Improving the Performance of Tensor Matrix
Vector Multiplication in Cumulative Reaction
Probability Based Quantum Chemistry Codes

D. K. Kaushik!, W. D. Gropp?, M. Minkoff', and B. F. Smith®

1 Argonne National Laboratory, Argonne, IL 60439 USA,
{kaushik,minkoff,bsmith}@mcs.anl.gov
2 University of Illinois Urbana-Champaign, Urbana, IL 61801 USA,
wgroppQ@uiuc.edu

Abstract

Cumulative reaction probability (CRP) calculations provide a viable computa-
tional approach to estimate reaction rate coefficients. However, in order to give
meaningful results these calculations should be done in many dimensions (ten to
fifteen). This makes CRP codes memory intensive. For this reason, these codes
use iterative methods to solve the linear systems, where a good fraction of the
execution time is spent on matrix-vector multiplication. In this paper, we dis-
cuss the tensor product form of applying the system operator on a vector. This
approach shows much better performance and provides huge savings in memory
as compared to the explicit sparse representation of the system matrix.

1 Introduction and Motivation

The prevalence of parallel processors makes many areas of simulation accessi-
ble that was only possible in the recent past on specialized facilities. One area
of application is the use of computational methods to calculate reaction rate
coefficients. These coefficients are often estimated experimentally. However, the
simulations approaches [1,2] provide a reasonable alternative. Typically the ab
initio approach is only applicable to small atomic systems. In these models the
dimensionality of the problem is the number of degrees of freedom in the molec-
ular system. If we consider torsion, stretching, etc., the maximum number of
degrees of freedom (DOF) for a molecule is proportional to N, the number of
atoms. Thus dealing with problems of only three to five degrees of freedom is
quite restrictive. The alternative to ab initio methods is the use of statistical
studies of reaction paths and thus obtain the reaction rate coefficients statisti-
cally. This approach is founded however on a less solid theoretical basis.
Reaction rate calculation involves a dimensional effect based upon DOF.
That is we consider the reactions that involve molecules having various indepen-
dent coordinates. For a simple two atom molecule in which we only consider one
dimension and a variable representing the distance between the two atoms, we

2 Kaushik et al.

wE T E
;\\ \ e
S. 107 E 8 3
E : :
m - .
= \\ \\ i
[=1]
=
= _
= 107 f [——3ap 3.
= F e 4 1 Minute
= I —=—4D [A
=]
é - \Ev e 5§D 4
£
= 10’ 3 \ 6D _E
g " ——o]
10°
10° 10! 102 107

Number of Processors

Fig. 1. Sample parallel performance of the CRP code on up to 128 processor of IBM
SP3 at NERSC.

would have one DOF. However, if we add the angle between the atoms in two
dimensional space and also add the torsion effect we would have three DOF. We
are interested in problems of up to ten or more DOF. This leads to large-scale
problems in which parallel computation is a central aspect of the algorithmic ap-
proach. For such problems the Green’s function solutions (see Section 2) cannot
be done by direct linear solvers. A standard approach even applied to lower DOF
is to use iterative methods such as GMRES [3] for solving the linear systems.
The solution of these linear systems is the fundamental computational cost in
the method as we and others have observed. In some of our computational ex-
periments (see Figure 1) we have obtained an accurate eigenvalue in only two to
three iterations, however we require from five hundred to a thousand GMRES
iterations for each of the Green’s function solves. Thus the principal focus of this
paper is on studying an efficient implementation of matrix-vector multiplication.

Normally the matrix vector multiplication is done by first building up the
large sparse matrix from the tensor products of one dimensional operators with
the identity matrix. The sparse matrix vector product is well known to give poor
performance since it is memory bandwidth limited computation with poor data
reuse [4,5]. Since this kernel is responsible for a large fraction (over 80 %) of
overall execution time, addressing its performance issues is crucial to obtain a
reasonable percentage of machine peak. In this paper, we suggest an alternative

Tensor Matrix Vector Multiplication 3

approach (in Section 4) that transforms the memory bandwidth limited sparse
matrix vector products to matrix-matrix multiplications with high level of data
locality. This approach holds the potential to improve the performance of the
overall code by a large factor.

