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Abstract.

New high-throughput DNA sequencing technologies have revolutionized how scientists study
the organisms around us. In particular microbiology, the study of the smallest, unseen organisms
that pervade our lives has embraced these new techniques to characterize and analyze the cellular
constituents, and use this information to develop novel tools, techniques, and therapeutics.

Increased technology such as pyrosequencing and other so-called next generation DNA
sequencing platforms have resulted in huge increases in the amount of raw data that is generated.
Argonne National Laboratory developed the premier platform for the analysis of this new data
(mg-rast), and offers a freely available service that is used by microbiologists world-wide. This
paper uses the accounting from the computational analysis of more than 10,000,000,000 bp of
DNA sequence data and describes an analysis of the advanced computational requirements, the
needs of this broad set of scientists, and suggests the level of analysis that will be essential as
microbiologists move to understand how these tiny organisms affect our every day lives.

1. Introduction

1.1. DNA sequencing and metagenomics

All around us small organisms are influencing everything we do and how we do it. These
organisms, called microbes because they are only visible under the microscope, are more
abundant and much more diverse than the plants, trees, and other life we see all around us.
Microbes affect us in both positive ways, providing cheese, bread, wine, and antibiotics for
example; and they also affect us in negative ways, causing disease, decay, rotting timber, and so
forth.

Biologists have struggled for many years to truly understand the role of microbes in different
environments; what particular microbes are in an environment, and what are they doing there?
With this knowledge in hand, they want to begin manipulating them. Like almost all known
life, microbes use DNA (deoxyribonucleic acid) as their genetic material. This complex chemical
encodes proteins that perform all cellular functions, from creating new cell walls, to propelling
the cells towards food and away from noxious chemicals, to both making and using amino acids.
A typical microbe is only about 10~¢ meters long (1 micron), but has about 2,000,000 base pairs
of DNA. Each base pair is comprised of one combination of the four chemical compounds adenine,



guanine, cytosine, and thymidine (abbreviated A, G, C, or T). The particular combination of
letters encodes for the genes that encode the proteins. By sequencing the complete complement
of DNA in a microbe (its genome), and by comparing that to sequences that have been
experimentally validated, microbiologists are able to characterize all of the genes in a microbe,
and all of the functions that microbe is performing [1]. Rather than studying a single microbe
in isolation, more recently a new approach has been taken to understand the role of microbes in
complex communities in the environment. This new technique is called metagenomics to imply
that it is more than just a single genome that is being sequenced. The first of these studies were
most widely performed in the oceans [2], and have subsequently been translated to most major
microbial habitats, including the human body [3].

These transformative studies of microbes in their habitats have been assisted by new
technologies that have revolutionized the speed and accuracy with which the DNA sequence
can be determined. Until very recently most sequencing was performed using a technique first
described in 1977 [4], and only minor modifications and improvements to the basic approach
had been made. High throughput was largely achieved by robotization and miniaturization of
the existing technology. A typical sequencing machine would generate the DNA sequence of
96 fragments simultaneously. The first of the so-called next-generation sequencing technologies
to market, massively parallel pyrosequencing developed by 454 Life Sciences, Inc, (now part of
Roche, Inc) enabled the generation of hundreds of thousands of DNA sequences at a time [5].
The increased volume of sequences came at a cost of decreased length of each single sequence.
In the traditional approach a single DNA sequence could exceed 1,000 letters, but the new
pyrosequencing approach could only generate about 100 letters from a single piece of DNA.
Over time, however, the technology has matured and pyrosequencing currently generates 400
letters from a single DNA fragment, and about 500,000 fragments in a single reaction. All of this
is accomplished in less than eight hours. In addition to generating more data, pyrosequencing
is about ten-fold to one hundred-fold cheaper than Sanger sequencing (depending on economies
of scale). This revolution in technology has enabled microbial researchers to take a sample from
the environment, extract the DNA, and generate the sequence of a sample of that DNA in less
than a week. The DNA sequence generated by this approach is the raw input for the advanced
computing that determines the functions of those DNA fragments and is the focus of this paper.

2. An automated analysis pipeline for metagenomes
As researchers generated more and more sequence data, the need for an accurate, automated,
high-throughput annotation and analysis platform became pressing. The SEED database was
first developed to annotate complete microbial genomes, using a new approach that exploited the
clustering in microbial genomes of genes that perform related functions. (Although it is unknown
why this happens, there are several hypotheses but none that are conclusively supported by all
of the data.) The SEED was used as the basis of the metagenomics annotation and analysis
pipeline, called the metagenomics rapid annotation using subsystem fechnology (mg-rast). This
pipeline is depicted in figure 1.

