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This paper addresses issues related to weights and acceptance rates in generalized ensemble sim-
ulations, while comparing two algorithms: serial (e.g., simulated tempering or expanded ensemble
method) and parallel (e.g., parallel tempering or replica exchange). We derive a cumulant approxi-
mation for weights and discuss its effectiveness in practical applications. We compare the acceptance
rates of the serial and parallel algorithms and prove that the serial algorithm always has higher ac-
ceptance rates. The duality between forward and backward transitions plays a crucial role in the

derivations throughout the paper.

I. INTRODUCTION

Computer simulation, such as molecular dynamics
and Monte Carlo, is a powerful technique for study-
ing complex systems. However, simulations of complex
systems are often hindered by trapping in local energy
minima and slow relaxations. One method to overcome
this difficulty is simulated tempering [1, 2], which at-
tempts to reduce relaxation times at low temperatures
by repeatedly heating and cooling the system. The idea
of simulated tempering can be readily extended to other
parameters as in the expanded ensemble method [2] or
the simulated scaling method [3]. We will collectively
refer to these methods as the serial generalized ensem-
ble method (GEM).

A successful application of serial GEM typically re-
quires rapid and uniform exploration of the given en-
semble space. In order to satisfy this criterion, accep-
tance rates must be not only high but also symmetric
between forward and backward transitions. This sym-
metry can be achieved by assigning weights, that is, by
performing weighted sampling of the ensemble space.
The weights that yield symmetric acceptance rates are
in fact determined by the relative free energies of the en-
sembles. Thus, we will refer to such weights as ‘free en-
ergy weights’. Symmetric acceptance rates, however, do
not necessarily lead to rapid sampling. To achieve rapid
sampling of the ensemble space through high accep-
tance rates, we need to choose ensembles appropriately
so that neighboring ensembles overlap significantly.

A few years after the emergence of simulated tem-
pering, researchers developed parallel versions [4-7],
known as parallel tempering or replica exchange. We
will refer to these methods as parallel GEM. Because it
does not require weights, parallel GEM has been quite
popular, especially in molecular simulations. Parallel
GEM, on the other hand, needs many computing nodes
and frequent communication among them. Thus, paral-
lel GEM is not quite suitable for certain computing en-
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vironments such as distributed computing, which was
the motivation for the recent effort to develop a serial
variant of replica exchange [8].

Mitsutake and Okamoto [9] compared the serial and
parallel algorithms in a tempering simulation of a pep-
tide and found that simulated tempering has higher ac-
ceptance rates than does parallel tempering. In other
words, their results suggest that, given the same set of
ensembles, serial GEM tends to explore the ensemble
space more rapidly, which can be a significant advan-
tage if it turns out to be generally true. For the determi-
nation of weights in simulated tempering, they propose
to use a short, initial parallel tempering run [9, 10]. More
recently, Park and Pande [11] proposed an even simpler
method of weight determination based on average ener-
gies and demonstrated its effectiveness in a simulation
of a peptide in an explicit solvent.

In this paper, we address two issues. First, we derive
a cumulant approximation for free energy weights (Sec-
tion III). This leads to a systematic understanding of the
weight determination method of Park and Pande [11],
which was originally derived based on a heuristic argu-
ment, and to an explanation why such a simple method
is so effective. Second, we derive general formulas for
acceptance rates of serial and parallel GEM and prove
that, with free energy weights, serial GEM always has
higher acceptance rates (Section IV). As it turns out,
these two issues are closely related, not only because
of the link between weights and acceptance rates, but
also because the duality between forward and backward
transitions is at the heart of both issues. We start by re-
viewing the serial and parallel algorithms of GEM.