The rest of the paper is organized as follows. We discuss the background of the
CRP approach in Section 2.1. Next we analyze the performance characteristics
of the sparse matrix vector multiplication approach in Section 3. We present the
details of the tensor matrix vector multiplication approach in Section 4. Then we
compare the performance of these two choices for matrix vector multiplication
on Intel Madison processor in Section 5.

2 Background of the CRP Approach

The Cumulative Reaction Probability function is:

HT) = rnQu(D)]™ [dme TN (E) 1)

— 00

where @, is the reactant partition function. The rate constant is given as
k(E) = [2nhp.(E)] "' N(E) (2)

Therefore the CRP is key in calculating the rate constant. In fact, N(E) can
be expressed in terms of the trace of the reaction probability operator, P

N(E)=tr[P(E)] =) kpi(E) 3)

and
P(E) = 4¢/2G(E)e,G(E)el/? (4)

The Green’s function is
GE)=(E+ie—H)! (5)

H is the Hamiltonian and é = &, + €p where € is a given absorbing potential,
and €, and €, are, respectively are the part of € in the reactant and product
regions (see [1,2,6] for details).

In summary, we seek to obtain the major components of the trace of P(E).
Thus we seek the largest few eigenvalues of this operator. This can be accom-
plished by means of a Lanczos iteration of (4). For each Lanczos iteration we
require the solution of two linear systems (5):

(E+i¢— Hy=x (6)
and its adjoint when x is known. The matrix on the left hand side of Equation 6
is obtained from one dimensional operators as described next.

4 Kaushik et al.

2.1 Matrix Vector Multiplication in CRP

For simplicity, let us consider a three dimensional system with n mesh points in
each dimension. Then, we need to multiply matrix A (n® x n?) with a vector v
of size n®.

w=Av (7)

with w being the output vector of size n3. The system matrix A is sparse with
the following components:

A=B,®I®I+1®B,@I+12I1® B, (8)

Where, ® denotes the tensor (Kronecker) product of one dimensional operators
(B, By, B.) with the identity matrix(I). The operators B, By, and B, are
dense matrices of size n X n.

For d dimensions, we will have d terms in Equation 8 involving d tensor
products of dense matrices of size n X n with the identity matrices of order n.
As stated earlier, doing the matrix vector multiplication (Equation 7) is a key
operation in the CRP algorithm. Next we discuss the sparse representation of
matrix A.

3 Sparse Matrix Vector Product

The sparse matrix-vector product is an important part of many iterative solvers
used in scientific computing. While a detailed performance modeling of this oper-
ation can be complex, particularly when data reference patterns are included [7,
5,8], a simplified analysis can still yield upper bounds on the achievable perfor-
mance of this operation. To illustrate the effect of memory system performance,
we consider a generalized sparse matrix-vector multiply that multiplies a matrix
by N vectors. This code, along with operation counts, is shown in Figure 2.

3.1 Estimating the Memory Bandwidth Bound

To estimate the memory bandwidth required by this code, we make some sim-
plifying assumptions. We assume that there are no conflict misses, meaning that
each matrix and vector element is loaded into cache only once. We also assume
that the processor never waits on a memory reference, that is, any number of
loads and stores can be issued in a single cycle.

For the algorithm presented in Figure 2, the matrix is stored in compressed
row storage format (similar to PETSc’s ALJ format [9]). For each iteration of the
inner loop in Figure 2, we transfer one integer (ja array) and N + 1 doubles (one
matrix element and N vector elements), and we do N floating-point multiply-add
(fmadd) operations or 2N flops. Finally, we store the NV output vector elements.
If we just consider the inner loop and further assume that vectors are in cache
(and not loaded from memory), we load one double and one integer for 2N flops
or 6 bytes/flop for one vector and 1.5 bytes/flop for four vectors (see [4] for

Tensor Matrix Vector Multiplication 5

for (i =0, i < m; i++) {
jrow = ia(i+1) // 1 0f, AT, Ld
ncol = ia(i+1) - ia(i) // 1 Iop
Initialize, suml, ..., sumN // N Ld
for (j = 0; j < ncol; j++) { // 1 1d
fetch ja(jrow), a(jrow),
x1(ja(jrow)), ..., xN(ja(jrow)) // 1 0f, N+2 AT, N+2 Ld
do N fmadd (floating multiply add) // 2N Fop
jrow++
} // 1 Iop, 1 Br
Store suml, ..., sumN in
Y1), ..., yN@) // 1 0f, N AT, N St
} // 1 Iop, 1 Br

