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ABSTRACT
Advances in vehicle modeling and simulation in recent years

have led to designs that are safer, easier to handle, and less
sensitive to external factors. Yet, the potential of simulation is
adversely impacted by its limited ability to predict vehicle dy-
namics in the presence of uncertainty. A commonly occurring
source of uncertainty in vehicle dynamics is the road-tire friction
interaction, typically represented through a spatially distributed
stochastic friction coefficient. The importance of its variation be-
comes apparent on roads with ice patches, where if the stochas-
tic attributes of the friction coefficient are correctly factored into
real time dynamics simulation, robust control strategies could be
designed to improve transportation safety.

This work concentrates on correctly accounting in the non-
linear dynamics of a car model for the inherent uncertainty in
friction coefficient distribution at the road/tire interface. The
outcome of this effort is the ability to quantify the effect of in-
put uncertainty on a vehicle’s trajectory and the associated es-
calation of risk in driving. By using a space-dependent Gaussian
process, the statistical representation of the friction coefficient
allows for consistent space dependence of randomness. The ap-
proach proposed allows for the incorporation of noise in the ob-
served data and a nonzero mean for inhomogeneous distribution

∗Address all correspondence to this author.

of the friction coefficient. Based on the statistical model con-
sidered, consistent friction coefficient sample distributions are
generated over large spatial domains of interest. These samples
are subsequently used to compute and characterize the statis-
tics associated with the dynamics of a nonlinear vehicle model.
The information concerning the state of the road and thus the
friction coefficient is assumed available (measured) at a limited
number of points by some sensing device that has a relatively
homogeneous noise field (satellite picture or ground sensors, for
instance). The methodology proposed can be modified to incor-
porate information that is sensed by each individual car as it
advances along its trajectory.

INTRODUCTION
During the 1970s increasing awareness of the theory of

stochastic process, together with the wider availability of digital
computers, brought to automatic engineers a new and powerful
technique for treating the response of vehicles to the irregular un-
dulations of roads [1]. Over the last decade, stochastic techniques
and computing power have been harnessed further, allowing for
high-fidelity real-time simulations of vehicles on roads with un-
certain conditions. The most common application of spatial un-
certainty quantification has been in modeling vehicles under ran-

1 Copyright c© 2008 by ASME



dom road excitation. Random ground excitation has been mod-
eled with spatial homogeneous random processes, the output of a
linear shaping filter to white noise, as in [2,3]. A stochastic road
excitation assumption is used in [4] to monitor tire conditions
and reduce tire vibration. One prevailing method for addressing
spatial randomness is the method of Gaussian processes, which
has been employed to model road surfaces for stationary [5] or
nonstationary processes, the latter represented as a series of sta-
tionary process [6].

An unexplored, commonly occurring, spatially stochastic
parameter in vehicle dynamics is the road-tire friction interac-
tion. The importance of this variation is exhibited on roads with
ice patches. The physical challenges of low friction coefficients
and control challenges of driver misperception are cited in [7] as
key causes for the escalation of risk in winter weather conditions.

The primary goal of this work is to devise an efficient and
flexible methodology focused on addressing uncertainty in ve-
hicle dynamics simulation; we will use icy road conditions as
our inherently stochastic enviroment for testing and evaluation
of our methodology. To this end, Gaussian processes are pro-
posed to produce continuous high-fidelity models of icy terrain
from a discrete set of known friction values (attained from satel-
lite imagery, ground sensors, or information estimated by other
vehicles [8, 9]). A vehicle model is simulated on the constructed
terrain to quantify the effect of ice patches on a vehicle’s tra-
jectory (compared to the deterministic case) and to quantify the
escalated risk of spinout and oversteer. The proposed method-
ology is demonstrated in conjunction with two simulation envi-
ronments. The first one draws on the MATLAB package, which
is used to implement a simplified bicycle model, and the sec-
ond one is the MSC.ADAMS/Car commercial software package,
widely used in industry for vehicle dynamics simulation [10].