II. GENERALIZED ENSEMBLE METHOD

A generalized ensemble refers to a set of ensembles
each associated with a different reduced Hamiltonian'

1 We use terms such as reduced Hamiltonian and reduced free energy
to denote quantities that have been divided by kg T.
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hn (x) and the corresponding partition function

Z, — J dx expl—hn (x)] , (1)

where x denotes a microstate of the system and n =
1,...,K, with K being the number of ensembles in the
generalized ensemble. Let us list a few examples. Simu-
lated tempering deals with a generalized ensemble with
respect to temperature:

hn(x) = BaH(x), (2a)

where (3, = 1/kgT,, is the nth inverse temperature and
H is the original Hamiltonian of the system. We can also
construct a generalized ensemble for pressure:

hn(x) = B[H(X) + an(x)] y (Zb)

where P, is the pressure of the nth ensemble and V(x)
is the volume. When we want to calculate free energy
as a function of a parameter A, a generalized ensemble
with respect to A can be useful:

hn(x) = BH(x,An) . (20)

It is also possible to construct a generalized ensemble
for multiple parameters; for instance, we can combine
the above three cases into

hn(x) = Bn[H(Xy)\n) + an(x)] . (2d)

In this paper, we adhere to the most general context
without specifying any form of h,,(x), except when we
discuss particulars of simulated tempering (Eq. 2a) and
the free energy calculation (Eq. 2c).

The idea of GEM is to enhance the sampling of mi-
crostates by allowing the system to explore all the given
ensembles. This is achieved by means of a random walk
on the ensemble space (serial GEM) or exchanges of en-
sembles (parallel GEM). Below we describe these two
algorithms.

A. Serial algorithm

Given K different ensembles, a generalized Hamilto-
nian for serial GEM is defined as

%S(X»n) = hn(X) —0On, (3)

wheren = 1,...,K. The generalized partition function
is then given as

K K

25 = Z de exp[—ﬂ-(s(x,n)] = Z Zne% . (4

n=1 =1

We use the superscript S to denote the serial algo-
rithm. In this generalized ensemble, the nth ensemble

is weighted by e9"; g, is the log weight, but we call it
the weight for simplicity.

With the generalized Hamiltonian of Eq. 3, a serial
GEM simulation is performed as follows [1, 2]. A simu-
lation is started in one of the K ensembles, and at reg-
ular intervals a transition is attempted to a randomly
chosen ensemble.? Transitions are accepted according to
the Metropolis criterion [12]; a transition from the mth
to the nth ensemble, when the system is at microstate x,
is accepted with probability

AEYL—H’L (X) = min {] ) eXP[—Ag'C]San(X)]} y (5)
where
AFS (%) = hn(X) = hin(x) = (gn —gm) - (6)

Notice that adding a constant to the weights has no ef-
fect; only the relative weights (differences of weights)
matter.

In serial GEM, a random walk is performed on the
ensemble space. The frequency that the nth ensemble
is visited, as can be seen from Eq. 4, is proportional to
Zne9". Therefore, a uniform sampling of ensembles is
obtained if and only if

gn = fn + const. , (7)
where f, is the reduced free energy of the nth ensemble
fo.=—InZ, . (8)

The presence of an arbitrary constant means that the
weights and the reduced free energies are equal up to
an additive constant. The weights that satisfy this prop-
erty will be referred to as the free energy weights and
will be denoted by gn,.

In a free energy calculation with respect to a param-
eter A (Eq. 2c), the reduced free energy f,, is related to
the free energy F = —kgTInZ,, by f,, = BFn. Thus, the
relative reduced free energy f,, — f,,, is proportional to
the relative free energy F,, — F,, and finding the free en-
ergy weights is equivalent to calculating the free energy
profile for A. The free energy profile, therefore, naturally
comes out of a serial GEM simulation with respect to A.

B. Parallel algorithm

In parallel GEM, a generalized Hamiltonian is defined
for a set of replicas:

K
1) = 3 halxa) 9)

n=1

2 Typically, one allows nearest-neighbor transitions only.



where x := (x1, ..., xx) denotes microstates of the repli-
cas. The generalized partition function is then given as

K
=]z (10)

n=1

ZP J dx exp[—

The superscript P denotes the parallel algorithm.

