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Abstract4

Automatic differentiation is the primary means of obtaining analytic5

derivatives from a numerical model given as a computer program. There-6

fore, it is an essential productivity tool in numerous computational science7

and engineering domains. Computing gradients with the adjoint (also8

called reverse) mode via source transformation is a particularly beneficial9

but also challenging use of automatic differentiation. To date only ad10

hoc solutions for adjoint differentiation of MPI programs have been avail-11

able, forcing automatic differentiation tool users to reason about parallel12

communication dataflow and dependencies and manually develop adjoint13

communication code. Using the communication graph as a model we14

characterize the principal problems of adjoining the most frequently used15

communication idioms. We propose solutions to cover these idioms and16

consider the consequences for the MPI implementation, the MPI user and17

MPI-aware program analysis. The MIT general circulation model serves18

as a use case to illustrate the viability of our approach.19

keywords: MPI, automatic differentiation, source transformation, re-20

verse mode21

1 Introduction22

In many areas of computational science, it is necessary or desirable to compute23

the derivatives of functions. In numerical optimization, gradients and sometimes24

Hessians are used to help locate the extrema of a function. Sensitivity analysis of25

computer models of physical systems can provide information about how various26

parameters affect the model and how accurately certain parameters must be27

measured. Moreover, higher-order derivatives can improve the accuracy of a28

numerical method, such as a differential equation solver, enabling, for example,29

longer time steps.30
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Automatic differentiation is a technique for computing the analytic deriva-31

tives of numerical functions given as computer programs. Automatic differ-32

entiation exploits the associativity of the chain rule and the finite number of33

intrinsic mathematical functions in a programming language to automate the34

generation of efficient derivative code [8]. The adjoint (or reverse) mode of au-35

tomatic differentiation is particularly attractive for computing first derivatives36

of scalar functions, because it enables one to compute gradients at a cost that37

is a small multiple of the cost of computing the function and is independent of38

the number of input variables.39

The adjoint mode of automatic differentiates combines partial derivatives40

according to the chain rule, starting at the output (dependent) variable and41

proceeding (in a direction opposite to the control and data flow of the original42

function computation) to the input (independent) variables. For any variable43

u in the original program P, the automatic differentiation procedure creates44

an adjoint variable ū in the adjoint program P̄. This variable represents the45

derivative of the output variable with respect to u. Consequently, a statement46

of the form v=φ(u) in the original program P results in an update of the form47

ū+=v̄*(∂v/∂u). Typically φ is some intrinsic like sin, cos etc. in the pro-48

gramming language of the numerical model to be adjoined. The assignment v49

= φ(u) may overwrite a previously used value of v. The generic formulation of50

the adjoint statement as an increment of the adjoint counterparts of the original51

right-hand-side arguments necessitates to set v̄=0 subsequent to the increment52

of ū. Therefore, the simple assignment v=u has as adjoint the two statements53

ū+=v̄;v̄=0. In the following we will see that this plays an important role in the54

practical implementation of message-passing adjoints. Because the derivative of55

v with respect to u, ∂v/∂u, may depend on the value of u and because the vari-56

able u may be reused and overwritten many times during the function evaluation,57

the derivative code must record or recompute all overwritten variables whose58

value is needed in derivative computation. In practice, domain-specific data59

flow analysis is used to identify variables whose values must be recorded, partial60

derivatives are “pre-accumulated” within basic blocks, and complex incremental61

and multilevel checkpointing schemes are employed to reduce memory require-62

ments [21]. However, for simplicity and without loss of generality, in this paper63

we assume that a program (or program section) P is transformed into a new64

program section P∗ = P+P̄, where P+ runs forward, recording all overwritten65

variables, and P̄ runs backward, computing partial derivatives and combining66

them according to the chain rule. The “backward” execution is accomplished67

by reversing the flow of control. This implies a reversal of the statement order68

within basic blocks including calls to communication library subroutines.69

Many large-scale computational science applications are parallel programs70

implemented by using MPI message passing. Consequently, in order to apply71

the adjoint mode of automatic differentiation to these applications, mechanisms72

are needed that reverse the flow of information through MPI messages. Previous73

work [2, 3, 9, 12, 13] has examined the automatic differentiation of parallel pro-74

grams, but this work has focused primarily on the forward mode of automatic75

differentiation or has relied on the user to implement differentiated versions of76

2



communication routines or other ad hoc methods. In this paper we introduce77

a mechanism for the adjoint mode differentiation of MPI programs, including78

MPI programs that use nonblocking communication primitives. Given this con-79

text we focus on qualitative statements regarding the ability to automatically80

create adjoint code for the most common MPI idioms and the preservation of81

the basic characteristics of the communication idiom. The latter plays a role82

in ensuring the correctness of the transformation and retaining the generic per-83

formance advantages for which a given MPI idiom may have been chosen in84

the original model. Incremental runtime improvements or suggestions how to85

improve the communication interface as a whole are beyond the scope of this pa-86

per. Consequently, we do not present the timings of the forward and the adjoint87

communication. Instead, we use a case study to show the principal feasibility88

of our approach.89

In Sec. 2 we introduce the MPI idioms of concern in this paper. Section 390

briefly covers the transformation of plain point-to-point communication and91

details possible solutions for more complex idioms that are the main contribution92

of this paper. In Sec. 4 we highlight how the approach was used to automate93

the transformation of the communication in the MIT general circulation mode.94

We summarize the results in Sec. 6.95

2 MPI Idioms and Program Transformation96

In the following sections we omit the mpi prefix from subroutine and variable97

names and also omit parameters that are not essential in our context. This98

section briefly introduces the message-passing concepts relevant to our subject.99