Fig. 2. General form of sparse matrix-vector product algorithm: storage format is AIJ
or compressed row storage; the matrix has m rows and nz non-zero elements and gets
multiplied with N vectors; the comments at the end of each line show the assembly
level instructions the current statement generates, where AT is address translation, Br is
branch, Iop is integer operation, Fop is floating-point operation, 0f is offset calculation,
LD is load, and St is store.

more detailed treatment). The STREAM [10] benchmark bandwidth on Intel
Madison processor is about 4,125 MB/s. This gives us the maximum achievable
performance of 687 Mflops/s for one vector and 2,750 Mflops/s for four vectors
while the corresponding observed numbers are 627 Mflops/s and 1,315 Mflops/s
(out of the machine peak of 6 Gflops/s).

Following a similar procedure, we show the memory bandwidth bound, the
actual performance and the peak performance for IBM Power 4, Intel Xeon, IBM
BlueGene, and Intel Madison processors (assuming only one vector) in Figure 3.
It is clear that the performance of sparse matrix vector multiplication is memory
bandwidth limited and the peak processor performance is pretty much irrelevant
for this computation. We next discuss the tensor product form of the system
operator that does not suffer from this limitation.

4 Tensor Matrix Vector Product

The system matrix in the CRP code comes from the tensor products of one direc-
tional dense operators with the identity matrix. This allows us to do the matrix
vector multiplication without ever forming the large sparse matrix. Though a
cheap approximation to the system matrix is usually needed for preconditioning
purpose, we assume that it can be obtained in some suitable way (for example,
see [11]) or one can possibly apply the same technique (of tensor matrix vector
multiplication) while carrying out the matrix vector products of the precondi-
tioned system.

We can combine the identity matrix tensor products in Equation 8 (and
its higher dimensional counterparts). In general, the matrix vector product of

6 Kaushik et al.

@ Theoretical Peak O Mem BW Peak O Observed

6000+

5000+

4000+

3000+

2000+

1000+

Power 4 (1.3 GHz) Pentium 4 Xeon (2.4 GHz) BlueGene (700 MHz) Madison (1.5 GHz)

Fig. 3. Memory bandwidth bound for sparse matrix-vector product. Only one vector
(N =1) is considered here. The matrix size has m = 90,708 rows and nz = 5,047,120
nonzero entries. The processors are 1.3 GHz IBM Power 4, 2.4 GHz Intel Xeon, 700
MHz IBM BlueGene, and 1.5 GHz Intel Madison. The memory bandwidth values are
measured using the STREAM benchmark.

Equation 7 will be the sum of the terms made from the three types of operations:
(I®B)v, (BI)v,and (I® B®I)v. We describe how to carry out each of these
operations efficiently next. The three dimensional case is described in detail in
[12]

Type A: (I ® B)v

We need to evaluate
(Ipxp @ Bimxm)v

with v = (v1, 02, ..., Upm) " . We can view the vector v as a matrix (V) of size
m X p and then
(Ipxp & Bme>v = Bme X Vm><p

It should be noted that the memory layout of the vectors v and w does
not change in this operation. Since the matrix V is stored columnwise, its data
access pattern in the above matrix-matrix multiplication is ideal (unit stride).

Tensor Matrix Vector Multiplication 7

As the number of dimensions increases, the order (p) of the identity matrix
gets larger and larger. Therefore, the above algorithm multiplies a small square
matrix (B) with a highly rectangular matrix (V) for large dimensions. We will
see in Section 5 that many matrix-matrix multiplication implementations do not
perform well under this situation.

Type B: (BQ I)v

Here we need to evaluate
(Binxm @ Ipxp)v

We can view the vector v as a matrix (V') of size p x m and then
(Bme & Ipxp)v = Vp><m X BT’me

where BT, ., is the transpose of B, xm ([12]). Again, the memory layout of the
vector v and w does not change with this operation and this is also a matrix-
matrix multiplication. The data access pattern for the matrix V' is not unit stride
here (with the normal triply nested loop implementation) and transposing this
matrix may bring significant performance gains.