A parallel GEM simulation proceeds as follows [4, 5].
A set of replicas is simulated in parallel, one replica
for each ensemble. At regular intervals, an exchange
is attempted between a chosen pair of ensembles.® Ex-
changes are accepted according to the Metropolis crite-
rion [12]; an exchange between the mth and the nth en-
semble is accepted with probability

AI;u—)n( ) min {1 ) exp[_Ag{I;u—»n(x)]} ) (11)
where
AHI:HHn( ) =hm(xn) + hn(xm) —hm(xm) —hn(xn) .

(12)
In this algorithm, no weighting is needed because the
sampling of ensembles is already uniform; at any instant
there is one replica for each ensemble.

III. CUMULANT APPROXIMATION FOR WEIGHTS

In this section, we derive an approximate formula for
free energy weights from the cumulant expansion of re-
duced free energies and discuss the validity of the ap-
proximation in the context of simulated tempering and
free energy calculations. This section, therefore, con-
cerns only the serial GEM, in which the weight is a rel-
evant concept. Since transitions take place pairwise,
namely from one ensemble to another, what we need
is the relative weights between pairs of ensembles for
which transitions are allowed. Therefore, without loss
of generality, we consider transitions between ensem-
bles 1 and 2.

As shown in Eq. 7, uniform sampling of the two en-
sembles is obtained with

AG = Af 13)

where Ag := G2 — §1 and Af := f, — f;. The relative

reduced free energy Af can be written as
Af = —In(e M)y, (14)
where Ah := h; —h; and (-); denotes an average over

ensemble 1. This is known as the free energy pertur-
bation formula [13] and is a special case of Jarzynski’s

3 Typically, one allows nearest-neighbor exchanges only.

equality [14]. The right-hand side can be expanded in
terms of cumulants:

= - (15)

where Q¥ (Ah) is the kth-order cumulant of Ah over en-
semble 1. This represents an expansion of Af with re-
spect to ensemble 1. Similarly, Af can also be written in
terms of ensemble 2:

Af = In(eM), | (16)

which can be expanded as

Y
P (17)
< >2 + Varz (Ah) +

Symmetrizing Egs. 15 and 17 and using Eq. 13, we find

1

AG = = ((Ah)1 4 (Ah),) —varq (Ah)]+--- |

(18)
which, upon truncation, can be used for approximate
estimation of free energy weights. This formula may
be considered a cumulant expansion of Bennett’s accep-
tance ratio method [15].

The effectiveness of this approximation scheme de-
pends on whether we can truncate the cumulant expan-
sions, Egs. 15 and 17, at a low order without losing much
accuracy. Cumulant expansion has been discussed pre-
viously in the context of Jarzynski’s equality [14, 16, 17].
If the distribution in question is nearly Gaussian, cumu-
lant expansion generally leads to a good approximation.
One complication, however, is that the exponential av-
erage may be dominated by a distant tail region of the
distribution. In such a case, cumulant expansion may
yield a poor approximation if the distribution is far from
Gaussian in the region that dominates the exponential
average, no matter how close it is to Gaussian in the cen-
tral region.

In the present case, there are two relevant distribu-
tions: p; and p3, the distributions of Ah over ensemble
1 and 2, respectively. These two distributions are not in-
dependent. In fact, one completely determines the other
because they are related by

1

1
+ 1 [varz(Ah)

pr(e) = 5- [ dxe ™ 5(8R0x) )
_ ezjf dee*hz(me 5(Ah(x)—e) 19
e 4Tpa(e),

which is a special case of Crooks’ fluctuation theo-
rem [18]. This duality implies that p;(€e) and pz(€),
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FIG. 1: Schematic diagram of p1 and p2, the distributions of
Ah over ensemble 1 and 2. The two distributions intersect at a
single point, Af. As shown in Section IV, the acceptance rate
of serial GEM is identical to the shaded area of overlap.

where they are nonzero, intersect at a single point € =
Af. And, by applying Jensen’s inequality to Eqgs. 14
and 16, we find that (Ah), < Af < (Ah);. Thus, the two
distributions must be situated as shown schematically
in Fig. 1. In Section IV, we show that the acceptance rate
of serial GEM is identical to the area of overlap between
p1 and pa.

