
Parallel Volume Rendering on the IBM Blue Gene/P

Tom Peterka1, Hongfeng Yu2, Robert Ross1, Kwan-Liu Ma2

1Argonne National Laboratory
2University of California at Davis

Abstract
Parallel ray casting volume rendering is implemented and tested on an IBM Blue Gene distributed memory
parallel architecture. Data are presented from experiments under a number of different conditions, including
dataset size, number of processors, low and high quality rendering, offline storage of results, and streaming of
images for remote display. Performance is divided into three main sections of the algorithm: disk I/O, rendering,
and compositing. The dynamic balance between these tasks varies with the number of processors and other
conditions. Lessons learned from the work include understanding the balance between parallel I/O, computation,
and communication within the context of visualization on supercomputers, recommendations for tuning and
optimization, and opportunities for scaling further in the future. Extrapolating these results to very large data
and image sizes suggests that a distributed memory HPC architecture such as the Blue Gene is a viable platform
for some types of visualization at very large scales.

Categories and Subject Descriptors (according to ACM CCS): I3.1 [Hardware Architecture]: Parallel processing,
I3.2 [Graphics Systems]: Distributed / network graphics, I3.7 [Three-Dimensional Graphics and Realism]:
Raytracing, I3.8 [Applications]

1. Introduction

As data sizes and supercomputer architectures grow
towards the petascale and beyond, an attractive alternative
to rendering on graphics clusters is to perform software-
based visualization directly on parallel supercomputers.
Benefits include the elimination of data movement between
computation and visualization architectures, the economies
of large scale, tightly coupled parallelism, and the
possibility to perform in situ visualization. This paper
examines the second contribution, large numbers of tightly
connected processor nodes, within the context of a parallel
ray casting volume rendering algorithm implemented on
the IBM Blue Gene/P (BG/P) architecture at Argonne
National Laboratory (ANL).

Volume rendering and parallel volume rendering on
supercomputers has been published extensively in the
literature, but this is the first such study conducted on
BG/P, a modern supercomputer representative of others in
its class. This research profiles and identifies bottlenecks in
the rendering pipeline and suggests modifications to the
parallel rendering algorithm to achieve scalability, and it
offers a glimpse of the optimal balance between I/O,
computation, communication, and interactivity
requirements within the setting of parallel volume
rendering on the BG/P.

The experiments include several different test conditions,
including small to medium size data sets, real-time
streaming of output images and offline storage of results,

and both low and high quality renderings. From the results,
one can draw several conclusions about how to best
leverage the strengths of this architecture in visualization
applications. Although the results are specific to a
particular algorithm and architecture, the lessons learned
can potentially apply more broadly to other supercomputer
architectures that share some of the same characteristics as
the Blue Gene, and to other parallel rendering algorithms as
well.

Thus far, we have successfully scaled efficiently up to
512 cores, and tested out to 4096 cores. Remote streaming
of a small, time-varying dataset at sub-second frame times
was demonstrated. For the data sizes that we currently have
available, performance is comparable to other methods and
architectures, but we expect that the real benefits of this
method will be apparent at still larger scales, for example,

Direct correspondence to tpeterka@anl.gov

submitted to Eurographics Symposium on Parallel
Graphics and Visualization (2008)

Figure 1: Visualization of the early stages of
supernova collapse.

when the size of the data exceeds one billion voxels; image
resolution is on the order of one million pixels, and the
number of cores exceeds several thousand processors.
Research is ongoing, and the goal of our future work is to
measure performance at these scales.

2. Background

Dataset

The dataset shown in Figure 1 is one time step from a
supernova simulation, made available by John Blondin at
the North Carolina State University and Anthony
Mezzacappa of Oak Ridge National Laboratory [1],
through the US Department of Energy's SciDAC Institute
for Ultrascale Visualization [2]. The model seeks to
discover the mechanism behind the core-collapse
supernova, which is the violent death of short-lived,
massive stars. A spherical accretion shock instability, or
SASI, is driven by the response of an initially spherical
shock wave to global acoustic modes trapped in the
interior.