An automatic transformation of message-passing logic has to be aware of the100

efficiency considerations that are the reason for different communication modes101

and the constraints that are implied by these communication modes.102

Two commonly used models for message-passing communications are the103

MPI control flow graph (MPICFG) [18] and the communication graph [19, pp.104

399–403]. A central issue for correct MPI programs is to be deadlock free.105

Deadlocks can be visualized as cycles in the communication graph. A cycle106

indicating a deadlock and the use of reordering and buffering to resolve it are107

shown in Fig. 1. For the plain (frequently called “blocking”) pairs of send/recv108

calls, the edges linking the vertices are bidirectional because the MPI standard109

allows a blocking implementation; that is, the send/recv call may return only110

after the control flow in the counterpart has reached the respective recv/send111

call. In complicated programs the deadlock-free order may not always be appar-112

ent. For large data sets the buffered send may run out of buffer space, thereby113

introducing a deadlock caused by memory starvation.114

A third option to resolve the deadlock shown in Fig. 2(left) uses the nonblock-115

ing isend(a,r), which keeps the data in the program address space referenced116

by variable a and receives a request identifier r. The program can then advance117

to the subsequent wait(r), after whose return the data in the send buffer a is118

known to have been transmitted to the receiving side.119
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Figure 1: Two processes P1 and P2 want to send data to each other at the
same time and deadlock (left). We can reorder the calls (center) to break the
deadlock. We could instead keep the order but unblock the send call by using
the “buffered” version bsend, thus making the communication dependency edges
unidirectional (right) and removing the cycle.
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recv(b)

wait(r)
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Figure 2: We use the nonblocking send variant isend followed by wait to break
the deadlock scenario in Fig. 1 (left). The same result can be achieved using
the nonblocking irecv (center) or a combination of the two (right), where we
also group the wait operations into waitall.

We assume here that the input program P is deadlock free. However, the120

automatic transformation has to ensure that the transformed MPI program P̄121

is also deadlock free. Thus, the transformation has to be cognizant of specific122

communication patterns in P to retain their ability to break potential deadlocks.123

Other than permitting an immediate return, the variety of different modes124

for send (and recv) calls has its rationale in efficiency considerations. Unlike125

bsend, an isend avoids copying the data to an intermediate buffer but also126

requires that the send buffer not be overwritten until the corresponding wait127

call returns. Similarly, for an irecv, see Fig. 2(center), a read (or overwrite) of128

the receive buffer prior to the return of the corresponding wait returns yields129

undefined values. While the transformation should retain efficiency advantages130

for P̄, it also has to satisfy the restrictions on the buffers. Because one would131

like to minimize artificially imposed order on the message handling, often the132

individual wait calls are collected in a single waitall call; see Fig. 2(right).133

The waitall vertices in the communication graph typically have more than134

one communication in-edge. Two other common scenarios causing multiple135

communication in- and out-edges are collective communications (for instance,136

broadcasts and reductions) and the use of wildcard for the tag or the source137

parameter. In Sec. 3 we explain the consequences of multiple communication138

in- and out-edges.139
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Figure 3: As in Fig. 2 we use isend to break a deadlock. This communication
pattern can be adjoined while remaining deadlock free by replacing the MPI
calls and reversing the direction of the communication edges and the control
flow (right).

3 Adjoining MPI140

In this section we explain the construction of the adjoint P̄ of our program141

section of interest P. A direct application of a source transformation tool to142

an MPI implementation is impractical for many reasons. One obvious reason is143

that we would merely shift the need to prescribe adjoint semantics to commu-144

nication operations to some lower level not covered by the MPI standard. For145

the transformation we will consider certain patterns of MPI library calls and146

propose a set of slightly modified interfaces that we can then treat as atomic147

units in a transformation that implements the adjoint semantic.148

As in sequential programs, the adjoint P̄ will require certain variable values149

during its execution. These values might have been recorded in the accompany-150

ing augmented forward section P+. However, the particular means of restoring151

these values is not the subject of this paper and does not affect what is proposed152

here. Consequently, we do not specify P+ for the following examples, and we153

omit from P̄ any statements related to restoring the values.154

One can consider a send(a) to be a use of the data in variable a and the155

corresponding recv(b) into a variable b to be a setting of the data in b that156

is equivalent to writing a simple assignment statement b=a. As explained in157

Sec. 1 the adjoint statements corresponding to this assignment are ā+=b̄; b̄=0.158