Type C: (I @ BR I)v
Here we need to evaluate

(Ipo ® Bmxm ® Irxr)v
with v = (v, vg, ...,vpm,.)T
This can be evaluated by looping over Type B term algorithm p times [12].
Each iteration of this loop will evaluate the Type B term V; i X BT 1y scm. Again
this can be done without changing the memory layout of the vectors v and w.

5 Results and Discussion

In the previous section, we saw that all terms of the generalized form (for d di-
mensions) of Equation 8 can be evaluated as dense matrix-matrix multiplication,
which inherently has very high data reuse and usually performs at a large frac-
tion of machine peak (if implemented properly). We present here some sample
performance results on Intel Madison processor (1.5 GHz, 4 MB L2 cache, and
4GB memory). We discuss three implementations:

— Custom code: this is the hand optimized code specifically written for eval-
uating the Type A, B, and C terms.

— MXM code: this is taken from Deville, et al. [12].

— DGEMM.: this is from a vendor library (Intel MKL).

8 Kaushik et al.

- L L L l L L IIlIIIIlIIIIl\IIIl
20 40 60 80 100

Fig. 4. Performance of the tensor matrix vector multiplication for three dimensions
on Intel Madison (1.5 GHz) processor. The custom code is manually optimized code,
MXM code is from [12] and DGEMM() routine is from Intel’s MKL library. Note that
the sparse matrix vector multiplication will only do at most about 687 Mflops/s based
on the memory bandwidth bound on this processor.

We show the performance advantage of the tensor matrix vector multiplica-
tion in three dimensions for n = 5 to 100 in Figure 4. If we had done the matrix
vector multiplication by explicitly building the sparse matrix, the performance
would have been limited to about 687 Mflops/s (see the dotted line in Figure 4,
which is based on the memory bandwidth bound) on this processor. All the
three variants give good performance for reasonably large n (> 15). Note that
there are slightly more floating point operations while doing the tensor matrix
vector multiplication as compared to the explicit sparse matrix formation case.
However, the execution time is less for the former since the computation is cpu
bound and not memory bandwidth limited (which is the case for the later).

While vendors have invested considerable effort in optimizing the matrix-
matrix multiplication, it is usually done for large and balanced matrix sizes. The
CRP code involves matrix-matrix multiplications between small square matrices
(typically 7 x 7 to 10 x 10) and highly rectangular matrices (arising from the
matrix view of the input vector v). We show this situation in Figure 5 for n = 7.
The DGEMM gives the worst performance of all for this case, especially for
higher dimensions (when the matrix coming from the input vector becomes very

Tensor Matrix Vector Multiplication 9

1500

3500 —~
3250
3000 -
- —8—— Custom
2750 e MXM
= — e DGEMM
2500 00— N Memory BW Bound (Sparse Case)
2250 |-
Q -
§2000 E-
= 1750
= g

1250 §
1000 |
750
500 B
250:_I\II|IIIIllll\llllll\IIIlIIIIlII\Il
3 4 5 6 7 B8 9 10
Dimensions

Fig. 5. Performance of the tensor matrix vector multiplication for n = 7 in all dimen-
sions. The sharp drop in performance is due to the working set of the problem going out
of the L2 cache (4 MB) of the Intel Madison processor. We are trying to contain this
drop (to some extent) with better implementation (with extra blocking). Notice that
the DGEMM() does not perform well for small values of matrix sizes and especially
when the two matrix sizes are vastly different (large dimension case).

elongated, e.g., 7 x 77 for eight dimensional problem). The custom code also
shows sharp drop in performance (typically characteristic of the working set
getting out of a fast memory level). We are trying some other implementations
to reduce this performance drop.

Figure 6 shows the same scenario as in Figure 5 except that there are more
mesh points (51) along the reaction coordinate than in the other directions (7).
This is more consistent with the linear systems being solved in the CRP code
(Figure 1). Again the performance is much better with the custom code than
is possible with the corresponding sparse matrix-vector multiplication code (the
dotted line in Figure 6).