Visualization plays a key role in understanding the origin
of this instability of the supernova shock wave, which
allows scientists to quickly visualize different combinations
of variables or isolate features by manipulating the
transparency of the rendered data. In this dataset, a single
scalar variable, angular momentum, is stored at uniform,
structured grid locations. Each of two hundred time steps of
time-varying data is stored in a separate file. Files are
stored in raw, binary format, in 32-bit floating-point
format.

Algorithm

Parallel volume rendering algorithms have been well
documented in the literature. Beginning with Levoy’s
classic ray casting in 1987 [3] and optimizations in 1990
[4], parallel versions began to appear in 1993 with [5] and
[6]. More recently, Yu demonstrated that parallel volume
rendering performance can be further improved by
overlapping simulation with visualization [7]. Parallel
volume rendering has also been studied within the context
of cluster computing [8] and in standard visualization
toolkits such as VTK [9], ParaView [10], and VisIt [11],
[12].

Our implementation uses post classification after trilinear
interpolation, includes lighting [13], [14], and is optimized
for early ray termination based on maximum opacity and
blank voxel regions. Sort-last parallelization occurs both in
object space and in image space. The dataset is divided into
n approximately equal size partitions, where n is the
number of processes. Each process computes a completed
sub-image corresponding to its local data, including local
front-to-back compositing of samples along each ray of its
local subimage using the “over” operator [15] and early ray
termination.

Stompel et al. [16] provide an overview of various
methods for sort-last compositing of the n sub-images, and
Cavin et al. [8] analyze relative theoretical performance of
these methods. These overviews show that compositing
algorithms usually fall into one of the following categories:
plain or optimized direct send, plain or optimized tree, and

parallel pipeline. The direct send approach is easiest to
understand; each process requests the sub-images from all
of those processes that have something to contribute to it
[17], [18], [19]. Since the possibility for network
contention is high in direct send, the SLIC [16]
optimization attempts to schedule communication.

Rather than sending compositing data monolithically,
tree methods exchange data between pairs of processes,
building larger completed subimages at each level of the
compositing tree. To keep more processes busy at higher
levels on the tree, Ma et al. introduced the binary swap
optimization [20]. Lee et al. discuss a parallel pipeline
compositing algorithm in [21] for polygon rendering,
although this seldom appears in the context of parallel
volume rendering.

For simplicity and a high degree of parallelism, we use
the direct send compositing approach. After all n processes
complete their subimages, the total image space is divided
among n processes as well, so that each process now
contains 1/n of the total data volume and is responsible for
1/n of the total image area. Finally, all of the finished,
composited subimages are sent to a single root process that
tiles them into a final image, which can either be stored to
disk or streamed to a remote display location.

The time to write the final image is not significant for the
image sizes tested, so we choose to ignore the time to write
the final output image to disk, and define the time that a
frame takes to complete as the time from the start of
reading the time step from disk to the time that the final
image is ready at the root process. This frame time has
three distinct components, and for a given data size, the
relative contribution of each component to the total time
depends on the number of processes:

tframe = tio + trender + tcomposite (1)

The I/O time, tio, is the length of time required by a

collective reading of the time step data file by all processes
simultaneously. The rendering time, trender, is the time that it
takes for all processes to complete their local subimage
rendering. The compositing time, tcomposite, is the time to
composite all subimages into a single image on a single
process. The following section describes the
implementation of each component in more detail.

Before the execution of the first frame, a one-time
initialization step allocates data structures and determines
partitioning parameters; static load balancing is used. The
time for this setup is on the order of tens of seconds, and
because it occurs only once, we omit it from the frame
time.

Blue Gene architecture

The Blue Gene/L and Blue Gene/P systems at ANL provide
ample opportunities to experiment with parallel rendering.
This work began with 2048 cores of the BG/L system and
has scaled so far up to 4096 cores on the BG/P system. The
current single rack of BG/P is for testing and development,
but in the near future, ANL’s BG/P system will contain
128K cores. Online documentation from IBM can be found
at [22]; the reader is directed there for specifications and
configuration diagrams. For our purposes, the key
differences between the older BG/L and the new BG/P are

that BG/P provides twice as many cores, twice the memory
footprint, approximately a 2X faster interconnect network,
and a 1.2X faster clock speed per core.