PROPOSED METHODOLOGY
In this work, modeling the friction coefficient at the wheel-

ground contact draws on a Gaussian process approach to provide
a consistent space distribution based on information available at
a limited number of locations.

Other approaches for modeling randomness in the road sur-
face or road-tire interaction do exist. One class of past ap-
proaches is based on homogeneous random processes [2, 3].
While these approaches model a large class of problems and may
be useful in design and simulation, they are nonetheless not ap-
propriate for situations where the variation of the road surface
has large areas of coherence that are inhomogeneous, even if they
may be stationary in terms of the uncertainty given the measured
surface data. Another class of past approaches is the one that we
call “spectral” Gaussian processes [5]. In these approaches, the
properties of the surface are represented by their spatial Fourier
transform with independent, normally distributed, coefficients.
As a result, the distribution of the respective property is also

Gaussian at every point in space, which is also the case for our
approach. Nonetheless, our approach, which is based on an ini-
tial specification of the covariance function, has two key advan-
tages. The first advantage originates in the fact that spectral
Gaussian process approaches cannot easily accommodate rapid
variations in the properties of the surface, which is a well-known
side effect of the Gibbs phenomenon. In the proposed approach,
since both the representation of the Gaussian process and the data
fitting procedure occur in real space, there is far more flexibility
in dealing with such situations (which appear, for example, when
one considers the limits of the road). Such difficulties may con-
ceivably be overcome by spectral methods by using a different
orthogonal basis defined only in the region of interest. However,
the complexity and computational effort to generate such a basis
may be far from trivial; and in fact such an approach has not,
to our knowledge, been demonstrated. The second advantage of
the proposed approach has to do with the fact that covariance
function-based Gaussian process modeling is one of the preva-
lent methods for representing spatial uncertainty [11,12]. There-
fore, road surface data will eventually be provided in a format
compatible with this representation.

An approach that has recently generated major interest in
uncertainty quantification of engineering systems has been the
one of polynomials chaos expansions. While that approach is
extremely flexible, it also requires approximating the states of
the system in a polynomial basis that grows roughly as nd , where
n is the polynomial degree used and d is the dimension of the
uncertainty space. Such an approximation is intractable for prob-
lems that are obtained by spatial discretization with uncertainty
at each node, of the type that is treated here.

A key modeling decision is the selection of a covariance
function. Various studies in geostatistics suggest that the squared
exponential is a representative correlation function [11], and a
variation of that function is will be used herein. Because the
friction coefficients are naturally bounded between two extreme
values (that of dry land µd and ice µs, where µd > µs and are
selected from pg. 27 of [13]), the quantity modeled will be the
logarithm of a ratio involving the friction coefficient by the Gaus-
sian process. A function f is introduced to provide µ everywhere
as

µ = µs +(µd−µs)∗
1

1+ e− f . (1)

Therefore,

f =− ln
(

µd−µ
µ−µs

)
∈ (−∞,∞). (2)

Herein, f is assumed to be a field providing values at a n-
node grid through a Gaussian process that is identified based on
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a m-node grid of measurement points. Typically, n�m. Consid-
ering the road flat (two-dimensional), at locations on x = (x1,x2)
it is assumed that f (x) ∼ GP(m(x),k(x,x′)). That is, the field
f (x) is defined as a Gaussian process with mean function m(x)
and covariance function k(x,x′) [14]. A degree one polynomial
mean function is used here to account for a nonstationary spatial
distribution in the x1 and x2 directions, while the covariance func-
tion is assumed a squared exponential. It should be noted here
that Gaussian processes can be used to consider non-stationary
models as in [14, Chapter 4.2].

m(x) = a0 +a1x1 +a2x2 (3)

k(x,x′) = exp

(
−
[
(x1− x′1)

αx1

]2/γ

−
[
(x2− x′2)

αx2

]2/γ
)

(4)