Applying the above analogy we can express the adjoint as send(b̄); b̄=0 as159

the adjoint of the original recv call and recv(t); ā+=t as the adjoint of the160

original send call. This has been repeatedly discovered and used in various161

contexts (e.g., [3, 4]) and is the extent to which automatic transformation has162

been supporting MPI until now.163

3.1 Required Context164

The semantics of the adjoint computation as introduced in Sec. 1 implies that165

both the control flow and the communication edges have to be reversed. We166

already mentioned the need to preserve certain features of the communication167

patterns to keep the communication efficient and deadlock free; see, for exam-168

ple, Fig. 3. Considering the modes of send and recv calls, we can derive a169
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Table 1: Rules for adjoining a restricted set of MPI send/recv patterns. We
omit all parameters except for the buffers a, b, a temporary buffer t, and the
request parameter r for nonblocking calls.

X in P in P̄
call paired with call paired with

1 isend(a,r) wait(r) wait(r);ā+=t irecv(t,r)
2 wait(r) isend(a,r) irecv(t,r) wait(r)
3 irecv(b,r) wait(r) wait(r);b̄=0 isend(b̄,r)
4 wait(r) irecv(b,r) isend(b̄,r) wait(r)
5 bsend(a) recv(b) recv(t);ā+=t bsend(b̄)
6 recv(b) bsend(a) bsend(b̄);b̄=0 recv(t)
7 ssend(a) recv(b) recv(t);ā+=t ssend(b̄)
8 recv(b) ssend(a) ssend(b̄);b̄=0 recv(t)

set of patterns where simple rules suffice for the adjoint program transforma-170

tion. For simplicity we consider send(a); to be equivalent to isend(a,r);171

wait(r); and similarly for recv. For send(a), that is isend(a,r); wait(r),172

we apply rule 1 and reverse the control flow, obtaining irecv(t,r); wait(r);173

ā+=t, that is, recv(t); ā+=t. When all communication patterns in a program174

P match one of the rules listed in Table 1, then one can replace the respective175

MPI calls as prescribed. Together with control flow reversal orchestrated by176

the regular adjoint transformation, the correct reversal of the communication177

edges then is implied. A framework to formally prove these rules can be found178

in [17] and we prove a specific case in Sec. 3.4. As evident from the table entries179

the proper adjoint for a given call depends on the context in the original code.180

One has to facilitate the proper pairing of the isend/irecv calls with their181

respective individual waits for rules 1–4 (intra-process) and also of send mode182

for a given recv for rules 5–8 (inter-process). An automatic code analysis will183

often be unable to determine the exact pairs. Instead one could either use the184

notion of communication channels identified by pragmas [12] or wrap the MPI185

calls into a separate layer. This layer needs to encapsulate the required context186

information (e.g., via distinct wait variants) and potentially passes the respec-187

tive user space buffer as an additional argument; for example, sendwait(r,a)188

may be paired with isend(a,r). Likewise the layer would introduce distinct189

recv variants; for example, brecv would be paired with bsend. Note that com-190

binations of nonblocking, synchronous and buffered send and receive modes not191

listed in Table 1 can be easily derived. For instance, the adjoint of a sequence192

of ibsend(a,r) - recv(b) - wait(r) involves rule 2 for the wait and rule 5193

for the recv, resulting in the adjoint sequence irecv(t,r) - bsend(b̄);b̄=0 -194

wait(r);ā+=t.195
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3.2 Wildcards and Collective Communication196

The adjoining recipes have so far considered only cases where the vertices in197

the communication graph have single in- and out-edges. Using the MPI wild-198

card values for parameters source or tag implies that a given recv might be199

paired with any send from a particular set; that is, the recv vertex has multiple200

communication in-edges only one of which at any time during the execution is201

actually traversed. Transforming the recv into a send for the adjoint means202

that we need to be able to determine the destination. A simple solution is to203

record the values of the tag and source parameters in the augmented forward204

version P+ at run-time.1 Conceptually this could be interpreted as a run-time205

incarnation of the communication graph in which the set of potential in- or out-206

edges has been replaced by the one communication that actually takes place.207

Thus, the single in- and out-edge property is satisfied again. In P̄ the wildcard208

parameters are replaced with the actual values that were recorded during the209

execution of P+, thus ensuring that we traverse the correct, inverted communi-210

cation edge. One can show that for any deadlock-free run-time incarnation of211

the communication graph, one can construct a corresponding adjoint commu-212

nication graph that will also be deadlock free.213

For collective communications the transformation of the respective MPI calls214

is essentially uniform across the participating calls. To illustrate the scenario,215

we can consider a summation reduction followed by a broadcast of the result,216

which could be accomplished by calling allreduce but here we want to do it217

explicitly. In P we sum up to the rank 0 process reduce(a,b,+) (i.e. b0 =
∑

ai)218

followed by bcast(b) (i.e. bi = b0∀i). The corresponding adjoint statements in219

