replace the filter by a merit function,
such as an `1 exact penalty function. Because we maintain complementarity, exactness results should be
straightforward to establish. The proposed methods also extend to star-shaped optimization (Scholtes, 2004)
and to optimization problems with vanishing constraints that arise for example in truss-topology design.
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