The pipeline consists of a series of discrete steps that are carried out in series on the whole
dataset:

(i) Preprocessing
Incoming DNA sequence is checked to ensure that it is really DNA sequence (sometimes our
users submit corrupted files, binary files from word-processing software, and so forth). There
is also a known artifact of the high-throughput sequencing technology, that occasionally the
exact same sequence is generated more than once. These sequences are removed, and each
sequence is provided a unique identifier so that it can be tracked through subsequent steps.

(ii) Similarity computation
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Figure 1. The metagenomics
rapid annotation pipeline (mg-rast)
consists of four steps, preprocess-
ing, similarity computation, post-
processing, and export

The sequences are compared to a number of databases of previously characterized and well
understood sequences. These include a database that has all of the sequences from complete
genomes from all three domains of life, and four different databases that contain sequences
of certain genes of specific interest to microbiologists. (They are typically interested in
these genes because they cannot change very quickly, and thus can be used to describe the
time-series relationships between organisms.)

(iii) Postprocessing
After the DNA sequences have been compared, the results are parsed to generate a
description of each DNA sequence in the sample, and the entire sample itself.

(iv) Export
In the final step, reports are generated for the end-user to either view via an online interface,
or to download and peruse at will.

The mg-rast service was released in beta-version in April, 2007; and opened for unfettered
public access in July of the same year. The service is freely available to all researchers, although
registration with a valid email address is required so that we may contact the users in the case
of trouble in the system. Since the initial release, over 800 sequence analysis jobs have been
submitted by 99 different users; comprising in excess of 10,000,000,000 base pairs (10 Gbp) of
DNA sequence, and the mean sample submitted by our users is currently 15,000,000 base pairs
(15 Mbp).



Table 1. Computational resources used in the mg-rast pipeline.

Name In Figures Processor Memory Number of units
bio-big 16 Intel Xeon CPU X7350 @ 2.93GHz 123822988 kB 1

CGAT 8 Intel Xeon CPU X5365 @ 3.00GHz 16436064 kB 1

DGRI 8 Intel Xeon CPU E5335 @ 2.00GHz 16440024 kB 1

Intel 1 Intel Pentium 4 CPU 3.00GHz 3636148 kB 2

MacPro 8 Intel Xeon CPU X5365 @ 3.00GHz 16387776 kB 2

mg-rast 8 Intel Xeon CPU E5450 @ 3.00GHz 16436064 kB 1

RAST 8 Intel Xeon CPU X5365 @ 3.00GHz 16436060 kB 1

PPC 2 PPC970FX, altivec supported 4042892 kB 45

1

3. Computation
The entire mg-rast computation is currently being performed on a hybrid cluster. Initially
developed as an Apple PowerPC cluster running Debian Sarge, over time these machines have
been supplemented with Intel Xeon processors also running linux (table 1). The cluster is a
shared resource, and in addition to the mg-rast is also used to annotate complete microbial
genomes through a related service, the RAST (rapid annotation using subsystems technology)
[6]. Jobs on the cluster are scheduled using the Sun Grid Engine'™”, and the accounting system
was used as the basis of all timing studies presented in this work. All accounting times were
extracted using the PERL Schedule::SGE module written by the author and available from the
Comprehensive Perl Archive Network (CPAN) or by contacting the author.

Throughout this paper the input data is measured in terms of base-pairs; individual letters of
DNA uploaded by the end users. Of course, this equates to bytes of data with standard unicode
encoding. Wall time is generally measured in seconds throughout the analysis.

4. The four stages of the computation

4.1. Preprocessing

The four separate stages of the computation occur in series: each needs to be completed before
the next is started. The only exception is the multiple different computations calculated during
the similarity processing stage. Each different database can be compared in parallel, since each
is an independent entity. At this stage, the input data is also routinely fragmented into smaller
units to be processed. The goal is to achieve a single unit of computation that takes between one
and two hours to complete, an empirically determined balance between fairness with other users
of the clusters; limitations of IO capability and scaling; and sufficient throughput to complete
the analysis in a timely fashion.

As shown in figure 2, the preprocessing step is defined by two distinct populations. The
first population displays linear complexity with input size, and represents those tasks that
complete without problem. The preprocessing step is not memory limited, does not require
complex calculations, and there does not appear to be a significant difference between the
Intel or PPC architectures used in this approach. The total time taken to process the data
is approximately 2 seconds per million base pairs of input sequence, or less than a minute for
the average metagenome. The second population consists of those problematic jobs alluded to
earlier. It is at this stage of the computation that user-derived errors are usually identified.
Malformed files, bad sequence data, and so on result in larger processing times for smaller jobs.



Those jobs likely represent the situations where endless cycles are performed before a submission

is terminated.
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Figure 2. Preprocessing is charac-
terized by two distinct populations.
The first computes with linear com-
plexity compared to input size, and
represents those jobs that complete
without problem. The second pop-
ulation is more scattered, takes
longer to compute, and represents
those tasks that are problematic.