The distribution parameters a0,a1,a2,αx1 ,αx2 , and γ are computed
from the observed data. By far the most popular technique
for doing that is the one of using the maximum likelihood ap-
proach [14]. In that approach, the likelihood function is written
based on the covariance function Gaussian process representa-
tion. Then, it is maximized by using standard optimization tech-
niques. While the approach is laborious, it is also fairly straight-
forward, standard, and comprehensively described in multiple
references, such as [14, Chapter 5]. One of the detriments of
using other processes (non-Gaussian) for data-driven uncertainty
quantification, is the difficulty of estimating the hyperparameters
efficiently and accurately. In this work, we concentrate on the is-
sues concerning the application of the Gaussian process model
for representating the state of the road surface in conjunction
with advanced dynamical simulation tools.

The phase parameter f remains to be evaluated at all n nodes
of the evaluation grid x∗.

x∗ =

 (x11,x21)
...

(x1n,x2n)

 ∈Rn (5)

If W ∈Rm is the set of observed values, a provision is made for
including noise in this data by means of the parameter σn,

f̄∗ = m(x∗)+k(x∗,x)kW
−1(W−m(x)) ∈Rn (6)

kW = k(x,x)+σ
2
nI ∈Rm×m (7)

COV(f∗) = k(x∗,x∗)−k(x∗,x)kW
−1k(x,x∗) ∈Rn×n, (8)

where x is the set of all measured point coordinates and x∗ is the
set of all computed point coordinates.

Figure 1. Gaussian processes are used to compute sampling character-
istics on fine grid from deterministic data on sparse grid.

Samples at the n-node evaluation grid are obtained by draw-
ing from a normal distribution with mean f̄∗ and covariance ma-
trix COV(f̄∗):

f(x∗)∼ N(f̄∗,COV(f̄∗)) ∈Rn . (9)

For each sample, a cubic spline is used in conjunction with the
generated data to produce friction coefficients outside the n-node
grid. During the simulation, the spline is invoked to evaluate f
at all the road-tire contact points at any time, as shown in Figure
4. The equations of motion are formulated and solved by using
friction coefficient input from the constructed spline. The vehi-
cle positions and velocities are computed for each sample and
averaged; furthermore, variance is computed at each simulation
time step.

Of course, at points away from the evaluation grid, the field
function f approximated by splines no longer obeys the Gaus-
sian process model, it is only an approximation of it. One can
show analytically, however, that, in the limit of the evaluation
grid spacing going to zero, the trajectories produced by the dy-
namical simulator converge to those that would be obtained if
proper Gaussian process sampling would had been employed
at the points required by the integration procedure. This con-
vergence is due to the fact that almost any sample f surface is
smooth [14]. The results of a convergence study are shown in
Figs. 2 and 3. First in the study, a spline was fit to an extremely
fine Gaussian-distributed grid and used to run a baseline sim-
ulation. For each subsequent simulation, 3/4 of the Gaussian-
distributed points were removed and a spline was fit to the re-
maining points and used to run a simulations. It was expected
that the error of the simulation trajectories would converge to
zero as the resolution went to zero. Figure 2 shows the deviation
from baseline as a function of time; Figure 3 shows the conver-
gence of the normalized error as grid resolution goes to zero.
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Figure 2. Deviation of trajectory from fine grid trajectory for splines fit to
varying resolution grids

Figure 3. Convergence of trajectory as evaluation grid spacing goes to
zero.

A summary of the overall methodology is presented in Fig-
ure 5. The approach starts with a specification of the variogram
model adopted to capture the spatial statistical distribution of
the friction coefficient. Selecting a variogram model compatible
with the underlying statistics of the physical process is impor-
tant, particularly so when the number of measurements is very
limited. To this end, a priori knowledge and expert opinion are
often relied upon in choosing the spatial variogram type. When
a wealth of data is available, misspecification of the variogram,
although not desirable, is acceptable, since asymptotically it gets
corrected as discussed in [15–17]. When little is known about the
underlying statistics of the physical process, empirical guidelines
for selecting a variogram are discussed in [18, 19]. In this case,

Figure 4. A spline interpolant of friction coefficient samples is extracted
from for each Monte Carlo iteration.

the impact of variogram misspecification on kriging can be sig-
nificant [20], and adopting a nonparametric variogram estimation
technique [21–26] or relying on expert opinion are recommended
options.

