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Abstract—Developing fault management mechanisms is
a difficult task because of the unpredictable nature of
failures. In this paper, we present a fault simulation
framework for Blue Gene/P systems implemented as a part
of the Cobalt resource manager. The primary goal of this
framework is to support system software development. We
also present a hardware diagnostic system that we have
implemented using this framework.

I. INTRODUCTION

The scale of high-end computing (HEC) systems has
continued to grow over the past twenty years. The largest
system on the most recent Top500 [1] list has over
200,000 cores; and the next version of this list will likely
contain several systems with more than 50,000 cores.
Fault management is a key issue on these systems and
is of growing importance on medium scale systems in
wider use.

These HEC systems contain enormous numbers of
components that are used in parallel. This parallel work-
load has important implications for fault sensitivity: in
many cases, a single component hardware or software
failure can result in an overall job or system failure
involving hundreds or thousands of components.

Component mean-time-between-failure rates combine
catastrophically with component counts; the mean time
between interrupt for large-scale or full system jobs can
be drastically low. Moreover, even when a failure occurs
and is detected, the culprit may not be known.

Developing fault tolerance techniques for such large-
scale systems can be difficult. Component hardware
failures can be hard or impossible to trigger. In addition,
some fault behaviors result from complex chains of
failures; these behaviors are impossible, in practice, to
trigger.

In this paper, we describe the fault simulation frame-
work we have implemented in Cobalt [2], a popular

resource manager on the IBM Blue Gene/L and Blue
Gene/P platforms. This framework provides a convenient
setting for fault tolerance development. We also describe
a simple fault diagnostic system that we developed using
this framework. We conclude with some observations
about the key features of this framework and present
our path forward.

II. BACKGROUND

In this section, we describe the background for the
remainder of the paper. We begin by describing the
system setting for our work, the IBM Blue Gene. From
there, we present a more concrete and detailed discussion
of failures in HEC systems. We conclude the section with
a discussion of Cobalt, a system software suite that we
have developed.

A. Intrepid

Intrepid, a 40-rack BG/P system with peak perfor-
mance of 556 TF, was deployed at Argonne last fall.
This system, comprised of 163,840 cores, is operated as
part of the U.S. Department of Energy effort to provide
leadership-class computing resources to the scientific
community. DOE selects major projects through the
INCITE (Innovative and Novel Computational Impact on
Theory and Experiment) [3] program to run a capability
workload. While large parallel systems usually see a
large number of small- to medium-sized jobs, Intrepid
has the opposite workload: a small number of projects
are given substantial allocations. These projects have
been screened for computational readiness; each is ready
to run at large scale. Often, all resources on Intrepid are
consumed by fewer than a dozen jobs.

The IBM Blue Gene family of systems is a series
of integrated MPP-style systems. Each system consists
of a series of racks, each containing 1,024 multicore
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nodes. Blue Gene/P, the most recent generation of these
systems, uses a four-core processor, for a total of 4,096
cores, or 13.9 TF, per rack. The 72-rack maximum
configuration of this system provides just over 1 PF
of peak performance. We will not discuss the system
architecture in much detail; more information is available
elsewhere [4].

Blue Gene systems have several unusual character-
istics compared with traditional cluster-style systems.
Nodes are grouped into partitions, where jobs can be
executed. Several restrictions govern how partitions can
be constructed. Nodes are grouped into psets. Each pset
consists of a single I/O node, responsible for external
connectivity and persistent I/O, and a group of compute
nodes. The size of this node group, called pset size,
ranges from 16 to 128; Intrepid has a pset size of 64.
Psets are grouped into midplanes. Midplanes always
contain 512 nodes and provide the smallest functional
torus network for application communication. Instead of
the torus network, partitions smaller than one midplane
have access only to a mesh network with identical link
performance properties. Multi-midplane partitions can be
created only if sufficient network links exist to connect
individual midplane torus networks into a larger torus or
mesh network.

Another unique aspect of Blue Gene systems is the
introduction of a control system. This software is re-
sponsible for all system management functions, includ-
ing hardware maintenance, job execution, and system
monitoring. While these functions exist on a traditional
system, they are typically not implemented in a unified
and scalable fashion.

B. Failure Diagnosis

No components, hardware or software, used in HEC
systems are universally reliable. Hardware failures are
unavoidable, particularly as the scale of systems grows.
On a system of Intrepid’s scale, failure management is
a substantial concern.

