
Self-Consistent MPI-IO Performance
Requirements and Expectations

William D. Gropp1, Dries Kimpe2, Robert Ross3,
Rajeev Thakur3, and Jesper Larsson Träff4

1 Computer Science Department, University of Illinois
at Urbana-Champaign Urbana, IL 61801, USA

wgropp@uiuc.edu
2 Scientific Computing Research Group, K. U. Leuven

Celestijnenlaan 200A, B-3001 Leuven, Belgium
dries.kimpe@cs.kuleuven.be

3 Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439, USA

{rross, thakur}@mcs.anl.gov
4 NEC Laboratories Europe, NEC Europe Ltd.

Rathausallee 10, D-53757 Sankt Augustin, Germany
traff@it.neclab.eu

Abstract. We recently introduced the idea of self-consistent perfor-
mance requirements for MPI communication. Such requirements provide
a means to ensure consistent behavior of an MPI library, thereby ensur-
ing a degree of performance portability by making it unnecessary for a
user to perform implementation-dependent optimizations by hand. For
the collective operations in particular, a large number of such rules could
sensibly be formulated, without making hidden assumptions about the
underlying communication system or otherwise constraining the MPI im-
plementation. In this paper, we extend this idea to the realm of parallel
I/O (MPI-IO), where the issues are far more subtle. In particular, it is
not always possible to specify performance requirements without making
assumptions about the implementation or without a priori knowledge
of the I/O access pattern. For such cases, we introduce the notion of
performance expectations, which specify the desired behavior for good
implementations of MPI-IO. I/O performance requirements as well as
expectations could be automatically checked by an appropriate bench-
marking tool.

1 Introduction

In [7], we introduced the notion of self-consistent performance requirements for
MPI implementations. Such requirements relate various aspects of the seman-
tically strongly interrelated MPI standard to each other. The requirements are
based on meta-rules, stating for instance that no MPI function should perform
worse than a combination of other MPI functions that implement the same func-
tionality, that no specialized function should perform worse than a more general

function that can implement the same functionality, and that no function with
weak semantic guarantees should perform worse than a similar function with
stronger semantics. In other words, the library-internal implementation of any
arbitrary MPI function in a given MPI library should not perform any worse
than an external (user) implementation of the same functionality in terms of (a
set of) other MPI functions. Otherwise, the performance of the library-internal
MPI implementation could trivially be improved by replacing it with an im-
plementation based on the external user implementation. Such requirements,
when fulfilled, would ensure consistent performance of interrelated parts of MPI
and liberate the user from having to perform awkward and non-portable opti-
mizations to cope with deficiencies of a particular implementation. For the MPI
implementer, self-consistent performance requirements serve as a sanity check.

In this paper, we extend this idea to the MPI-IO part of MPI [1, Chapter 7].
The I/O model of MPI is considerably more complex than the communication
model, with performance being dependent to a much larger extent on external
factors beyond the control of both the application and the MPI library. Also,
the I/O access patterns of different processes are not known beforehand. As
a result, in some instances, we can only formulate performance expectations
instead of performance requirements. Performance expectations are properties
that are expected to hold most of the time and would be desirable for an MPI
implementation to fulfill (from the perspective of the user and for performance
portability).

We use the following notation in the rest of this paper. The performance rela-
tionship that MPI function MPI A(n) should perform no worse than function(s)
MPI B(n) for total I/O volume n is expressed semi-formally by MPI A(n) �
MPI B(n). To distinguish between requirements and expectations, we use the
notation MPI A(n) ⊆ MPI B(n) to indicate the performance relationship that
MPI function MPI A(n) is expected to perform no worse than function MPI B(n)
for total I/O volume n.

One value in defining expectations more formally is that they can suggest
the need for additional hints to help an MPI implementation achieve the user’s
expectation of performance. In Section 5, we illustrate this point by describing
some situations where achieving performance expectations may require addi-
tional information and suggest new standard hints that could be adopted in
revisions of the MPI standard. Furthermore, this approach to defining standard
hints is arguably a better approach than attempting to standardize common
practice, as was done for the I/O hints in MPI 2.0. The formal definitions also
help guide the development of tests to ensure that implementations meet user
expectations.

As with the set of self-consistent performance requirements for MPI commu-
nication, the MPI-IO requirements and expectations can, in principle, be auto-
matically checked with an appropriate, configurable benchmark and experiment-
management and mining tool. We have not developed such a tool so far.

2 MPI-IO

MPI-IO [1] is an interface for parallel file I/O defined in the spirit of MPI and
building on the same key concepts. Access patterns and data layouts in files are
described by (derived) datatypes, and data is then sent (written) from memory
into a region or regions in file, or received (read) from file into memory.