These properties of p; and p, have important implica-
tions for the validity of the cumulant approximation for
Ag. Since p1(e) e € is proportional to p;(e), the region
that dominates the exponential average (e~“"); coin-
cides with the central region of p,. Similarly, (eAM), is
dominated by the central region of p;. (This has been
discussed by Jarzynski [19] in a more general context.)
Now, since the overlap determines the acceptance rate,
the central regions of p; and p, cannot be far apart un-
less the two ensembles have been chosen so poorly as
to yield very low acceptance rates. In other words, the
aforementioned situation in which an exponential aver-
age is dominated by a distant tail region will not occur
as long as we ensure (e.g., by adding intermediate en-
sembles if necessary) that reasonable acceptance rates
are obtained.

In simulated tempering, Ah(x) = AP H(x), where
H(x) is the original Hamiltonian of the system and
AR := (32 — 1. The cumulant approximation of Eq. 18
thus becomes

2

Ag = %ﬁuHh +(H)2)+ %[Varz(H) —vary(H)]+--- .

(20)
The first term is O(AB), but the second term is O(AR3)
because var,(H) — var;(H) is O(AB); the absence of
O(AB?) terms is a consequence of the symmetrization
of Egs. 15 and 17. If we keep only the first term, we re-
cover the method of Ref. [11], which was originally de-
rived based on a heuristic argument of detailed balance.
When the system contains many degrees of freedom, the
distribution of H is likely to be nearly Gaussian at least
in its central region. In such cases, assuming that there is
significant overlap between the distributions of H at the
two temperatures, the cumulant approximation is ex-
pected to be excellent, as was demonstrated in Ref. [11].
Inclusion of higher orders in Eq. 20 could improve the
estimate of Ag, but it is generally unnecessary if weights

are to be adjusted through adaptive weighting.

The situation is not quite the same in free energy cal-
culations where Ah(x) = B[H(x,A2) — H(x,A7)]. De-
pending on how the parameter A is coupled to the sys-
tem, Ah may or may not contain a significant portion
of the system’s degrees of freedom. Consequently, the
preceding argument does not always apply in free en-
ergy calculations. When Ah contains only a small num-
ber of degrees of freedom, its distribution may not be
close to Gaussian, and the higher orders of the cumu-
lant expansion may be necessary for accurate estimation
of free energy weights. We note, however, that when Ah
contains a small number of degrees of freedom, Af be-
tween neighboring ensembles tends to be fairly small,
and adaptive weighting can readily find the free energy
weights even starting with a naive initial guess, for ex-
ample, gn = 0[20].

To summarize: When Ah contains a large number of
degrees of freedom, Af between neighboring ensembles
can be large, and without good initial weights adap-
tive weighting will take very long to find the free en-
ergy weights. But, since the distribution of Ah is close
to Gaussian, we can indeed obtain good initial weights
using the cumulant approximation. When Ah contains
a small number of degrees of freedom, the distribution
of Ah may not be close to Gaussian. But, Af between
neighboring ensembles is small, and the convergence of
weights through adaptive weighting is fast even with-
out good initial weights.

IV. ACCEPTANCE RATS

A successful GEM simulation requires rapid explo-
ration of the given ensemble space, which means high
acceptance rates for transition attempts in serial GEM
and exchange attempts in parallel GEM. In this section,
we derive general formulas for the acceptance rates in
serial and parallel GEM and address the question of
which algorithm has higher acceptance rates. As in Sec-
tion III, we focus on two ensembles, 1 and 2, without
loss of generality.