When these failures occur, the source and nature of the
problem must be determined. The best-case scenario for
diagnosis is outright component failure. In many cases,
however, marginal components perform poorly or fail
irregularly. The marginal case is typically much more
difficult to diagnose.

On parallel systems, diagnosis is complicated by the
system workload. The system infrastructure used by
large-scale systems frequently makes use of aggregation.
On Blue Gene systems, individual compute nodes are
grouped into partitions, where jobs can be run. When
a fault occurs during job execution, the exact location

of the problem may not be immediately known. Some
failures are reported with a precise location; however,
many others are not. This problem is particularly relevant
on capacity systems, where job sizes are frequently a
large fraction of the system size.

Blue Gene systems ship with a set of hardware diag-
nostics. These diagnostics are comprehensive and high
quality but must be run offline. The diagnostics can be
run frequently, but at the cost of system availability.

C. Cobalt

Cobalt [2] is a resource management suite that has
grown out of the Scalable System Software SciDAC
project [5]. Cobalt is designed around a component ar-
chitecture. Each major piece of functionality is a discrete
component that operates as a independently. Components
communicate bby using XML-RPC secured with SSL.
Cobalt is relatively small, comprising less than 12,000
lines of python code.

Component architectures provide several benefits.
Generally, component systems reduce duplication, as
a single implementation of functionality can be used
from all potential consumers. The use of a well-defined
component interface decouples providers of functionality
from consumers. This abstraction is beneficial in both
directions. New consumers can be added without mod-
ifying providers, and provider implementations can be
replaced without modifying consumers. Each of these
characteristics has proved useful as we have developed
and deployed Cobalt.

Cobalt is used primarily on IBM Blue Gene/L and
Blue Gene/P systems, but it was originally developed
and used on commodity Linux clusters. Its component
architecture made the port to Blue Gene/L systems quite
easy. This process is detailed in [6]. It has now been
deployed on more than a dozen Blue Gene/L and Blue
Gene/P systems worldwide. Intrepid is the largest and
most prominent of these systems.

Beginning in summer 2006, Cobalt development ef-
forts were stymied by the lack of dedicated development
resources. At that time, Cobalt was run on a single-
rack BG/L at Argonne. While the system’s mission was
a combination of computational and computer science,
dedicated access to the entire system – as needed for
resource manager development – was hard to come by.

To address this issue, we developed a simulator that
mimicked system behavior, including both proper behav-
ior and failures caused by resource manager failure [7].
In effect, this simulation replicated the expected sys-
tem behavior. The component infrastructure of Cobalt
allowed us to run a development configuration using
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simulation without changing the balance of the Cobalt
code. In addition, we were even able to switch between
native and simulated behavior on the fly. Our work
presented here is an extension of that earlier work.

D. Simulation

Simulation is frequently used in software and system
design. System designers often use simulators to bring
up initiatl software before real hardware is available. For
example, system simulation was used for initial work on
Blue Gene/L systems.

Simulators also are a mainstay in fault tolerance
research becuase of the difficulty in triggering faults [8],
[9]. Moreover, simulators have found widespread use in
performance prediction, including performance studies
of large-scape systems [10], [11].

Simulation also has found some use in HPC system
software, most prominently in the Maui scheduler [12].
In this case, simulation provides the ability to predict the
effects of a scheduling policy on a given workload. This
simulation is primarily inward facing; that is, it provides
insight into the behavior of only a single system software
component, as opposed to the entire system software
ecosystem.

III. APPROACH

The system simulation capabilities in Cobalt were
designed with several use cases in mind. Our initial target
was the set of Cobalt developers themselves. When we
began to have trouble getting dedicated access to our
single-rack Blue Gene/L, we began to use Cobalt to
test new software releases in advance of deployment.
When we transitioned to Intrepid, fault management
became much more pressing. At this point, we added
fault injection capabilities for individual components.
As we gained more experience operating this system, it
became obvious that hardware fault management was an
issue that needed to be directly addressed. This prompted
us to begin work on a hardware diagnostic system.

In this section, we describe our approach in detail,
highlighting important design criteria and operational
issues. First, we discuss the design and implementation
of Cobalt’s system simulator component, including the
fault injection constructs. Next, we describe the hardware
diagnosis mechanism we have implemented.

A. System Simulator

Cobalt implements system simulation through the use
of component implementation replacement. All interac-
tions with the underlying hardware, including job exe-
cution, partition monitoring, and hardware management,

are abstracted behind the interface to a single component,
the system component.