P̄ with a temporary variable t and reversed control flow are t0 =
∑

b̄i followed220

by āi+=t0∀i, which, expressed as MPI calls, are reduce(b̄,t,+) followed by221

bcast(t);āi+=t. In short, a reduction becomes a broadcast and vice versa. The222

respective communication graphs are shown in Fig. 4. For the purpose of the223

automatic differentiation program transformation the multiple communication224

in- or out-edges can conceptually be treated as single communication channel225

visualized as a hyperedge in the communication graph.2226

To expose an efficiency concern, we modify the above example slightly to227

perform a product reduction instead of the summation. The transformation228

remains the same except for the increments āi+=(∂b0/∂ai)t0∀i that follow the229

bcast in P̄. The above formula for the āi does not suggest how exactly to230

compute the partials ∂b0/∂ai. In principle, the partials could be explicitly231

computed by using prefix and suffix reduction operations during the recording232

sweep [13]. Alternatively one could record the ai per process in P+ and then233

in P̄ first restore the ai, then compute all the intermediate products from the234

leaves to the root in the reduction tree, followed by propagating the adjoints235

from the root to the leaves [1]. This approach requires only two passes over the236

tree and thus is less costly than any approach using the explicit computation237

1 They are returned with the status of the recv call.
2 Assuming a hyperedge in general might suggest a synchronization among the participating

collective calls, which is not required by the standard.
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P
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bcast(b)

bcast(b)

bcast(b)

reduce(a,b,+)

reduce(a,b,+)

reduce(a,b,+)

0
P
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P
j

bcast(t);a+=...

reduce(b,t,+) bcast(t);a+=...

reduce(b,t,+)
bcast(t);a+=...

reduce(b,t,+)

0
P

Figure 4: Collective operations reduction and broadcast in P are all connected
with communication edges among themselves (left). If we can identify the rank
0 process among the collective calls, the dotted communication edges can be
removed. The adjoint inverts the control flow but keeps the bidirectional com-
munication edges grouped in the same hyper edges in P̄ (right).

of the partials. Unlike the explicit partials computation using pre- and postfix238

reductions, MPI does not provide interfaces facilitating the two-pass approach;239

consequently, one would have to implement it from scratch.240

3.3 Grouping wait Operations241

The grouping of sets of wait operations into a call to waitall or waitsome242

can increase the communication efficiency by removing the often artificial or-243

der among the requests. It also leads to multiple communication in-edges; see244

Fig. 5(left).3 Typically, more than one or even all of these in-edges are traversed,245

thereby distinguishing the scenario from the wildcard receive case we considered246

in Sec. 3.2. A transformation solely based on the rules in Table 1 would require247

first modifying P such that all the grouped wait operations are split into in-248

dividual waits. While they could then can be transformed into the respective249

isend and irecv calls shown in Fig. 5(right), we would in the process lose the250

potential performance advantage that prompted the use of waitall in the first251

place. Without loss of generality we consider a sequence of isend calls, followed252

by a sequence of irecv calls, followed by a waitall, as shown in Fig. 5. While253

there are no communication edges directly between the isends and irecvs, we254

know that in principle we want to turn send into receive operations and vice255

versa. Replacing isends and irecvs in P with irecvs and isends in P̄ begs256

the question of where in P̄ the corresponding waits should go. This gives us257

the rationale to introduce a symmetric counterpart to waitall into P that258

we call awaitall, which stands for anti-waitall. We illustrate the scenario in259

Fig. 6(left). In P there no semantics are assigned to awaitall, and the vertex260

and the communication edges can be considered nonoperational. The adjoint261

transformation shown in Fig. 6(right) makes them operational and in symmet-262

3 For simplicity we assume all processes have the same behavior, and we show only the
condensed MPI CFG [18].
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Figure 5: The completion waitall has multiple communication in-edges that
make a simple vertex based adjoint transformation impossible (left). Without
further information, the waitall is split into individual waits, producing a less
efficient adjoint code (right) where there is no waitall.
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Figure 6: We introduce into P a symmetric nonoperational counterpart to
waitall called awaitall (left). The adjoint transformation to P̄ turns
awaitall into waitall, isend into irecv and vice versa (right).
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rical fashion renders nonoperational the out-edges of the awaitall vertex in P̄263

that corresponds to the waitall in P. The final X at the top Fig. 6(right)264

denotes the adjoint buffer updates b̄j+=tj , j = 1, . . . , i and b̄j = 0, j = i+ 1, . . .265

that have to wait for completion of the nonblocking calls. The following sec-266

tion proves the correctness of this transformation and gives the rationale for267

symmetrically extending the restrictions on writing and reading the isend and268

irecv buffers to the entire section between the awaitall and the waitall.269

3.4 Correctness of Adjoint Communication Patterns270

The technique used in this section can be applied to prove all the adjoint trans-271

formation recipes discussed in this paper. We illustrate it using one of the272

recipes. Consider the partitioned global address space (PGAS) versions P= of273

the message-passing program P involving n processes p1, . . . , pn; see also [5].274