Figure 5. Overall methodology. This work concentrates on the last three
stages of the methodology. Data gathering, specification of variogram,
and variogram parameter identification fall outside the scope of this work.

4 Copyright c© 2008 by ASME



MODELS CONSIDERED

The first model considered is a simple bicycle model imple-
mented in MATLAB. An open-loop step steer angle is used to
negotiate a turn. A high-fidelity car model is used as well. The
vehicle is modeled in MSC.ADAMS/Car and is used to perform
a J-turn maneuver: drive straight up to a certain point, then ap-
ply a ramp steer input to the steering wheel. These models are
presented in more detail in the following subsections.

Bicycle Model

The bicycle model, shown in Figure 6, has three degrees of
freedom: longitudinal motion Vx, lateral motion Vy, and yaw Ωz.
Three input functions determine the behavior of the model: steer
angle δ f (t) and the front/rear wheel road adhesion coefficients
µ f and µr, respectively.

Figure 6. Bicycle model used in preliminary research of methodology
[13].

After neglecting roll and asymetry and assuming that no
thrust forces exist (that is, the vehicle coasts into the turn), the
governing differential equations for vehicle velocities and posi-
tions are

m(V̇x−VyΩz) = −Fy f sinδ f

m(V̇y +VxΩz) = Fyr +Fy f cosδ f (10)
IzΩ̇z = l1Fy f cosδ f − l2Fyr

Ẋ = Vx cosΘz−Vy sinΘz

Ẏ = Vx sinΘz +Vy cosΘz (11)
Θ̇z = Ωz.

The geometric parameters for the bicycle were taken from
[27]. The constitutive equations for the forces acting on the tires
are provided by [13].

Fy f =

{ µpW f
2tanαc

tanα f α f ≤ αc

µpWf (1− tanαc
2tanα f

) α f > αc
(12)

Fyr =

{
µpWr

2tanαc
tanαr αr ≤ αc

µpWr(1− tanαc
2tanαr

) αr > αc
(13)

Wf and Wr are the front and back tire normal forces, respectively;
α is the respective slip angle for each tire; µp is the respective
peak road adhesion coefficient for each tire; and αc is the critical
slip angle.

Geometrically, the slip angles are related to the state vari-
ables and the steer angle alone.

α f = δ f − arctan
l1Ωz +Vy

Vx
(14)

αr = arctan
l2Ωz−Vy

Vx
(15)

ADAMS Car Model
The more sophisticated vehicle model is obtained through

MSC.ADAMS/Car, a full vehicle simulation package distributed
by MSC.Software. The vehicle parameters used were taken di-
rectly from the default MSC.ADAMS/Car library. The full ve-
hicle model is the integration of several subsystems including
a rack-and-pinion type steering subsystem, an Ackerman arm
suspension system, and a flexible chassis. Figure 7 shows the
topology of a vehicle with front and rear suspension, wheels, and
steering subsystems (the chassis is not shown).

The test rig is a special subsystem that conveys user inputs
for steering angle to the model. ADAMS/View variables called
”Communicators” are used to communicate between the subsys-
tems.
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Figure 7. Vehicle model without chassis shown in ADAMS.

Because load transfer through the tires to the ground is es-
sential in predicting vehicle travel on ice, a sophisticated and ro-
bust tire model, FTire (Flexible Ring Tire [28]) is employed in
the simulation. The tire ring is numerically approximated by a fi-
nite number of discrete masses called belt elements coupled with
their direct neighbors by stiff springs with in- and out-of-plane
bending stiffnesses. The method is summarized by the schematic
in Figure 8.

Figure 8. FTire modeling approach.