The MPI-IO model can be analyzed along different dimensions [1, Chapter 7,
page 204]. File I/O operations can be classified as

1. independent vs. collective,
2. blocking vs. nonblocking, and
3. blocking collective vs. split collective

Positioning within a file can be done via

1. explicit offsets,
2. individual file pointers, or
3. shared file pointers.

These different classes of file I/O operations and positioning mechanisms have
different semantics and performance characteristics. In addition to these I/O
modes, we must also consider the side effects of other MPI-IO calls, such as
those that change the bytes of a file that a process may access (by defining file
views) or supply (implementation- and system-dependent) hints that may im-
pact underlying behavior. For example, a call to MPI File set info that changes
the cb nodes hint for a file could have a dramatic impact on subsequent collective
I/O on that same file by limiting the number of processes that actually perform
I/O. This example also helps explain the difficulty in defining performance re-
quirements for MPI-IO.

Further details about MPI-IO can be found in [1, 2].

3 Requirements versus Expectations

We define both requirements and expectations for MPI-IO performance. Perfor-
mance requirements are conditions that a good MPI-IO implementation should
be able to fulfill. In some cases, however, it is not possible to specify requirements
for a variety of reasons discussed below. For such cases, we define performance
expectations, which would be desirable for an implementation to fulfill.

For example, it is tempting to specify that collective I/O should perform
no worse than independent I/O. However, the I/O access pattern specified by
the collective I/O function is not known unless the implementation analyzes the
request, which may require communication among processes. If, after analysis,
the implementation determines that collective I/O optimization is not beneficial
for this request, and uses independent I/O instead, the cost of the analysis is
still incurred, and the collective I/O function is slower than if the user had
directly called the equivalent independent I/O function. Also, I/O performance
is influenced by characteristics of the (parallel) file system, only some of which

can be controlled by (or are even visible to) the MPI implementation. This fact
also makes it difficult to specify requirements in some cases.

The situation is further complicated by hints. In the MPI-IO model, the
interaction with the file system can be influenced through hints that are supplied
to MPI File open, MPI File set info, or MPI File set view calls. The MPI standard
defines a number of such hints that can deeply affect performance. It is the user’s
responsibility to use these hints sensibly, which often requires knowledge of the
underlying file system. It is easy to supply hints that have a negative effect on
performance. For example, Figure 1 shows the effect of an unfortunate choice
for the standard-defined cb buffer size hint (buffer size for collective buffering)
on the performance of the noncontig benchmark [8]. This benchmark generates
a regular, strided, nonoverlapping access pattern perfectly suited for collective
buffering. However, the optimal value for cb buffer size is hard to determine,
and depends on many factors such as the number of processes involved and the
characteristics of the file system and communication network. In this graph we
see that there is a small range of values for which optimal read performance is
achieved. In fact, the default value of 4 MB used by the MPI-IO implementation,
ROMIO [3, 5], does not happen to fall into that range on this system. Selection
of an appropriate cb buffer size can be further complicated by the potential for
interaction between alignment of these buffers during collective I/O and the
granularity of locks in the (parallel) file system, if the file system uses locks.

 50

 100

 150

 200

 250

 300

 350

 64 256 1024 4096 16384 65536 262144 1048576 4194304

M
B/

s

cb_buffersize (bytes)

noncontig benchmark (8 processes), 512MB file size, 8MB buffer size,
collective accesses, 64 loops, element count 512, vector length 1024

4MB

4MB

write
read

Fig. 1. Effect of the hint cb buffer size on the noncontig benchmark

Two features further complicate the matter. First, MPI implementations are
allowed to support their own hints in addition to the ones described in the stan-
dard. We, of course, cannot say anything about the impact of such hints here.
Second, a conforming MPI implementation is allowed to ignore all hints (in-
cluding standard-defined hints), and their effect may therefore be void. In all,

hints are a nonportable feature (performance wise). We therefore cannot formu-
late strict performance requirements, but by making assumptions about how an
implementation could (or should) sensibly use hint information, we can neverthe-
less formulate reasonable performance expectations. Similar to the performance
requirements, such expectations can be stated as rules that can be checked by a
suitable tool.

4 Performance Requirements

Where an MPI-IO operation can, in an obvious way, be implemented by other,
possibly more general MPI-IO operations, a self-consistent performance require-
ment states that this alternative implementation should not be faster than the
original operation. A comprehensive, but not exhaustive set of such requirements
is presented in the following.

An I/O operation with an explicit offset should be no slower than imple-
menting it with a call to MPI File seek followed by the corresponding individual
file pointer operation.

MPI File {read|write} at � MPI File seek + MPI File {read|write} (1)

A collective I/O operation should be no slower than the equivalent split
collective operation.

MPI File {read|write} all � (2)
MPI File {read|write} all begin + MPI File {read|write} all end (3)

A blocking I/O operation should be no slower than the corresponding non-
blocking operation followed by a wait.