Processor cores are grouped together into nodes; the
BG/P has 4 cores per node. Within a node, the cores can
operate together to execute one user process, in pairs for
two processes, or independently for four user processes,
depending on the selected mode. Application processes
execute on top of a micro-kernel that provides basic OS
services. The Blue Gene architecture has two separate
interconnection networks – a 3D torus for inter-process
point-to-point communication, and a tree network for
collective operations as well as for communicating with I/O
nodes. BG/P there has one I/O node for every 64 compute
nodes. At the front end, the machine has four login nodes
that support full Linux functionality.

3. Implementation

I/O

Our volume rendering application is written using MPI for
both communication and I/O, and executes with one MPI
process on each core. MPI-2 [23] (a.k.a. MPI-IO) collective
file read calls perform data staging, tio in equation 1,
allowing each process to read its own portion of the volume
in parallel with all of the other processes [7], [24]. This is
more efficient than a single master process reading the
entire dataset and distributing it to slave processes, and
more importantly for large datasets, it does not require a
single process to be able to fit the entire dataset into its
memory.

For example, the largest dataset tested to date in this
work consists of 8643 voxels, or approximately 2.5 GB per
time step. This is problematic for most workstations; even
the BG/P has only 2GB of memory per node. However,
with collective I/O, the total memory footprint of the entire
machine, not just of one node, is the upper bound on the
maximum data size that can be processed in-core. This
memory limit on the current single-rack BG/P is 2TB, and
will grow to 64 TB when the system is complete.

Underlying the MPI-2 collective I/O interface is a PVFS
parallel file system [25]. By striping data across multiple
volumes controlled by a number of file servers, application
programs can access non-contiguous regions of a file in
parallel. Performance varies depending on whether reads
or writes are executed (reads in our case), on the number of
I/O nodes being used, and on the size of the partition that
each process reads. These issues will be revisited in next
section as the key relationships between application
performance and I/O throughput are exposed.

BG/P is still a new system undergoing development, and
this holds true for its PVFS deployment, which has only
been functioning for a short time as of this writing.
Therefore, it is largely un-tuned and I/O throughput is
expected to increase dramatically in the future. Even
though our research is sometimes limited by currently
available hardware capabilities, the early testing of this
application is assisting both the BG/P and PVFS teams to
expose and correct implementation problems.

When using PVFS, in particular when performance
testing an application, it is important to realize that PVFS is
a shared resource. Unlike the Blue Gene’s compute nodes

that start each job with a clean kernel and are dedicated to
only one job, PVFS serves the entire machine and the login
nodes as well. This means that PVFS performance for a
given application is dependent on the total load of the
system. We can see this in repeated trials of the same
configuration; trender and tcomposite repeat consistently, but tio
can vary depending on total I/O load. In our timing
measurements, we have taken care to restrict other’s PVFS
usage, and confirmed results over multiple trials, but it
should be remembered that I/O performance could vary in
the context of everyday usage.

Rendering

The computation of local subimages, trender in equation 1,
is embarrassingly parallel – that is, it requires no inter-
process communication and scales linearly with n. Its per-
core performance is a function of the efficiency of the Blue
Gene’s compute node: clock speed, pipeline architecture,
cache coherence, and the extent to which the code is tuned
to optimize these features. Compiler optimizations thus far
have netted 2X performance gains in trender.

We are currently evaluating low-level performance
counters to gauge the use of BG/P’s double-hummer
pipeline, but do not yet have a conclusive metric of the
percentage of its use in this code. Another possibility we
are considering is the storage in memory of the dataset as
double precision instead of single precision, together with
associated compiler directives concerning quad-word data
alignment. This could better exploit IBM’s double hummer
dual floating unit, but it is unclear whether potential gains
will be offset by the expanded memory requirements.

Peak FLOPS rates are theoretical and can be misleading.
For example, measurements indicate the compute kernel
running at approximately 200 MFLOPS per core, or 6% of
the advertised 3.4 GFLOPS peak per core on BG/P. This is
not surprising for actual code that contains loops, branches,
etc. Performance tuning of the computation kernel is an
ongoing aspect of this research.