The driver used in the ADAMS/Car simulation is also open-
loop. The car starts at the grid origin with an initial velocity
and is allowed to coast in a straight line for 0.5 seconds. Then a
forty degree per second ramp function is imposed on the steering
wheel for the duration of the simulation to simulate a left-hand
turn.

In order to represent the road in ADAMS/Car, a custom 3D
road file was created. The road file is a flat, rectangular sur-
face tessellated with identical right triangles. The legs of the
right triangles have a length of one meter matching the resolu-
tion of the computed grid x∗; thus, the coordinates of the Gaus-
sian processes’ computed grid match the nodal coordinates of the
ADAMS/Car road file. The friction coefficient of each triangle
is the geometric average of the friction coefficients at the respec-
tive triangle vertices. A unique road file is created for each Monte
Carlo iteration. The FTire model previously discussed computes
the interfacial friction coefficients at each step in simulation, and

the input is used to determine the vehicle dynamics.

Figure 9. Car model and tessellated road surface in the ADAMS envi-
ronment.

NUMERICAL EXPERIMENTS
Numerical experiments have been conducted and are pre-

sented to show that average vehicle dynamics are predicted
through our methodology, verify that dynamics trends produced
through full vehicle simulation in different conditions are con-
gruous with expectations, and illustrate the insights provided by
the stochastic analysis enabled by the proposed methodology.
MSC.ADAMS/Car results are presented to illustrate the readi-
ness of this methodology for industry applications. Simulation
performance metrics also are given to clarify the potential of this
methodology for real-time simulation.

Ice Models
The Gaussian process-based approach outlined is used to

create a set of grids G, where each grid has a distribution reflec-
tive of the observed ice distribution. That is, the grids in G are
distinct but consistent in that they share the same spatial distribu-
tion characteristics (with some noise associated with the friction
measurement devices). Each grid in G is subsequently used for a
Monte Carlo analysis, and it should have between 100 and 1000
nodes to attain accuracy yet maintain efficiency. Three grids
from G are shown in Figure 10; note that the grids are unique
but possess comparable amplitudes and spatial variations.

The key distribution characteristics extracted from the data
are the spatial variances, or literally mean patch lengths (αx1 and
αx2 in Eq. 4.). The reason is that rapid changes in friction coef-
ficients result in a lateral force unbalance between the front and
back tires on a vehicle resulting in understeer or oversteer [27].
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Figure 10. Phase parameter grids created from the same set of ob-
served data.

The grids shown in Figure 11 are from two different sets of ob-
served data: the top plot from a mean patch length of one meter
and the bottom plot from a mean patch length of three meters.
These grids demonstrate the sensitivity of the methodology to
spatial variance.

As indicated earlier, in order to account for the biextremal
nature of the friction coefficient, a phase parameter f – the log-
arithm of a ratio involving the friction coefficient – is used. The
Gaussian process is exercised on the phase parameter distribu-
tion, creating a phase parameter grid that is subsequently trans-
formed to a friction coefficient grid. Figure 12 shows a realiza-
tion of f on a grid and the corresponding realization of µ on the
same grid.

The grids used in the following simulations were produced
from randomly generated data assuming the values of distribu-
tion parameter from Eqs. 3 and 4: a0=a1=a2=0, γ=1, and σn=.15.
Different parameters, αx1 and αx2 , were used in experimentation

Figure 11. Phase parameter grids created from data sets with mean
patch lengths one meter (top) and three meters (bottom).

and are stated for individual tests as mean patch lengths.

Bicycle Simulation
The bicycle dynamics were investigated in MATLAB, and

two simulation outcomes were monitored: yaw velocity, to gauge
spin-out and instability, and global position, to gauge deviation
from the desired path as a product of slip, oversteer, or under-
steer. Simulations were first run with deterministic conditions,
and Figures 13 and 14 show the friction input to each bicycle tires
and the yaw velocity output as functions of time, respectively.
The greatest instabilities occur during rapid friction changes; the
high yaw rates are reached when the front steering tire has more
traction than the rear tire (particularly between 13 and 14 seconds
in simulation time).