A. Serial GEM

Transition attempts in serial GEM are accepted with
the probability of Eq. 5, expressed as a function of mi-
crostate x. Thus, the average acceptance rate for the
1 — 2 transition is

e—hi(x)

<AS>1—>2 = de 1 min{1,efAh(X)+A9}

e~ (%) e h2(x)+Ag
:J dx +J dx ————
— Z4 + VA

21)

where [_ and [, denote integrals restricted to the re-
gions Ah(x) < Ag and Ah(x) > Ag, respectively. This



expression can be rewritten in terms of p; and p,:

S Ag eAg 00
Ahoa= | deprle) g | depale). @)
—00 € Ag
The average acceptance rate for the backward transition
can be written similarly:

S eAf Ag 00
A)a =555 | demilel | depale). @)
0 Ag

For an arbitrary choice of Ag, (AS);_,2 and (AS);_,;
are different. Only with the choice Ag = Af do they
become identical:

Af 00
(AS) :J de pl(e)—l—J depz(e), (24)
—o00 Af
where the hat indicates the use of free energy weights.
The subscripts 1T — 2 and 2 — 1 have been dropped
because the acceptance rate now is the same in both di-
rections. Since p;(e) and p;(€) intersect at a single point
e = Af, (AS) is identical to the area of overlap between
the two distributions (Fig. 1). For reasonable acceptance
rates, significant overlap between p; and p; is required.

B. Parallel GEM

In parallel GEM, exchange attempts are accepted with
the probability given in Eq. 11. Therefore, the average
acceptance rate for the 1 «» 2 exchange is

—hi(x1) p—h2a(x2) Ah(xz)
e e e
(AP) = J dxydx; min {1 }

Z1 Z> > eAh(x1)
—hi1(x1) p—h2(x2)

e e

=| dx;dx

—hi(x2) p—ha(x1)

e e

+ | dx;dx
L T, Z;

(25)

The subscript 1 < 2 has been dropped because it is the
only exchange possible when we consider two ensem-
bles. The integrals [_and | ; are restricted to the regions
Ah(x1) < Ah(xz) and Ah(x;) > Ah(x,), respectively.
The two integrals are in fact identical, as we can verify
by swapping the dummy variables x; and x;:

P e~ hi(x1) g—ha(x2)
=2 . 2
<A > J:k dxqdx; Z; Z, ( 6)
Using p7 and p;, we rewrite this as
o0 €2
A =2 ae| demleme. @)

Geometrical interpretation of the acceptance rate is not
as straightforward as in serial GEM, but it is clear that
parallel GEM also requires significant overlap between
p1 and p; for reasonable acceptance rates.

g, = Af
g =¢,
I11 I
g, = Af I
v
VI
V

FIG. 2: Three lines, €1 = Af, €2 = Af,and €1 = €, divide the
(e1, €2) plane into six regions.

C. Comparison

We now prove (AS) > (AF). To compare Eq. 24
(a single-integral form) with Eq. 27 (a double-integral
form), we convert Eq. 24 into a double-integral form:

AT 00
<AS>:J deq P1(€1)+J de; pa(e2)

—00 Af
00 Af
:J d€zJ deq p1(e1) p2(e2) (28)

(oo} o0
+J dezJ dejpiler) pa(ez) .
Af —00

We have thus expressed both quantities in terms of dou-
ble integrals of pi(e1) p2(e2). Let us examine what re-
gions of the (e1, €2) plane each quantity covers. As il-
lustrated in Fig. 2, three lines, e; = Af, e, = Af, and
€1 = €3, divide the plane into six regions, labeled I
through VI. The first term of Eq. 28 covers 1II, IV, and
V, and the second term covers I, II, and III:

3 = <J1+J11 = JIII+JIV+JV) s ®)

where dR := dejde; pi(er) p2(€2). And, Eq. 27 can be

written as
(AP>_2(J +J + >dR. (30)
n Jm Jiv

The difference between the two quantities is

<AS> —AN = <J1 _JII_uIV +,[v) ar- 1)

Taking advantage of the symmetry between regions I
and II (and regions IV and V) with respect to the reflec-
tion in the line 7 = e, we compare [;dR and [}, dR
(and [}, dR and [, dR). By swapping the dummy vari-
ables €7 and €5, fI dR can be turned into an integral over
II:

JdR:J deides pr(e2) paler) . (32)
I I
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FIG. 3: Acceptance rates, assuming Gaussian distributions.
Top: (AS) for the serial GEM (solid line) and (AF) for the par-
allel GEM (dashed line). Bottom: the rate between the two
acceptance rates.