The partitioning augments all program variables with an additional dimension275

of length n. Communications are translated into assignments between the aug-276

mented program variables. Additional variables are introduced for buffered277

communication. Barriers in asynchronous communication yield a set of se-278

quentialized versions for a given message-passing program. For example, the279

processes p1 and p2 performing a single nonblocking send/receive280

s0; if(this is p1) isend(a,r); s1; if(this is p2) irecv(b,r); s2; wait(r); s3281

with some unspecified statements s0, . . . , s3 yield the following six distinct PGAS282

variants.283

1: s0; s2
1; b2 = a1; s1

1; s2; s3 2: s0; s1; b2 = a1; s2; s3

3: s0; s1; s2
2; b2 = a1; s1

2; s3 4: s0; s1; s1
2; b2 = a1; s2

2; s3

5: s0; s2
1; s2

2; b2 = a1; s1
1; s1

2; s3 6: s0; s1; s2; b2 = a1; s3

284

The superscripts indicate the executing process or address subspace, respec-285

tively. Note that (s1
i ; s

2
i ) = (s2

i ; s
1
i ) as a result of the disjoint address spaces.286

Hence, the sequence of statements si; si+1 yields the following six semantically287

equivalent PGAS sequences:288

1: s1
i ; s

1
i+1; s2

i ; s
2
i+1 2: s2

i ; s
2
i+1; s1

i ; s
1
i+1 3: s1

i ; s
2
i ; s

1
i+1; s2

i+1

4: s1
i ; s

2
i ; s

2
i+1; s1

i+1 5: s2
i ; s

1
i ; s

1
i+1; s2

i+1 6: s2
i ; s

1
i ; s

2
i+1; s1

i+1
289

The partial order of the statements is induced by sji < sji+1. Any two statements290

from sji and ski+1 can be executed in arbitrary order for j 6= k. Further combina-291

tions resulting from feasible (with respect to data dependence) switches of the292

buffer assignment and statements in certain sji lead to an exponential number293

of possible actual execution orders that need to be taken into account when294

proving properties of PGAS programs. The isend restrictions imply that a1
295

not be written by s1 or s2. Similarly, b2 may not be read by s2. To prove the296

correctness of an adjoint of a message-passing program we need to show that its297

adjoint PGAS versions (P=) are equivalent to the PGAS versions of its adjoint298
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(P̄)=. We will do so for the pattern shown in Fig. 6 rewritten as follows.299

si−1; awaitall(r); si+1; . . . sj−1; isend(a,rν); sj+1 . . .

. . . sk−1; irecv(b,rν); sk+1; . . . sl−1; waitall(r); sl+1

We consider n processes for this pattern in P with ν = 1, . . . , n, a 6= b, j = j(ν),300

and k = k(ν). Reversing the control flow and then applying the recipe yields301

for P̄302

sl+1; awaitall(r); sl−1; . . . sk+1; Xisend(b̄,rν); sk−1 . . .

. . . sj+1; Xirecv(ā,rν); sj−1; . . . si+1; waitall(r); si−1

where we fold some buffer operations4 into the respective send and receive call
such that

Xisend(b̄,rν) ≡ isend(b̄,rν) b̄=0

and
Xirecv(ā,rν) ≡ irecv(t,rν) ā+=t

When we require that a not be written and b not be read by any statement303

si+1, . . . , sl−1, we can show that the P̄ shown above is correct as follows.304

Proof: Consider the possible P= versions with placeholders B and C for the305

respective wait statements in positions i and l and 5 for the irecv statement306

in position k:307

1: si−1; B; si+1 . . . sk−1; 5; bν2 = aν1 ; sk+1 . . . sl−1; C; sl+1

...
l–k: si−1; B; si+1 . . . sk−1; 5; sk+1 . . . sl−1; bν2 = aν1 ; C; sl+1

308

With the reversal of control flow their adjoints are as follows.309

1: sl+1; C; sl−1 . . . sk+1; āν1+=b̄ν2 ; b̄ν2=0; 5; sk−1 . . . si+1; B; si−1

...
l–k: sl+1; C; āν1+=b̄ν2 ; b̄ν2=0; sl−1 . . . sk+1; 5; sk−1 . . . si+1; B; si−1

310

Because P satisfies the isend/irecv restrictions, the variable aν1 is not writ-311

ten by any of the statements sj+1, . . . , sl−1, nor is bν2 read or written by312

sk+1, . . . , sl−1. The variable aν1 may be read by any of the statements313

sj+1, . . . , sl−1 implying that āν1 may be incremented in sl−1, . . . , sj+1 while b̄ν2314

remains unchanged by sl−1, . . . , sk+1. The only read operation on āν1 within315

sl−1, . . . , sj+1 is performed as part of these possibly present increment opera-316

tions. In exact arithmetic the increment order for āν1 has no impact on its final317

value. Hence, the statement āν1+=b̄ν2 followed by b̄ν2=0 can be inserted at any318

position between sl+1 and sk−1. In short, we constructed (P=) and found the319

adjoints of all PGAS versions are equivalent.320

We now consider (P̄)= where 4 is the placeholder for the isend statement in321

position j322

4 In an implementation, these buffer operations have to be delayed until the data is trans-
mitted or received, respectively.
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323