Most simulators, particularly those used for fault toler-
ance research, mimic the function of low-level processes.
The simulator implemented in Cobalt takes the opposite
approach, implementing high-level system behavior. On
real hardware, this is the synthesis of individual compo-
nent behaviors into high-level systemic behavior.

This approach is particularly useful for system man-
agers. Often, problems will occur intermittently, and
in some cases it may be impossible to determine root
causes. The lack of specificity used in Cobalt’s simulator
allows the implementation of observed system behaviors,
even if the exact cause is not known.

1) Implementation: Two implementations of the sys-
tem component exist. The first is a native implementation
that communicates directly with the Blue Gene control
system supplied by IBM. This implementation queries
the control system to track partition states, hardware
status, and user jobs.

The second system component implementation is a
simulator. This component is provided with a system
definition upon startup. This system definition describes
the size of the system, all configured hardware compo-
nents, and workable combinations of these components
into partitions. bgsystem can generate these definitions
from an actual Blue Gene system upon demand, during
normal execution.

The two system component implementations share a
substantial fraction of their code. bgsystem imple-
ments only those functions needed to probe the control
system for current state and launch new jobs. The
simulator likewise implements internal state management
and job execution simulation.

In simulation, job execution is performed by mimick-
ing the output that a user would see in terms of control
messages, and sleeping for a random percentage of the
requested wall-clock time. Figure 1 shows an example
of simulated failure output.

FE_MPI (Info) : Initializing MPIRUN
BE_MPI (ERROR): Booting aborted - partition is in DEALLOCATING (’D’) state
BE_MPI (ERROR): Partition has not reached the READY (’I’) state
BE_MPI (Info) : Checking for block error text:
BE_MPI (ERROR): block error text ’side fumbling detected.’
BE_MPI (Info) : Starting cleanup sequence
BE_MPI (Info) : Partition ANL-R00-R01-2048 switched to state FREE (’F’)
FE_MPI (ERROR): Failure list:
FE_MPI (ERROR): - 1. ANL-R00-R01-2048 couldn’t boot.
FE_MPI (Info) : FE completed
FE_MPI (Info) : Exit status: 1

Fig. 1. Simulated Failure Output

A key behavior of the simulator is failing under
circumstances where a Blue Gene system would also
fail. For example, each node can participate only in a
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single partition at a time, and each partition can run
only a single job at once. If two jobs are run on a Blue
Gene system on either the same partition or overlapping
partitions, the first will succeed and the second will fail.

2) Fault Simulation: The system simulator includes
an interface for fault injection. The simulator is provided
with a complete system description upon startup; this
description includes a comprehensive component list.
Each component can be set to failing status. In this mode,
any action on a partition including the failing resource
fails. In the case of job execution, a job will sleep for
a random period of time less than wall clock time and
then fail.

The simulator deals properly with single and multiple
failures. All failures are treated as consistent failures;
multiple actions on the same failing simulated resources
will fail in a similar fashion.

B. Fault Isolation

The fault isolation process locates failing hardware
components based on observed behavior. On a large-
scale system like Intrepid, observed behavior frequently
integrates the behavior of massive quantities of compo-
nents into a single result. Low-level diagnostics can also
be useful but scale and perform poorly. Each of these
approaches is lacking: the first in terms of detail and
the second in performance. Clearly, a hybrid approach
is needed.

1) Fault Detection: Tests are either fast or detailed,
but rarely both. The diagnostic routines shipped with
Blue Gene systems are specific but run slowly. While
these diagnostics are effective at locating failing hard-
ware, they do not scale well. Execution of diagnostics on
a single-rack partition takes approximately one hour, and
the system is capable of executing only two of these tasks
simultaneously. Moreover, during parallel executions of
diagnostics, substantial slowdowns occur. Intrepid is a
capability system; its average job size involves more
than two racks, and the largest job sizes can require
considerably more. While diagnostics are a useful tool
for locating failing hardware, these factors all combine
to prevent them from being a comprehensive solution.
If a failure is detected on an 8-rack partition, serialized
diagnostics could easily take 8 hours to perform.

Other tests run quickly but are less detailed. Some user
applications provide a sweet spot between speed and de-
tail. Many of these applications perform substantial inter-
nal checking to detect problems during execution. When
an inconsistency is detected, the application detects the
problem and halts. These checks can be performed fairly
quickly but only verify the presence of a problem some-
where in the partition where the application was run. The

obvious path to faster fault isolation is to use fast tests to
localize problems. Once these have been done, detailed
diagnostics isolate the exact location of the problem, so
that hardware maintenance can be performed.