MPI File {read|write} � MPI File {iread|iwrite} + MPI Wait (4)

By the assumption that an operation with weaker semantic guarantees should
be no slower (presumably faster) than a similar operation with stronger guaran-
tees, we can formulate the following requirement

Write with default consistency semantics � write with atomic mode (5)

Preallocating disk space for a file by using MPI File preallocate should be no
slower than explicitly allocating space with MPI File write.

MPI File preallocate � MPI File write ∗ (6)

I/O access using an individual file pointer should be no slower than I/O
access using the shared file pointer (because accessing the shared file pointer
may require synchronization).

MPI File write � MPI File write shared (7)

Similarly, collective I/O using an individual file pointer should be no slower
than collective I/O using the shared file pointer.

MPI File write all � MPI File write ordered (8)

I/O operations in native file format should be no slower than I/O operations
in external32 format, since external32 may require conversion, and it provides
stronger semantics guarantees (on portability). An MPI implementation where
external32 is faster than native format could be “fixed” by using the same
approach to native I/O as in the external32 implementation, only without
performing any data conversion.

I/O in native format � I/O in external32 format (9)

5 Performance Expectations

We describe some examples of performance expectations, which for various rea-
sons cannot be mandated as performance requirements.

5.1 Noncontiguous Accesses

MPI-IO allows the user to access noncontiguous data (in both memory and file)
with a single I/O function call. The user can specify the noncontiguity by using
derived datatypes. A reasonable performance expectation would be that a read
or write with a noncontiguous datatype T (n) that specifies t contiguous regions
of size n in memory or file is no slower than if the user achieved the same effect
by t individual, contiguous reads or writes. Ideally, an implementation should
do better.

MPI File {read|write}∗(T (n)) ⊆ MPI File {read|write} at(n)︸ ︷︷ ︸
t individual calls

(10)

We cannot state this as a requirement because the performance in such cases
can be highly dependent on the access pattern, which must be determined from
the memory and file layouts specified. This analysis can itself take some time. If
after the analysis it is determined that no optimization is beneficial, and instead
multiple contiguous reads/writes should be performed, the above relation will
not hold. A good implementation should perform the analysis as efficiently as
possible to minimize the overhead.

Figure 2 shows an example where this expectation is not met. Here, for small,
sparse accesses (described in Figure 3[a]), multiple contiguous writes perform
better than a single noncontiguous write. In this case, the MPI library mistakenly
decided to apply the data-sieving optimization [6] to the file access, when in fact
multiple contiguous accesses perform better because of the sparsity of the access
pattern.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 10 15 20 25 30 35

M
B/

s

nodes

Sparse file accesses on the lustre filesystem

write using file datatype
multiple contiguous writes

Fig. 2. Using file datatypes versus multiple contiguous accesses

File

ds_buffersize

...

rank 0 rank 1

(a) for Figure 2

File

...
...

cb_buffersize

blocksize

1 n n-1 1 0

(b) for Figure 4

Fig. 3. Access patterns (color indicates rank)

5.2 Implications for Hints

These considerations suggest several possible hints that would aid an MPI imple-
mentation in achieving the performance expectations. General hints that could
be used with any MPI implementation (because they describe general features
of the program and data) include:

write density A measure of the ratio between the extent and size of datatypes
used for writing to a file. Implementations may want to use independent I/O
if the density is low and collective I/O if the density is high.

read density Similar to write density, but for reading.

Specific hints to control a particular MPI implementation can be used when the
implementation is unable to meet a performance expectation without additional
knowledge. These might include:

use only contig io Only use contiguous I/O.

The advantage of such a hint is that the MPI program is more performance
portable: Rather than replacing one set of MPI calls with a different set ev-
erywhere they occur, the hint can allow the MPI implementation to avoid the
analysis and simply choose the appropriate method. This places most of the
performance tuning at the point where the hint is provided, rather than at each
location where file I/O is performed. Currently, ROMIO implements the hints
romio ds read and romio ds write to allow users to selectively disable the use of
noncontiguous I/O optimizations, overriding the default behavior. Use of these
hints could obtain desired performance in the example shown in Figure 2 without
reverting to the use of multiple I/O calls.

5.3 Collective I/O

Collective I/O faces a similar problem. MPI File write all can choose to make use
of the collective nature of the function call to merge the file accesses among all
participating ranks in order to optimize file access. Most I/O systems perform
relatively well on large contiguous requests (compared to small fragmented ones),
and, as a result, merging accesses from different processes usually pays off. A
user may therefore expect better performance with MPI File write all than with
MPI File write.

However, merging access patterns will not always be possible (for example,
when accesses are not interleaved). When this happens, the implementation of
MPI File write all will usually fall back to calling MPI File write. Because of the
additional synchronization and communication performed in determining the
global access pattern, MPI File write all will actually have performed worse com-
pared with directly calling its independent counterpart. In ROMIO, users have
the option of using the romio cb read and romio cb write hints to disable collec-
tive I/O optimizations when they know these optimizations aren’t beneficial.