Compositing

Compositing of parallel volume rendered subimages,
tcomposite in equation 1, is implemented with direct send as
follows. At the point of completion of the render stage and

Figure 2: Direct-send compositing divides both the
object space and image space among processes.

just prior to the beginning of compositing, each of the n
processes owns a completed sub-image of its portion of the
dataset. Next, each of the n processes is assigned
responsibility for 1/n of the final image area as well. For
example, the final image can be divided into n scan lines or
rectangles. There is no spatial correspondence between the
location and size of a process’ currently completed
subimage from the rendering step, and the portion of the
final image that the process is responsible for compositing
during the compositing step.

For example, consider the 9-process 2D example in
Figure 2. The squares represent the volume divided into 9
subvolumes, and the line along the bottom represents the
image divided into 9 regions. (The image need not be
aligned with the subvolume axes.) Looking at process P2, it
is responsible for one subvolume and one portion of the
image. Through a global data structure that all processes
share, P2 knows that it must get the subimages from P6,
P3, and P0, composite them in front-to-back order, to form
its portion of the final image. Equations 2 and 3 recursively
compute color and opacity during compositing,

i = (1.0 – aold) * inew + iold (2)
a = (1.0 – aold) * anew + aold (3)

Where i represents the intensity (r,g,b) premultiplied by its
associated alpha-value, and a represents the accumulated
alpha-value or opacity.

The last step is for processes P1 thru P8 to send their
final results to process P0, which tessellates them together
into one image. The average communication complexity of
tcomposite is O(n4/3 + n). The first term, n4/3, is because on
average, n1/3 messages must be sent to each of n recipients
in order for the n processes to composite their portion of
the final image. The second term, n, represents the
gathering of final subimages at the root process.

Streaming and Prefetching

When resulting images are streamed to a remote display
device, rather than being stored on disk, the path requires

several steps. This is because the Blue Gene connects to the
outside world only through the front-end login nodes. So,
to send an image from one of the compute nodes, it first
passes via a socket to the IP address of one of the login
nodes. Physically, it actually travels from the compute node
to the I/O node assigned to that compute node, and from the
I/O node to the login node, but the connection between
compute node and associated I/O node is transparent to the
programmer. Finally, a daemon running on the login node
forwards the data stream to the remote display via a
separate socket connection. The connectivity is
diagrammed in Figure 3.

Prefetching of time steps can be harnessed when the
optimal number of cores is significantly less than the total
number available. For example, when processing 3003 data
in order to stream images to a remote site, the optimal
number of cores dedicated to one frame was 512.
Therefore, the balance of the machine can be applied
toward processing the next or several next time steps. This
results in a multi-pipe application structure, as in Figure 4.
Each of the pipes functions independently according to the
previous description. In the example of Figure 4, four
separate sockets send images out of the Blue Gene to a
remote display. A token is passed between the pipes to
ensure that images are sent in order. The receiving graphics
application regulates frame rate so that images appear on
the screen at a constant rate.

4. Performance data

In November 2007, real-time streaming of the volume
rendering application from BG/L was demonstrated,
generating and streaming a series of 200 time steps
repeatedly from ANL in Chicago, Illinois to the
Supercomputing conference exhibit floor in Reno, Nevada.
A single time step is 103 MB, and over the course of the
one-hour demo, approximately 500 GB of data was
processed in real time. The optimal setting for this data size
was 512 cores. Figure 5 shows more recent tests of the
same data on BG/P, out to 4K processes.

Figure 3: Connecting a compute node to a remote
display is a several-step process.

Figure 4: Processing several frames simultaneously can
extend the degree of parallelism.

The BG/P is capable of executing one, two, or four
processes per node. In IBM terminology, these are called
smp mode, dual mode, vn mode, respectively. In smp
mode, one core performs computation while the other cores
idle, with the exception of low-level OS tasks. The total
memory footprint of 2GB per node is shared among the
four cores in smp mode.

Our tests show approximately 10% slower performance
in dual and vn modes, compared to smp mode. The largest
increase is in tio, because the number of I/O nodes assigned
to a job is a fraction of the number of compute nodes, not
compute cores. On the BG/P, this number is 64 compute
nodes to one I/O node. Using twice as many compute nodes
means that twice as many I/O nodes are available for tio.