2) Fault Localization: The heart of this approach
is to use general (and fast) diagnostics to reduce the
need for time-consuming complete diagnostics. The most
common hardware failures result in persistent behavior,
so a simple execution of a test (or set of tests) is sufficient
to determine the proper function of a set of hardware
components. If a test fails to execute properly on a
partition, then the partition is subdivided and the test
is executed on smaller groups of components. When
partitions pass all tests, they are returned to service.

This approach depends on the job execution mecha-
nism for Blue Gene systems. It is capable of running
large numbers of simultaneous jobs. Hence, user jobs
cause much less infrastructure load than do comparable
diagnostics.

3) Implementation: Both system component imple-
mentations, bgsystem and the simulator, can use the
same test orchestration code. The only difference be-
tween the implementations of diagnostics is the literal
test spawning code. The simulator, as expected, simulates
the results of tests based on the current fault status
of pertinent components. bgsystem spawns tests and
determines their success based on their exit statuses.

The diagnosis process is initiated upon administrator
request. This request consists of a suspected faulty
partition and a test mode. The first action taken is to
set all resources included in the partition offline, so
that no subsequent user jobs will be executed. If the
partition is currently idle, testing commences imme-
diately; otherwise the process is delayed until current
jobs conclude. Figure 2 shows the system with several
diagnostics running.

# ./partadm.py -l
Name Queue Size Funct Sched State
====================================================================
R00-R01-2048 default 2048 X X blocked (R01-M0-512)
R00-1024 default 1024 X X diags
R01-1024 default 1024 X X blocked (R01-M0-512)
R00-M0-512 default 512 X X idle
R00-M1-512 default 512 X X idle
R01-M0-512 default 512 X X busy
R01-M1-512 default 512 X X diags

Fig. 2. Partition State during Diagnostics

If a specific test is requested, that test is executed on
the partition. If no test is specified, each of the short,
application-based tests is run because each finds different
types of issues. If these tests pass, all resources are
returned to service.

Each test consists of a script that Cobalt executes;
the exit status conveys the result of the test. Because
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systems encounter different problems over time, owing to
aging of hardware and changes to software, an extensible
testing facility was needed.

In the event of a test failure, the failing partition is
subdivided into a covering set of smaller partitions. The
same test is run in parallel on each of these. If possible, a
binary search is performed; but because of the flexibility
of system partitioning, this is not always possible. We
use this approach because our application-based tests run
a single problem size regardless of partition size. For this
reason, the fast tests run considerably faster on a large
partition than on a small partition.

Once subdivision results in an individual failing mid-
plane, full-scale diagnostics are executed. By this point,
all properly functioning resources have been returned to
service. System diagnostics determine the exact location
of the hardware fault, so that hardware replacement can
be performed.

IV. RESULTS

The implementation of the simulator itself is straight-
forward. Moreover, it enabled the development of failure
management software in a standard fashion.

Dedicated time on a system such as Intrepid is difficult
to obtain. Development time during system failures is
even more problematic, since failures cannot be easily
predicted. The open testing architecture described here
has worked well, enabling us to run a range of tests to
detect failures.

V. CONCLUSIONS

Fault management is an increasingly important task
on large-scale HPC systems. In this paper, we have
presented a fault injection mechanism that we have
implemented in the Cobalt resource manager. We have
demonstrated the utility of this approach in the design
and implementation of a failure search mechanism for
the Intrepid system at Argonne. From these experiences
we can draw several conclusions.

Simulation is the only realistic approach for conduct-
ing work in large-scale fault tolerance. The difficulty of
triggering individual faults, in conjunction with the need
to orchestrate them similarly to their occurrence in large-
scale systems, makes development in a natural setting
impractical.

The combination of simulation with component ar-
chitectures is quite powerful. The vast majority of the
code needed to implement the diagnostic system can be
developed and tested without access to actual hardware,
thanks to the system simulation component. Because the
two system component implementations share much of

their code, results on one instance are largely represen-
tative of result on the other. This infrastructure made it
easy to develop the diagnostic system.

The implementation of the diagnostic system has also
provided interesting insights. Low-level diagnostics are
much slower than high-level application testing that
synthesize many aspects of system operations. The cost
of running high-level diagnostics of this style is that
failures are not typically localized, so a search process
must be performed. As system scales continue to grow,
we expect this issue to occur more frequently.