4.2. Similarity

The similarity computation, as noted above, really consists of several different computations
run in parallel. The largest, and most involved comparison is between the DNA sequence
submitted by the user and the known sequences from all of the genomes that have ever been
sequenced. (Note that for efficiency reasons, we don’t currently automatically compute a
comparison between all the metagenomes that have been submitted.) In this case, additional
processing is added to the computation because the DNA sequence from the user is compared
to the known sequences in protein space. Recall that DNA encodes protein (albeit indirectly
through an intermediate molecule called mRNA). Therefore, given a particular DNA sequence,
the protein sequence can be generated computationally. However, because there are only four
DNA letters (the base pairs G, A, T, and C) but twenty amino acids, nature has evolved to use
a 3 letter register for the translation of DNA sequence to protein sequence. Therefore, for any
given DNA sequence there are siz possible protein sequences (three each in both the forward
and reverse directions). Although this doesn’t increase the complexity of the calculation, it does
significantly increase the computation time required to complete the analyses.

As shown in figure 3, the similarity against the SEED protein database is significantly
demanding, taking almost seven seconds per hundred base pairs of sequence on the PPC
architecture and seven seconds per thousand base pairs of sequence on the 16-core Intel Xeon
architecture.

In contrast to the large amount of data in the computation of the similarity to all known
sequences, the comparison to more boutique databases is decidedly more rapid (figure 4), with
between 3,000 and 12,500 sequences being processed per second depending on architecture.

4.3. Postprocessing and Export

The final two steps of the procedure are to parse the results from the similarity computations
and assert functions based on those results, and then to export the data into standard formats
commonly used by members of the bioinformatics community. These two processes, as shown
in figure 5, have linear complexity and are completed rapidly for small sequence datasets, and
in less than two hours for the largest datasets.
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Figure 3. Calculating the simi-
larity between the user-supplied se-
quences and the known sequences
in the publicly available databases
is the most time-consuming task-
ing. It is therefore the task that is
most amenable to improvement in
the whole pipeline. Using sixteen-
core architecture it takes approx-
imately seven seconds to process
1,000 base pairs of DNA sequence.
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Figure 4. Comparison of all the sequences against the RDP [7] (a; left) and the GreenGenes
database [8] (b; right) is much quicker than comparison to all known proteins.
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Figure 5. Postprocessing and data export are not computationally intensive steps, taking less
than two hours for most large datasets.

5. Total Elapsed Time

Given the very linear nature of the processes involved — all calculations have a computational
time complexity of O(n) — it was very surprising to see that the total elapsed time for the



calculation of all similarities between sequences was not linear (figure 6). As shown in figure 6
(b), the amount of data being processed by the metagenomics server is rapidly increasing, and
about 1 Gbp of sequence data (1 Gbyte) is being processed per month. As noted above, this
queue is not solely used for the metagenomics analyses, and other data being processed on this
platform shows a similar trend (data not shown). The limiting factor, therefore, in processing
the data in the metagenomics platform is currently access to appropriate high performance
computing, and specifically the amount of time a job spends in the queue.
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Figure 6. Total elapsed time is not linear overall (a). There is a correlation between the amount
of data processed per month, and the amount of time spent in the queue. (Note data for June,
2008 is incomplete and not shown.)

6. Conclusions

This analysis has shown that it is possible to compute the complete comparisons of metagenomes
against pertinent databases in linear time, and the computation should be able to keep pace with
the generation of new sequences. However, we are currently in a period of rapid deployment
of sequencing machines around the country. It is rumored that the number of FLX units is
fast approaching 300 in North America, with more coming online every day. These machines
could generate an estimated 0.1 Tbp (100,000,000,000 bp) of sequence per day. We need to
ensure that the increases in computational efficiency and computer speed maintain our ability
to process data for the end users. Second, it is clear that the bulk of the processing happens
very quickly. Although these computations are O(n) they are currently processed in with little
delay. Of course, as m increases these computations will be challenging, but as long as increased
processes speed tracks increased DNA sequencing capacity these computations can be completed
in a timely manner. However, the single largest computational step, the comparison of the DNA
sequences to the known protein sequences is not only increasing with O(n) complexity, it is taking
a significantly longer time to compute than any other step in the process. Better algorithms
are required for comparing the sequences; algorithms to triage sequences that will not generate
significant similarity may reduce overall computation; and more computational horse-power is
needed to complete the analyses in an appropriate timeframe. Currently a single run of a
pyrosequencing machine produces about 100 Mbp of data; the time taken for the individual
steps in the pipeline are shown in table 2.
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