Figure 6 compares the contribution to tframe of each of tio,
trender, and tcomposite for the same 3003 dataset on BG/P. It is
clear that I/O time dominates beyond 64 processes, but this
plot of absolute times actually masks some important
features. It would appear that trender drops so quickly and
that tcomposite grows so slowly that it does not make sense to
optimize them. Both of these assumptions are proved false
by Figure 7, which shows the same performance data
plotted as relative percentages of the total time, tframe.

 From Figure 7, we see that at smaller numbers of
processes, rendering time dominates the frame time, but I/O
cost dominates beyond 64 processes. This underlines the

need to further optimize parallel I/O operation on BG/P.
Rendering time decreases more slowly as a percentage of
the total time, compared to Figure 6, and is a significant
concern out to at least 2048 processes. Compositing time is
still a relatively small fraction of the total time, reaching a
maximum of 14% and usually less than 10%. However,
Figure 7 clearly shows its relative contribution steadily
increasing, hence it cannot be ignored indefinitely,
especially if one expects to scale to tens of thousands of
processes.

Even when PVFS is optimized on BG/P, there will likely
be configurations that are more efficient than others in
terms of I/O. For example, 8 I/O nodes seems to be a sweet
spot in terms of throughput. At 64 compute nodes per I/O
node, this corresponds to 512 processes, 1 process per
node. Also, it is known that PVFS does not perform well
when the partition size per process becomes too small; 1 or
2 MB seems to be a good target according to past
experience, although MPI-IO optimizations can mitigate
the impact of small partition sizes.

With such reliance in this application on I/O rates, it is
worthwhile to study the I/O performance in more detail,
and to continue to reevaluate it as PVFS on BG/P becomes
more mature. Figure 8 shows current read bandwidth for
three dataset sizes: 3003, 6003, and 8003 voxels. In each
case, the best throughput occurs at approximately 256-512

Figure 7: Relative contribution to tframe of each of tio,
trender, and tcomposite is shown.

Figure 6: Comparison of tio, trender, and tcomposite is shown in
terms of absolute frame time.

Figure 5: Performance of BG/P on 300^3 downsampled
dataset.

Figure 8: Aggregate read I/O throughput is plotted for
various data sizes and numbers of processes.

processes, and the optimal partition size appears to be
between 2-8 MB. PVFS performs much better on larger
data sizes than on small ones, as Figure 8 shows. More
detailed tests will be required to confirm these results, once
PVFS has been dialed-in on BG/P. The resulting
throughput values reflect end-to-end I/O times, including
file open and file close, not the raw time to perform the
actual read.

The full size supernova dataset is 8643 voxels, which we
reduced slightly to 8003 for our final test. For our largest
scale result thus far, an output image of 16002 pixels was
rendered from 8003 voxels in a frame time of
approximately 7 seconds. In this test, each time step is 2
GB, or ! billion voxels, and each resulting image is 2.5
Megapixels.

5. Conclusions

The Blue Gene architecture can be an appropriate platform
for high quality software visualization algorithms such as
classical direct volume rendering by ray casting. Its salient
features with respect to this application are: large numbers
of tightly connected cores, a flexible programming API
(MPI), a high-bandwidth connection to the parallel I/O
system (MPI-IO and PVFS), and the ability to connect via
sockets to remote displays. Software rendering cannot
produce better performance than graphics clusters for small
to medium size problems, but if current trends in data size
[26], [27] continue, massively parallel supercomputer
software volume rendering may become a predominant
method in the future.

A closely related metric to data size is image resolution.
In our tests, the image size is chosen such that the number
of pixels in one dimension of the image is twice the number
of voxels in one dimension of the volume, to satisfy the
Nyquist Sampling Theorem.

We believe that our research will prove useful for data
sizes larger than 10003 voxels (several gigavoxels) in
conjunction with image sizes larger than 20002 pixels
(several megapixels). The method is also promising for in
situ visualization [28], or in general when a very large
dataset resides on the system already. As data sizes
increase, transporting data between machines becomes non-
trivial.