1: sl+1; C; sl−1 . . . sj+1; 4; t=b̄ν2 ; b̄ν
2
=0; āν1+=t; sj−1 . . . si+1; B; si−1

...
l–k: sl+1; C; sl−1 . . . sj+1; 4; sj−1 . . . si+1; t=b̄ν2 ; b̄ν

2
=0; āν1+=t; B; si−1

324

At this point the need to impose additional restrictions on āν1 and b̄ν2 becomes325

apparent. The temporary variable t is neither read nor written by any of the326

statements sl−1, . . . , si−1. It can be removed as the result of copy-propagation.327

In the (P̄)= versions the adjoint computation takes place between sl+1 and sk−1.328

The same computation is performed in (P=) between sj+1 and si−1. Hence,329

the variable b̄ν2 must not be written by any of the statements in sj−1, . . . , si+1.330

Moreover, āν1 may only be incremented by these statements. Therefore, in P331

the variable aν1 may not be written and bν2 may not be read or written by332

si+1, . . . , sj−1. This reflects exactly our additional requirement, and therefore333

the proposed transformation is shown to be correct �334

3.5 Placement Flexibility and Implementation Choices335

In the program section between the awaitall and the waitall our augmented336

restriction on the isend and irecv buffers is symmetric. Just like the waitall,337

the placement of the awaitall will have to be done by the MPI programmer338

who wishes to use the automatic differentiation transformation. While the main339

goal of this paper is a transformation via recipes applied at the level of a subrou-340

tine call, we note that the restrictions in turn permit some flexibility to move the341

isend and irecv calls within this program section. The situation is illustrated342

in Fig. 7. This would afford the maximal time the message-passing system343

can spend to process communication requests before further computation in the344

participating processes is halted pending the return of the respective waitall.345

Unlike the transformation recipes we proposed so far, such a modification of346

the original program requires detailed data dependency information. With a347

few exceptions, practical message-passing programs will likely not be amenable348

to an automatic program analysis that can provide the data dependencies with349

sufficient accuracy. On the other hand, it is perfectly reasonable to consider as350

a starting point that communication channels in the program are identified by351

pragmas. Together with pragmas that serve as semantic placeholders for the352

awaitall position, all the information required to apply the adjoint transfor-353

mation recipes would be present. Obviously, standard program analyses still354

are required to establish data dependencies for all the other parameters in the355

MPI calls, their position in the control flow graph, and so forth.356

From the above it is obvious that an approach based on pragma-identified357

communication channels would be the most beneficial for general purposes. It358

is clearly also a rather complicated choice for something that can also be im-359

plemented with a set of subroutines that wrap the MPI calls and supply all360

the required context information via parameters and context-specific versions.361

An example, mentioned in Sec. 3.1, is a specific sendwait, which takes as an362

additional parameter the corresponding isend call’s sendbuffer. The wrapper363
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Figure 7: Because the restrictions on the communication buffers are symmetric
in P (left) we can maximize the time between posting a communication request
and waiting for the completion by shifting the calls for P+ (center) and P̄
(right).

routines then can switch their behavior, perhaps via some global setting, be-364

tween the original and the respective adjoint semantics indicated by the recipe.365

Some additional bookkeeping for the delayed buffer operations to be executed366

by the adjoint semantic for awaitall is in principle all that is needed to ac-367

complish the task. More details on this can be found in Sec. 4 related to our368

wrapper-based prototype implementation.369

Motivated by efficiency considerations for computing the partial derivatives370

in Sec. 3.2 and folding the buffer semantics into an Xisend or an Xirecv call as in371

Sec. 3.4, one might attempt to integrate such interfaces into an MPI implemen-372

tation, thereby avoiding an extra layer of calls and replicated bookkeeping logic.373

Such implementation details are beyond the scope of this paper and subject to374

ongoing research and discussion in the automatic differentiation community.375

4 Case Study: MITgcm376

The MIT General Circulation Model (MITgcm) is an ocean and atmosphere377

geophysical fluids simulation code [15, 16] that is widely used for both realistic378

and idealized studies and runs on both serial desktop systems and large-scale379

parallel systems. It employs a grid-point based, time-stepping algorithm that380

derives its parallelism from spatial domain decomposition in two horizontal di-381

mensions. Coherence between decomposed regions, in both forward and reverse382

mode adjoint computations, is handled explicitly by a set of hand-written com-383

munication and synchronization modules that copy data between regions using384

either shared-memory or MPI-based messaging. The MITgcm code supports ar-385
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Figure 8: In P the data at the eastern and western edge of P1 are copied to
the respective overlap arrays (shaded gray) of its neighbors P0 and P2. In P̄
the adjoint of this operation is to increment the adjoint edge data in P0 by the
adjoint overlap date from its neighbors P0 and P2.