Of course, merging access patterns is just one possible optimization. Given
the diverse hardware and software encountered in I/O systems, we do not want
users to call the independent functions because they happen to perform better on
a certain system. This would take away global optimization opportunities from
the MPI library, possibly reducing performance on other systems or different
MPI implementations. Instead, using suitable hints, the application should be
able to provide the MPI-IO implementation with enough information to make
sure the collective version does not perform worse than the corresponding inde-
pendent call.

Therefore, we can only state the following as an expectation.

MPI File {read all|write all} ⊆ MPI File {read|write} (11)

Figure 4 shows an example where this expectation does not hold. The cor-
responding access pattern is shown in Figure 3[b]. Here, independent reads and
writes are faster than collective reads and writes. The access pattern was spe-
cially crafted to trigger bad performance with the two-phase algorithm [4] imple-
mented in ROMIO. This algorithm, which is only enabled if interleaved access

is detected, first analyzes the collective access pattern to determine the first and
last offset of the access region. Next, this region is divided among a configurable
subset of processes, and each process is responsible for all I/O for its portion of
the file. In this example, most of the data that each process accesses is destined
for another process, resulting in most data passing over the network twice.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35

M
B/

s

nodes

PVFS2

collective write
independent write

collective read
independent read

Fig. 4. Collective versus independent file access for a case that is not suitable for
collective I/O

Another performance expectation is that an MPI-IO operation for which a
“sensible” hint has previously been supplied should perform no worse than the
operation without the hint.

6 Conclusions

Codifying performance requirements and expectations provides users and imple-
menters with a common set of assumptions (and goals) for working with MPI-IO.
From the user’s perspective, these requirements and expectations encourage the
use of collective I/O and file views to combine I/O operations whenever possi-
ble, to use default consistency semantics when appropriate, to avoid shared file
pointers when independent file pointers are adequate, and to use hints for tun-
ing rather than breaking from “best practice.” Implementers must strive to meet
these expectations wherever possible without the use of additional hints, and also
support hints that enable users to correct the implementation’s behavior when
it goes astray. Implementers and users should strive to improve and standardize
the hints used for this purpose across multiple MPI-IO implementations.

At present, some MPI-IO hints are inherently nonportable. The lack of porta-
bility is not because conforming implementations are allowed to ignore them, but

because setting them meaningfully requires intimate knowledge of the I/O lay-
ers below the MPI implementation. As demonstrated in Section 3, setting such
hints carelessly can damage performance. Portable hints only give additional in-
formation about the application itself. As an example, consider a hint describing
how much data is interleaved in collective accesses. Without this information, an
implementation is forced to do additional calculation and communication, possi-
bly making the collective access functions perform worse than their independent
counterparts. At the same time, the availability of this information (assuming it
is correct) should not degrade performance.

We have shown that some of the performance problems with the MPI-IO
functions can be attributed to lack of information—the MPI implementation
does not possess enough information to determine the optimal algorithm. How-
ever, many problems should be solvable by implementing smarter MPI-IO opti-
mization algorithms. Much work still remains to be done in optimizing MPI-IO
functionality!

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357.

References

1. W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and
M. Snir. MPI – The Complete Reference, volume 2, The MPI Extensions. MIT
Press, 1998.

2. W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced Features of the
Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

3. ROMIO: A high-performance, portable MPI-IO implementation.
http://www.mcs.anl.gov/romio.

4. R. Thakur and A. Choudhary. An Extended Two-Phase Method for Accessing
Sections of Out-of-Core Arrays. Scientific Programming, 5(4):301–317, Winter 1996.

5. R. Thakur, W. Gropp, and E. Lusk. On implementing MPI-IO portably and with
high performance. In Proceedings of the 6th Workshop on I/O in Parallel and
Distributed Systems, pages 23–32. ACM Press, May 1999.

6. R. Thakur, W. Gropp, and E. Lusk. Optimizing noncontiguous accesses in MPI-IO.
Parallel Computing, 28(1):83–105, January 2002.

7. J. L. Träff, W. Gropp, and R. Thakur. Self-consistent MPI performance require-
ments. In Recent Advances in Parallel Virtual Machine and Message Passing In-
terface. 14th European PVM/MPI Users’ Group Meeting, volume 4757 of Lecture
Notes in Computer Science, pages 36–45. Springer, 2007.

8. J. Worringen, J. L. Träff, and H. Ritzdorf. Fast parallel non-contiguous file access. In
SC ’03: Proceedings of the 2003 ACM/IEEE conference on Supercomputing, page 60,
Washington, DC, USA, 2003. IEEE Computer Society.