A. Future Work

This work provides a solid foundation to build , both
in terms of a framework to explore fault management,
as well as a diagnostic system. The fault injection mech-
anism supports the simulation of only single component
failures. As system scales increase, as does the likelihood
of hardware double-faults. It remains to be seen whether
more effective mechanisms can be designed to detect and
locate this eventuality. The system currently simulates
only persistent failures; yet particularly in the case of
marginal hardware, intermittent failures are common.
Building a model for these failures would be a useful
addition.

We have implemented in the system simulator a class
of hardware failures behaviors that correspond to con-
sistent faults. As we experience other persistent fault
behaviors, we will implement them also.

The simulator is currently ignorant of time. We plan to
add time sensitivity; this will allow us to specify a series
of faults over time whose behavior can be simulated
appropriately.

Cobalt has been integrated with the CIFTS fault-
tolerant backplane (FTB) [13], which provides scalable
communication of fault events between system software
components. The fault event information provided by
the FTB will allow for more nuanced and accurate
simulation of experienced system faults.

This work provides a basic mechanism for automated
hardware diagnosis, but improvement is still needed.
The current mechanism must be manually triggered, in
effect using the system administrator as an expert system.
We need to begin implementing recognition strategies
that can either trigger diagnostics directly or cause low
priority diagnostics to be executed as scheduling backfill.

As we mentioned in Section III-B1, system managers
are faced with a difficult choice of diagnostic frequency.
Clearly, different approaches are needed on different sys-
tems and with different workloads. Quantitative studies,
analogous to those performed for checkpointing [14], are
needed to provide guidance.
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Our current tests do not choose a problem size based
on the scale of partition diagnosed. This approach might
allow us to run fast diagnostics in parallel, should this
result in better performance.

AVAILABILITY

The fault injection capability has been implemented in
the Cobalt codebase and will be included in the version
0.98.2 release. Cobalt is BSD licensed and publicly avail-
able. Software, documentation, and papers are available
from the Cobalt web site [2].

ACKNOWLEDGMENTS

This work was supported by the Mathematical, Infor-
mation, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy,
under Contract DE-AC02-06CH11357. Other support
was from the DOE SciDAC program under award #DE-
FG02-04ER63870, NSF MRI Grant #CNS-0420873, and
the NSF sponsorship of the National Center for Atmo-
spheric Research.

REFERENCES

[1] Top500 Web page. Top500.Org. [Online]. Available: http:
//www.top500.org

[2] N. Desai. Cobalt Web page. Argonne National Laboratory.
[Online]. Available: http://trac.mcs.anl.gov/projects/cobalt

[3] Innovative and novel computational impact on theory and ex-
periment (incite) program. US Department of Energy. [Online].
Available: http://www.er.doe.gov/ascr/incite/index.html

[4] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus,
M. Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke,
G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-
Burow, T. Takken, and P. Vranas, “Overview of the blue gene/l
system architecture,” IBM Journal of Research and Develop-
ment, vol. 49, no. 2-3, pp. 195–212, 2005.

[5] A. Geist. SciDAC scalable system software Web page.
Oak Ridge National Laboratory. [Online]. Available: http:
//www.scidac.org/ScalableSystems

[6] N. Desai, R. Bradshaw, A. Lusk, E. Lusk, and R. Butler,
“Component-based cluster systems software architecture: A
case study,” in Proceedings of the 6th IEEE International Con-
ference on Cluster Computing (CLUSTER04). IEEE Computer
Society, 2004, pp. 319–326.

[7] N. Desai, E. Lusk, A. Cherry, and T. Voran, “The computer as
software component: A mechanism for developing and testing
resource management software,” in Proceedings of the 9th IEEE
International Conference on Cluster Computing (CLUSTER07).
IEEE Computer Society, 2007, pp. 58–63.

[8] I. Koren. Fault tolerant systems simulator Web page. University
of Massachusetts, Amherst. [Online]. Available: http://www.
ecs.umass.edu/ece/koren/FaultTolerantSystems/simulator/

[9] S. Das, P. Flocchini, N. Santoro, and M. Yamashita, “Fault-
tolerant simulation of message-passing algorithms by mobile
agents,” in SIROCCO, ser. Lecture Notes in Computer Science,
G. Prencipe and S. Zaks, Eds., vol. 4474. Springer, 2007, pp.
289–303.

[10] G. Zheng, G. Kakulapati, and L. V. Kalé, “Bigsim: A parallel
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