bitrary cost functions [7,11,14,20] for which adjoints can be generated with the386

automatic differentiation tools TAF and OpenAD/F. Until now, however, the387

automatic adjoint transformation did not extend to the MPI communication388

layer. Instead, hand-written “adjoint forms” of the MITgcm communication389

and synchronization modules have to be maintained [9,10] and substituted into390

the code generated automatically for the other parts of the MITgcm. The lack391

of tool support required other ocean model developers to adopt the same strat-392

egy [4]. Creating and maintaining these hand-written adjoint sections are ardu-393

ous and highly error-prone tasks, particularly when multiple discretization and394

decomposition options require many variants of the communication logic. This395

situation provided the impetus to investigate to what extent automatic trans-396

formation might support communication patterns that are more sophisticated397

than plain send-recv pairs.398

Figure 8 illustrates the approach for a hypothetical two-dimensional array399

(the hatched blocks on the diagram) that has been block-decomposed along one400

dimension over three processes. The gray-shaded areas, hold copies of data that401

is updated by the respective neighbor. In order to maintain coherence, in for-402

ward simulation mode, data is sent from the appropriate index regions on P1403

(labeled “west edge” and and “east edge”) and received by processes P0 and P2404

into the index regions (labeled “east overlap” and “west overlap”). The arrows405

in the P row in Fig. 8 illustrate this data traffic for the updates that P1 sends406

to its neighbors. The respective adjoint operation is shown in P̄ row. The com-407

munication graph for the data exchange in Fig. 8 is shown in Fig. 9. In practice408
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Figure 9: The communication graph for the data exchange in P illustrated in
Fig. 8.

the data exchange is of course symmetric (P1 also receives data from P0 and409

P2), periodic (P0 and P2 are also neighbors), and the decomposition is done in410

two dimensions. In order to avoid issues of buffer overflow and deadlock, we use411

isend(). The subsequent waitall covers the isend calls to all neighbors. Note412

that many lines of ancillary code may occur between the posting of the isend413

operations and the call to the balancing waitall. Without automatic transfor-414

mation capabilities those program section will have to be manually adjoined as415

well.416

To apply our recipe to the waitall operation requires the insertion of the417

awaitall. Because of the aforementioned symmetry of the communication in418

practice all processes behave the same and we can illustrate the adjoint com-419

munication by the condensed MPI-CFG shown in Fig. 10(left). On the right we420

show the wrapper routines inserted into the code in place of the original calls.421

To reach a correct solution we again consider inverting the edge direction in422

the communication pattern made symmetric by the insertion of the awaitall.423

Consequently the recv is transformed into isend, and the isend into a recv.424

Regarding the recv turned isend we could either impose restrictions on the425

recv buffer that are identical to the restrictions imposed on an irecv buffer426

in the awaitall - waitall section or accept the spatial overhead of using a427

temporary buffer instead. Because the restrictions would have required consid-428

erable code changes we employed the temporary buffer option. As part of the429

symmetric pattern the user code passes a request parameter to the originally430

blocking call. The primary reason is of course the need to accommodate the431

passing of the actual request in the adjoint but one will observe that adding432

these parameters to the interface reflects the very same symmetry that is the433

basis of our adjoining recipe. At this point it may be worthwhile to point out434

that the superficially similar sequence irecv - send - waitall would not permit435

bypassing additional restrictions by means of introducing a temporary buffer.436

Here, the irecv as the adjoint counterpart of the send will have to rely on the437

restrictions outlined in Sec. 3.4 which in essence in the original code permit a re-438

placement of the send with an isend. Clearly, this “limitation” has to weighed439

against the less efficient fall back option of manually splitting the waitall call440

into individual waits on the one hand, or writing the code in P to satisfy the441

isend restriction which in turn can improve communication performance in P.442
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awaitall(r)

1

2

bW+=..; bE+=..;

i+1

i+2

+=aE;aE=0;
edge
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Xwaitall(r)

Xrecv(aE,r )

Xrecv(aW,r )

Xisend(bE,r  )

Xisend(bW,r  )

call ampi_awaitall(exchNReqsX(1,bi,bj),&
exchReqIdX(1,1,bi,bj), &
mpiStatus, mpiRC)

call ampi_isend(westSendBuf_RL(1,eBl,bi,bj),&
theSize, theType, theProc, theTag, &
MPI_COMM_MODEL,&
exchReqIdX(pReqI,1,bi,bj), &
exchNReqsX(1,bi,bj),&
mpiStatus , mpiRc)

call ampi_wrecv(westRecvBuf_RL(1,eBl,bi,bj),&
theSize, theType, theProc, theTag,&
MPI_COMM_MODEL ,&
exchReqIdX(pReqI,1,bi,bj), &
exchNReqsX(1,bi,bj), &
mpiStatus, mpiRc)

call ampi_waitall(exchNReqsX(1,bi,bj),&
exchReqIdX(1,1,bi,bj), &
mpiStatus, mpiRC)

Figure 10: The condensed MPI CFG for the adjoint (left) of the fully symmet-
ric and periodic data exchange uses wrapper routines that encapsulate buffer
operations here labeled Xisend, Xrecv, and Xwaitall. The user code is shown
in the snippets on the right.