Gaussian processes were implemented and simulations run
for several vehicle conditions including a variety of speed and
steer angles. Different data sets were used to represent road con-
ditions. The simulation results shown in Figs. 15 and 16 are for
high and low ice densities, respectively. Several interesting sim-
ilarities exist between the two simulations and across the other
simulations conducted. First, the average response (dynamics)
of the vehicle is far from the constant friction case; this disparity
results in deviation from the desired travel path and makes navi-
gation more difficult. Second, as shown in Figure 17, the uncer-
tainty in the response tends to increase in time or with distance
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Figure 12. Transformation from the phase parameter grid (top) to the
friction coefficient grid (bottom).

traveled. This illustrates the danger of long turns if the driver
is not vigilant at the wheel. As the driver progresses around the
turn, the risk of instability increases. Third, the uncertainty of the
vehicle dynamics is varying in space, as seen in Figure 17. We
have noticed that deep local minima in the yaw uncertainty cor-
respond to passing near a known data point as verified by com-
paring the global position at these time iterations with the ob-
served data coordinates. That is perhaps to be expected, though
the depth of some of those minima was surprising to us given
that for dynamical systems the uncertainty tends to grow fairly
steadily in time. Whether higher certainty of a surface patch state
can be exploited in a control procedure is an interesting topic for
future research.

An experiment was set up to validate the predictive capa-
bility of the methodology. The original random set of friction
coefficients was amended to introduce a strip of abrupt ice (low
friction coefficients) approximately two seconds into the vehi-
cle’s travel. The result of the simulation is shown in Figure 18;
the constant friction simulation would have resulted in a yaw ve-
locity of approximately 0.2 but it is not shown for the sake of
clarity. Clearly, the Gaussian process accounts for the ice strip

Figure 13. Deterministic simulation: friction coefficient input.

Figure 14. Deterministic simulation: resulting vehicle dynamics.

as nearly all Monte Carlo iterations diverge drastically from the
constant friction dynamics. The resulting average indicates that
the driver will experience an uncomfortable change in yaw veloc-
ity and should enter the turn at a lower speed. Incidentally, the
drop in yaw around 3.5 seconds was the result not of a manual
ice insertion but rather of a coincidental low friction coefficient
grouping generated randomly.

ADAMS Car Simulation
To demonstrate the propensity of our methodology for

industry applications, we introduced our ice model into
MSC.ADAMS/Car. The car model used considers several ve-
hicle subsystems and intersystem interactions to produce high-
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Figure 15. Bicycle simulation: one-meter mean patch length, one de-
gree steer angle, 200 Monte Carlo iterations.

Figure 16. Bicycle simulation: three-meter mean patch length, one de-
gree steer angle, 200 Monte Carlo iterations.

fidelity results as explained in the Models Considered section.
The results shown in Figs. 19 and 20 are for the simulation of
a car executing a left turn on an icy road. The observed friction
data, for the results shown, was generated randomly and then
manipulated to introduce a strip of ice expectedly two seconds
into the vehicle’s travel. The Gaussian process results in Figure
19 possess the same three characteristics discussed in the Bicycle
model results: divergence from the constant friction case, prolif-
eration of uncertainty with time, and alternating uncertainty de-
pending on proximity to observed data coordinates. The paths of
travel shown in Figure 20 are one example of how our method-

Figure 17. Dynamical uncertainty as a function of time: one meter patch
length, one degree steer angle, 200 Monte Carlo iterations.

Figure 18. Gaussian process simulation with implanted ice strip: three-
meter mean patch length, one degree steer angle, 200 Monte Carlo iter-
ations.

ology could be an asset to visualization and communication in
industry. Moreover, the divergence from the desired turn is the
result of the strip of ice in the road and possibly other smaller
patches accumulated in the randomly generated data; quantify-
ing the magnitude of this divergence is essential to driver safety.