The relative cost of the three phases of the algorithm
changes with the number of processes, although ultimately
the application is I/O bound. There is a certain tension
between applying enough processes to reduce the rendering
time, but not so many as to force the I/O system to read
many partitions of a very small size, which is inefficient. A
similar trade-off, but to a lesser degree, exists between
rendering and compositing. Therefore, it is unlikely that
this method alone can effectively produce highly
interactive performance, for example, 30 frames per
second. It is more likely that its niche will be for very large
data sets that cannot be accommodated by graphics
clusters, and can produce frame times on the order of a few
seconds for such data.

Within the rendering kernel, performance tuning is still
important. The ability to apply parallelism should augment,
not replace, good algorithms, coding practices, and
optimizations. Minimizing the number of processes by
optimizing code using compiler flags, directives, and quad-

word alignment can speed up execution, so that larger,
more efficient I/O partition sizes can be used among fewer
processes.

The spare capacity of the machine can be applied to the
application in several ways. Prefetching of several frames
through a multi-pipeline layout is one alternative. This
produces two levels of parallelism; the first level is a gross
division of the machine into, for example, four pipes, each
pipe processing one frame. The second level of parallelism
is the division of a pipe into, for example, 512 processes.

The next approach for utilizing more of the machine
capacity is to improve the quality of the rendering, for
example to enable lighting and shading calculations. In the
performance results, lighting was disabled, but Figure 1
shows that very high quality images can result through the
addition of lighting. On the 3003 dataset, lighting slowed
down performance by approximately 50%. However, the
cost of lighting will be less significant at higher process
counts, because lighting is a part of the rendering cost.

Another quality adjustment is the sample spacing along
each ray. This is also adjustable and is set to twice the
voxel spacing in these tests. However, slight reductions in
sample spacing can increase performance significantly, but
at the expense of small “holes” throughout the resulting
image. However, this technique can be used as a type of
level-of-detail reduction for improving interaction rates.

6. Future Work

We are continuing work to scale data size to gigavoxels and
image size to megapixels, and to improve image quality
through lighting and shading in our next tests. In order to
do so, each of the three components of tframe,, tio, trender, and
tcomposite, must be further improved. I/O performance relies
mainly on improvements to the PVFS and I/O forwarding
implementations on BG/P. Rendering performance can be
further improved with code tuning and optimization.

We are planning to experiment with tree-based
compositing as a replacement for direct-send. This may
include binary swapping per [20] as a way to balance the
number of messages with the size of a message, and to keep
more processes busy during the late stages of compositing.
This also implies that several processes, instead of a single
root process, will write the output image collectively to
disk. This is similar to the way data is now being read from
disk. In the case of streaming images, several sockets can
transmit in parallel, similar to the way that the multi-pipe
configuration now sends images.

Besides propelling optimizations and algorithmic
improvements, extending the scale of an application also
flushes out implementation issues that may be hidden at
smaller scales. While it can be painful to perform
application testing on a machine still undergoing
acceptance testing with a nascent parallel I/O
implementation, in the long run it benefits both the
application and systems researchers.

For example, we recently discovered an MPI-2
implementation issue at large numbers of nodes with the
8643 dataset, forcing our current largest results to be
performed at 8003. In the past, we have discovered another
MPI-2 implementation bug and a BG/P memory allocation
bug through this research. Likewise, several application

errors were discovered when scaling to hundreds and
thousands of processes.

In the future we will also begin to study how this
research can be extended to encompass adaptive mesh
refined (AMR) time-varying datasets [29], [30]. Varying
levels of spatial resolution encoded in AMR data provide a
compromise between the rigidity of completely structured
data, and the randomness of entirely unstructured data. This
may significantly impact the initial setup time. This step
was ignored up to now because it was a one-time cost; the
structure did not change from one frame to the next.
However, in the worst AMR case, each time step could
have a different spatial layout. This could add tens of
seconds to the frame time, without some method of rapidly
restructuring the initial data structures.