The fact that the pairing of isends with irecvs is not only preferable from the443

overall message-passing performance point of view but also permits an easier444

program transformation is a rather neat confluence of concepts.445

The additional buffer parameters are not strictly necessary. The wrapper446

could internally associate requests with buffers. On the other hand, the param-447

eters are a simple reminder to the user how far the scope of the buffer must448

extend. The wrapping approach permits a source transformation with a simple449

recipe that directly applies to the wrapped calls and does not require additional450

pragma information. Consequently it does not have the same utility for MPI-451

aware data-flow analysis. Aside from the extra subroutine call, another source452

of overhead is the need to retain separate receive buffers.453

5 Related Work and Outlook454

Most of what has been published regarding message passing in the automatic455

differentiation context relates to the conceptually simpler forward mode starting456

with [12]. The correct association between program variables and their respec-457

tive derivatives under MPI might be considered a negligible implementation458

issue but has been a practical problem for the application of automatic differen-459

tiation in the past [2, 13] and is an issue for the adjoint transformation as well.460

Regarding the adjoint mode in particular the description either restricts itself to461

plain send - recv pairs [3,4] or describe the hand-written program sections that462
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Figure 11: The standard requires that a recv has to be posted by the time rsend
is called, which typically necessitates a barrier (left). The adjoint pattern
(right) requires a placeholder for inserting the wait in P1.

“manually” adjoin the communication [9, 10] without an automatic generation463

concept for more sophisticated communication patterns.464

The aim of our paper is to show an approach to the programming of message-465

passing logic that guarantees an automatic adjoint transformation can be carried466

out by applying rules to subroutine calls. Whether the rules are identified467

by pragmas or by a specific set of modified interfaces is an implementation468

issue. We have as of yet not covered all communications patterns supported469

by the MPI standard. One frequently used MPI call is barrier, for instance470

in the context of an rsend, see Fig. 11. In a logically correct program we471

can leave the barrier call in place for the adjoint transformation. For the472

adjoint the barrier call stays in place, however, a vertex transformation recipe473

again requires context information and a nonoperational counterpart to the474

rsend to make the pattern symmetric, e.g. we can introduce an anti rsend475

or an appropriate communication channel pragma. We cannot claim to have476

a prototype with complete coverage of all constructs provided by the current477

MPI standard. However, just like the MPI standard itself evolves to meet478

user demands we can expand the coverage of an adjoinable MPI paired with479

automatic differentiation tools based on the techniques explained in this paper.480

The prototype implementation done for the MITgcm use case can serve as a481

starting point but reaching a consensus among the main tool developers how an482

adjoinable MPI should be implemented is the eventual goal.483

6 Summary484

We provide the rationale for automating the adjoint transformation of message-485

passing programs with the need for efficient gradient computation afforded by486

automatic differentiation and the difficulty of achieving this goal by other means.487

The paper discusses the options for automatically generating an adjoint program488

for frequently used communication patterns in message-passing programs. We489

show necessary and sufficient requirements to ensure a subroutine call based490

set of transformation recipes yields a correct result. The basis for deriving491

the recipes are communication graphs. The adjoining semantics requires the492

inversion of the communication edge direction and we need to keep the result-493
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ing program deadlock free and efficient. To achieve both goals we introduce494

additional edges and vertices which make the communication graph symmet-495

ric with respect to the edge direction. A PGAS representation of the basic496

communication patterns provides the basic framework to prove the correctness497

of the transformations we propose and we show the proving technique on one498

particular pattern. The automatic transformation tool has to be able to recog-499

nize the communication calls participating in a particular pattern. Because we500

want to guarantee the automatic adjoinability of the message-passing program501

in question we do not want to rely on program analysis that may or may not502

be able to discern the patterns correctly. Instead, we propose to have the ap-503

plication programmer either distinguish patterns by means of pragma-identified504

communication channels or via using a set of specific wrapper routines that dis-505

tinguish message-passing operations otherwise identical in MPI based on their506

pattern context. Compared to the alternative of having to hand-code the ad-507

joint communication the added effort required from the application programmer508

is rather negligible. Pursuing the approach of identifying communication chan-509

nels permits improved data flow analysis and opens opportunities of program510

modifications beyond the generation of adjoints. A use case for our approach511

was the communication logic implemented in the MITgcm ocean model. We512

demonstrated the ability to replace the hand-written adjoint communication513

layer with an automatically generated one. Our future work will concentrate514

on exploring the implementation options and provide a comprehensive solution515

that can be used with multiple automatic differentiation tools.516
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Miranda. An evaluation of global address space languages: co-array for-542

tran and unified parallel c. In PPoPP ’05: Proceedings of the tenth ACM543

SIGPLAN symposium on Principles and practice of parallel programming,544

pages 36–47, New York, USA, 2005. ACM.545
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