Diagnostics
For this methodology to be useful in an industry setting, it

has to produce results fast and reliably. To understand the run-
time characteristics of the simulation processes, we monitor the
duration of generating a realization x∗ for different simulation
times (Figure 21), different evaluation grid (x∗) resolutions (Fig-
ure 22), and different sample grid ((x) resolutions (Figure 23).
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Figure 19. Yaw velocity vs. time for ADAMS ramp steer simulation:
three-meter mean patch length, forty degree/second ramp steer, 5 Monte
Carlo iterations.

Figure 20. Path of travel for ADAMS ramp steer simulation: three-meter
mean patch length, fourty degree/second ramp steer, 5 Monte Carlo iter-
ations.

The results should be considered qualitatively because of the di-
versity in computing systems across industry. We see that the
most influential variable to total runtime is length of the ma-
neuver. As the maneuver gets longer, it requires that the sur-
veyed and computed space increase, increasing the dimensions
of the matrices involved in computation (see Eqs. 6, 7 and 8).
Hence, runtime increases dramatically. Real-time simulation can
be achieved for short periods (5 to 10 second maneuvers), but the
current methodology proves to be inadequate for longer simula-
tions.

The plots for runtime vs. grid size demonstrate that the run-
time bottleneck occurs with finer (x∗) resolutions but not finer (x)
resolutions. Hence, one must be careful when selecting evalua-
tion grid sizes; a balance should be found between runtime and

Figure 21. Runtime and largest matrix size as a function of simulation
time.

accuracy. This is a topic of ongoing research.

Figure 22. Runtime as a function of evaluation grid (x∗) size.

CONCLUSIONS AND FUTURE WORK
This paper outlines a framework for uncertainty quantifica-

tion in vehicle dynamics simulation. The methodology draws on
a Gaussian process model and maximum likelihood estimation
to capture in a consistent way uncertainty that enters the dynam-
ics of a complex vehicle model represented in ADAMS. Unlike
other approaches such as Galerkin-based polynomial chaos, the
proposed framework enables a black box setup in which the soft-
ware package used to solve for the dynamics (time evolution)
of the mechanical system requires no modification. In addition,
the representation of the model is far less complex compared to
the polynomials chaos expansions, of either Galerkin and coloca-
tion types. We use a covariance function-based Gaussian process
modeling approach. It has the advantage of being more flexi-
ble than previous, spectral-based Gaussian process approaches,
as well as being one of the prevalent approaches in geostatistics,

10 Copyright c© 2008 by ASME



Figure 23. Runtime as a function of sample grid (x) size.

making it likely that this approach will be easy to use in con-
junction with emerging spatial database technology. Insofar as
simulation, once the Gaussian process model over the road sur-
face is obtained, the methodology relies on a Monte Carlo step
that generates the information required to produce the vehicle
dynamics statistics of interest.

Several steps have not been discussed here but are being ad-
dressed in ongoing projects. First, work is underway to extend
the Gaussian process-based uncertainty model to other classes
of models, including nonstationary models. Since in kriging the
choice of weights is completely determined by the choice of the
variogram model, it is particularly important for handling spatial
uncertainty (road-tire friction coefficients, road elevation) to look
at other models beyond Gaussian processes. Since a Gaussian
process approach is guaranteed to work provided the amount of
measured data is large, other questions of interest are how to han-
dle effectively large sets of measurements and how to use consis-
tently and update periodically subsets of data to handle only sub-
regions of interest. The latter would allow one to handle smaller
regions of data that are surrounding the vehicle as it moves on a
road.

The methodology presented was illustrated for an applica-
tion where the source of uncertainty is provided by the road/tire
friction coefficient. It remains to investigate how road profile
uncertainty reflects in the overall vehicle dynamics. Such an un-
dertaking critically depends on the quality of the tire models used
in the vehicle simulation. However, the FTire model relied on in
this work provides a level of fidelity for fully three-dimensional
simulation that makes terrain-uncertainty investigation possible
and likely to be very insightful.
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