Another goal is to collate the performance data into a
coherent model for predicting future performance. This
model may take the form of a smooth, high-dimensional
manifold, or a set of governing equations, or various rules
and heuristics. The determination of what input criteria,
such as processor speed, data size, number of processes,
network bandwidth, memory bandwidth, aggregate I/O
throughput, etc, should be included into such a model is an
open question. The result should be a relatively simple-to-
use module that can analyze a parallel volume rendering
problem and suggest an optimal configuration and predict
its performance.

Finally, one of our long-term goals is to study a
supercomputer architecture can be used to support
interactive rendering. The research so far has not included
any elements of interactivity, and performance data reveals
that reaching interactive rates is difficult because of the
tradeoffs between tio, trender, and tcomposite . The next steps
toward interactive rates may include LOD rendering as well
as local view interpolation at the display machine(s). The
ideal configuration may be the supercomputer and the
graphics machine(s) sharing responsibilities in a client-
server architecture.

Acknowledgments

The authors wish to thank John Blondin and Anthony
Mezzacappa for making their dataset available for this
research. This work was supported in part by the
Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department
of Energy, under Contract DE-AC02-06CH11357.

References

[1] BLONDIN, J. M., MEZZACAPPA, A. DEMARINO, C.:
Stability of Standing Accretion Shocks, with an Eye
Toward Core Collapse Supernovae. The Astrophysics
Journal, 584, 2, (2003), 971.
[2] SciDAC Institute for Ultra-Scale Visualization.
http://ultravis.ucdavis.edu/ 2007.
[3] LEVOY, M.: Display of Surfaces from Volume Data.
IEEE Computer Graphics and Applications, 8, 3, (May
1988), 29-37.
[4] LEVOY, M.: Efficient Ray Tracing of Volume Data.
ACM Transactions on Graphics, 9, 3, (July 1990), 245-261.

[5] MA, K.-L., PAINTER, J. S., HANSEN, C. D. KROGH, M.
F.: A Data Distributed, Parallel Algorithm for Ray-Traced
Volume Rendering. Proceedings of 1993 Parallel
Rendering Symposium, San Jose, CA, (October 1993), 15-
22.
[6] NEUMANN, U.: Parallel Volume-Rendering Algorithm
Performance on Mesh-Connected Multicomputers.
Proceedings of 1993 Parallel Rendering Symposium, San
Jose, CA, (October 1993), 97-104.
[7] YU, H., MA, K.-L. WELLING, J.: A Parallel
Visualization Pipeline for Terascale Earthquake
Simulations. Proceedings of Supercomputing 2004,
(November 2004), 49.
[8] CAVIN, X., MION, C. FIBOIS, A.: COTS Cluster-based
Sort-last Rendering: Performance Evaluation and Pipelined
Implementation. Proceedings of IEEE Visualization 2005,
(October 2005), 111-118.
[9] BIDDISCOMBE, J., GEVECI, B., MARTIN, K., MORELAND,
K. THOMPSON, D.: Time Dependent Processing in a Parallel
Pipeline Architecture. IEEE Transactions on Visualization
and Computer Graphics, 13, 6, (October 2007), 1376-1383.
[10] MORELAND, K., AVILA, L. FISK, L. A.: Parallel
Unstructured Volume Rendering in ParaView. Proceedings
of IS&T SPIE Visualization and Data Analysis 2007, San
Jose, (January 2007).
[11] CHILDS, H. R., BRUGGER, E. S., BONNELL, K. S.,
MEREDITH, J. S., MILLER, M. C., WHITLOCK, B. J. MAX, N.
L.: A Contract Based System for Large Data Visualization.
Proceedings of IEEE Visualization 2005, Minneapolis,
MN, (October 2005), 190-198.
[12] CHILDS, H., DUCHAINEAU, M. MA, K.-L.: A Scalable,
Hybrid Scheme for Volume Rendering Massive Data Sets.
Proceedings of Eurographics Symposium on Parallel
Graphics and Visualization 2006, Braga, Portugal, (May
2006), 153-162.
[13] DREBIN, R. A., CARPENTER, L. HANRAHAN, P.:
Volume Rendering. ACM SIGGRAPH Computer Graphics,
22, 4, (August 1988), 65-74.
[14] MAX, N. L.: Optical Models for Direct Volume
Rendering. IEEE Transactions on Visualization and
Computer Graphics, 1, 2, (June 1995), 99-108.
[15] PORTER, T. DUFF, T.: Compositing Digital Images.
Proceedings of 11th Annual Conference on Computer
Graphics and Interactive Techniques, (1984), 253-259.
[16] STOMPEL, A., MA, K.-L., LUM, E. B., AHRENS, J.
PATCHETT, J.: SLIC: Scheduled Linear Image Compositing
for Parallel Volume Rendering. Proceedings of IEEE
Symposium on Parallel and Large-Data Visualization and
Graphics, Seattle, WA, (October 2003), 33-40.
[17] HSU, W. M.: Segmented Ray Casting for Data Parallel
Volume Rendering. Proceedings of 1993 Parallel
Rendering Symposium, San Jose, CA, (1993), 7-14.
[18] NEUMANN, U.: Communication Costs for Parallel
Volume-Rendering Algorithms. IEEE Computer Graphics
and Applications, 14, 4, (July 1994), 49-58.
[19] MA, K.-L. INTERRANTE, V.: Extracting Feature Lines
from 3D Unstructured Grids. Proceedings of IEEE
Visualization 1997, Phoenix, AZ, (October 1997), 285-292.
[20] MA, K.-L., PAINTER, J. S., HANSEN, C. D. KROGH, M.
F.: Parallel Volume Rendering Using Binary-Swap
Compositing. IEEE Computer Graphics and Applications,
14, 4, (July 1994), 59-68.