Then, we use the duality of Eq. 19 to obtain

JdR:J dejdes pi(er) pa(ez) e ¢!

1 I (33)

ZJ d€1d€zp1(€1)pz(€z)=J dr,
1 1

where the inequality holds because e€2~¢' > 1 in region
II. It can be shown similarly that

Lﬂng. (34)

From Egs. 31, 33, and 34, we find
(AS) > (AP) | (35)

which completes the proof.

The actual difference between (AS) and (AF) depends
on the specific forms of p; and p,. As a typical exam-
ple, let us consider the cases where they are Gaussian.
Suppose p; is given as

pi1(e) = a\}ZTT exp {—(626?)2] . (36)
Then, from Eqs. 14 and 19 we find
Af =p—0?%)2 (37)
and
pa(e) = S 1271 exp {_(e_g;cz)z} . (38)

That is, if p; is a Gaussian distribution with mean p and
variance o2, then p, must be another Gaussian distribu-
tion with the mean shifted by —o? and the same vari-
ance.

Plotted in Fig. 3 are the acceptance rates, (AS) (Eq. 24)
and (AF) (Eq. 27), calculated with these Gaussian dis-
tributions. Notice that since p has no effect on the ac-
ceptance rates, o is the only relevant parameter. When
o =0, two ensembles are identical, and both acceptance
rates are unity. As o increases, the overlap between py
and p, decreases; both acceptance rates fall toward zero,
but their ratio (AS)/(A") diverges to infinity. In practical
applications of GEM, one chooses temperatures (or en-
sembles in general) such that the acceptance rate is not
too low, typically between 30 and 50%. If o in this Gaus-
sian example is chosen according to this criterion, serial
GEM has about 20 to 50% higher acceptance rates. This
may appear to be only a moderate increase. If we con-
sider, however, the time scale of mixing on the ensemble
space such as the first passage time between the lowest
and the highest temperatures, even a moderate increase
in the acceptance rate can be a significant advantage.
Having higher acceptance rates also means that a cer-
tain desired acceptance rate can be achieved with fewer
temperatures (or fewer ensembles in general).

V. CONCLUSIONS

In this paper, we have derived a cumulant approxima-
tion for free energy weights in serial GEM and explained
why such a simple method can be so effective, especially
in simulated tempering, as was demonstrated by Park
and Pande [11] in an all-atom simulation of a peptide in
an explicit solvent. We have also derived general formu-
las for acceptance rates of serial and parallel GEM and
proved that, with free energy weights, serial GEM al-
ways has higher acceptance rates. This solidifies the em-
pirical findings of Mitsutake and Okamoto [9]. The du-
ality between forward and backward transitions, which
plays a crucial role in these derivations, seems to be a
key to deeper understanding of the statistical mechan-
ics of GEM.

In contrast to the recent popularity of parallel GEM
(e.g., parallel tempering), serial GEM (e.g., simulated
tempering) has gained relatively little attention, because
of the difficulty of weight determination. This diffi-
culty seems to be greatly reduced now because free
energy weights can be readily obtained by the cumu-
lant approximation combined with adaptive weighting
schemes. In addition to being robust in various com-
puting environments, serial GEM has the advantage of
having higher acceptance rates, as we have proved here.
The acceptance rate is an important criterion of effi-
ciency, but certainly not the only one. It remains to
be seen how the increase in the acceptance rate affects
the sampling of microstates and the convergence of var-
ious estimates. The answers are likely to be system-



dependent and require further comparative study of the
serial and parallel algorithms.
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