Storage Advantage

The chemistry codes work with many dimensions and are memory intensive for
that reason. If we never form the large sparse system matrix, there is huge saving
in memory. The memory needed for tensor representation of the operator in d

10 Kaushik et al.

5000 —

4000

——a—— Custom

—— NOOM

——a—— DGEMM

,,,,,,,, Memory BW Bound (Sparse Case)

3000 |~

M flopsfs

2000 -

1000 |-

| - l Ll l | I - l L1l l | L1l l Ll 1 l Ll l
3 4 5 5] 7 8 9 10
Dimensions

Fig. 6. This case has 51 points along the reaction path and 7 points in other dimensions.
This represents the CRP code more closely. The performance advantage of the tensor
matrix vector multiplication over the sparse approach is still maintained.

dimensions is O(dn?) while it will be O(n?*!) if we explicitly store it as sparse
matrix. Therefore, the tensor product form of the operator will allow larger
problems to be solved for the same amount of available memory.

6 Conclusions and Future Work

We have demonstrated memory and performance advantages of applying the sys-
tem operator in the tensor product form (rather than as a sparse matrix). Since
matrix-vector multiplication takes a large chunk of the overall execution time, a
big improvement in the overall performance of the CRP code is expected when
the tensor product form of the operator is employed. Further, this technique
can be applied to any discretization scheme where the system matrix originates
from some form of tensor products of smaller dense matrices (and work is in
progress to demonstrate its applicability in a real application code). This paper
has compared the performance of some implementations of matrix-matrix prod-
uct for small size matrices. We observe that many common implementations of
this operation do not perform well for small size and highly rectangular matri-
ces. In future, we will evaluate some more competing implementations such as
transposing the input vector for a more efficient evaluation of Type B terms,

Tensor Matrix Vector Multiplication 11

doing more blocking to contain the performance drops when the computation
goes out of L2 cache, and DGEMM from some other libraries.

Acknowledgments

We thank Paul Fischer, Ron Shepard, and Al Wagner of Argonne National Lab-
oratory for many helpful discussions. The computer time was supplied by DOE
(through Argonne, NERSC, and ORNL) and NSF (through Teragrid at SDSC).
This work was supported by the U.S. Dept. of Energy under Contract DE-AC02-
06CH11357.

References

1.

2.

10.

11.

12.

R. E. Wyatt and J. Z. H. Zhang. Dynamics of molecules and chemical reactions.
CRC Press, 1996.

U. Manthe and W. H. Miller. The cumulative reactions probability as eigenvalue
problem. J. Chem. Phys, pages 3411-3419, 1999.

Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal of Scientific and Statistical
Computing, 7(3):856-869, July 1986.

W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Toward realistic
performance bounds for implicit CFD codes. In D. Keyes, A. Ecer, J. Periaux,
N. Satofuka, and P. Fox, editors, Proceedings of Parallel CFD’99, pages 233-240.
Elsevier, 1999.

S. Toledo. Improving the memory-system performance of sparse-matrix vector
multiplication. IBM Journal of Research and Development, 41:711-725, 1997.

W. H. Miller. Quantum and semiclassical greens functions in chemical reaction
dynamics. J. Chem. Soc., Faraday Trans., 93(5):685-690, 1997.

O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on
caches. In Proceedings of Supercomputing 1992, pages 578-587. IEEE Computer
Society, 1992.

J. White and P. Sadayappan. On improving the performance of sparse matrix-
vector multiplication. In Proceedings of the 4th International Conference on High
Performance Computing (HiPC ’97), pages 578-587. IEEE Computer Society,
1997.

S. Balay, K. R. Buschelman, W. D. Gropp, D. K. Kaushik, M. G. Knepley, L. C.
Meclnnes, and B. F. Smith. PETSc home page. http://wuw.mcs.anl.gov/petsc,
2002.

J. D. McCalpin. STREAM: Sustainable memory bandwidth in high
performance computers. Technical report, University of Virginia, 1995.
http://wuw.cs.virginia.edu/stream.

B. Poirier. Efficient preconditioning scheme for block partitioned matrices with
structured sparsity. Numerical Linear Algebra with Applications, 7:1-13, 2000.
M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for Incom-
pressible Fluid Flow. Cambridge University Press, 2002.