[21] LEE, T.-Y., RAGHAVENDRA, C. S. NICHOLAS, J. B.:
Image Composition Schemes for Sort-Last Polygon
Rendering on 2D Mesh Multicomputers. IEEE
Transactions on Visualization and Computer Graphics, 2,
3, (September 1996), 202-217.
[22] IBM Redbooks.
http://www.redbooks.ibm.com/redpieces/abstracts/sg24728
7.html?Open 2007.
[23] GEIST, A., GROPP, W., HUSS-LEDERMAN, S.,
LUMSDAINE, A., LUSK, E., SAPHIR, W. SKJELLUM, T.: MPI-
2: Extending the Message-Passing Interface. Proceedings
of Euro-Par'96, Lyon, France, (October 1996).
[24] YU, H. MA, K.-L.: A Study of I/O Methods for
Parallel Visualization of Large-Scale Data. Parallel
Computing, 31, 2, (February 2005), 167-183.
[25] CARNS, P., LIGON, W. B. I., ROSS, R. THAKUR, R.:
PVFS: A Parallel File System for Linux Clusters.
Proceedings of 4th Annual Linux Showcase & Conference,
Atlanta, GA, (2000), 28.
[26] MOUNT, R.: The Office of Science Data-Management
Challenge. Report from the DOE Office of Science Data-
Management Workshops, 2004.
[27] JOHNSON, C. ROSS, R.: Visualization and Knowledge
Discovery: Report from the DOE/ASCR Workshop on
Visual Analysis and Data Exploration at Extreme Scale,
2007.
[28] TU, T., YU, H., RAMIREZ-GUZMAN, L., BIELAK, J.,
GHATTAS, O., MA, K.-L. O'HALLARON, D. R.: From Mesh
Generation to Scientific Visualization: An End-to-end
Approach to Parallel Supercomputing. Proceedings of
Supercomputing 2006, Tampa, FL, (November 2006).
[29] MA, K.-L.: Parallel Rendering of 3D AMR Data on
the SGI/Cray T3E. Proceedings of 7th Annual Symposium
on the Frontiers of Massively Parallel Computation 1999,
Annapolis MD, (February 1999), 138-145.
[30] WEBER, G. H., HAGEN, H., HAMANN, B., JOY, K. I.,
LIGOCKI, T. J., MA, K.-L. SHALF, J. M.: Visualization of
Adaptive Mesh Refinement Data. Proceedings of
IS&T/SPIE Visual Data Exploration and Analysis VIII, San
Jose, CA, (2001), 121-132.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
("Argonne"). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Government retains
for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies to
the public, and perform publicly and display publicly, by or
on behalf of the Government.

