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Abstract This work addresses the computation of free-energy differences
between protein conformations by using morphing (i.e., transformation) of
a source conformation into a target conformation. To enhance the morph-
ing procedure, we employ permutations of atoms; we transform atom n in
the source conformation into atom σ(n) in the target conformation rather
than directly transforming atom n into atom n. Because shorter morphing
paths reduce the cost of the free-energy computation, we seek to find the per-
mutation σ that minimizes the mean-square distance traveled by the atoms.
Instead of performing this combinatorial search in the space of permutations,
we relax the search onto the space of bistochastic matrices and solve the re-
laxed problem by linear programming. Using Birkhoff’s theorem, we show
that the solution of the relaxed problem is indeed identical to the solution of
the original problem. We demonstrate that the use of such optimal permu-
tations significantly improves the efficiency of the free-energy computation.

Keywords Linear programming, Birkhoff’s theorem, protein conformations,
free-energy calculation
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1 Introduction

Many important phenomena in molecular biology involve conformational
changes of proteins. For quantitative understanding of these phenomena, it
is imperative to know the free-energy changes associated with the conforma-
tional changes [4,5]. Conformational free energy is also an essential notion
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in predicting protein structures from their sequences, as conformational free-
energy differences provide the relative stability of different protein structures
[1,9]. This paper addresses the computation of conformational free-energy
differences through least-squares protein morphing. The key challenge of this
technique is to determine a permutation of the labels of atoms such that
the sum of distances between atoms of a given structure and their targets is
minimized.

Optimization problems over the set of all permutations, such as discussed
here, are combinatorial in nature. These problems often belong to the NP-
complete complexity class and may be difficult to solve even for small values
of N [12]. An exhaustive brute search would result in N ! steps and would be
impossible to carry out even for N in the low tens.

This paper shows that an optimal permutation can be determined as a
solution of a linear program with N2 variables and 2N constraints, which
results in the least-squares morphing problem having a much lower complex-
ity and a practical large-scale solution. The key element of the proof is the
use of Birkhoff’s theorem in a fashion reminiscent of its application for lin-
ear assignment problems [11,8]. Note, however, that our problem is radically
different, both in the objective function and in its interpretation, from the
linear assignment problem.

We demonstrate the power of least-squares morphing over direct mor-
phing by applying it to the computation of conformational free energy of
deca-alanine. We also demonstrate that our linear programming approach is
a practical method for determining the solution to the least-squares protein
morphing problem.

2 Protein Morphing

We briefly describe the basics of free-energy calculations. For further details,
the reader can consult [6].

Consider a system, composed of a protein surrounded by solvent such
as water, described by a potential energy function U(X,Y), where X :=
(x1, . . . ,xN ) and Y := (y1, . . . ,yN ′) denote the atomic coordinates of the
protein and the solvent, respectively. For a protein conformation X, the con-
formational free energy F (X) is defined by

e−βF (X) =
∫
dY e−βU(X,Y) , (1)

where β := 1/kBT , kB is the Boltzmann constant, and T is the temperature.1
Given two different conformations, A := (a1, . . . ,aN ) and B := (b1, . . . ,bN ),
the objective is to find the free-energy difference

∆F := F (B)− F (A) . (2)
1 In general, conformational states of proteins are more adequately defined as

ensembles of conformations rather than single conformations. In such cases, the
free-energy difference between two conformational states should include the relative
free-energy cost for transforming each conformational ensemble into a respective
reference conformation [13].
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Direct computations of the integral in Eq. 1 are impractical because of
the high dimensionality of the problem. One practical approach for calculat-
ing ∆F is to perform free-energy perturbation [18,2] along a transformation
(i.e., morphing) path between the two conformations. In previous work [13],
the following morphing path, parametrized with λ, was employed for such a
purpose:

xn(λ) = (1− λ) an + λbn , 0 ≤ λ ≤ 1 , (3)

in which the nth atom is transformed from its position an in conformation
A into its corresponding position bn in conformation B.

In this work, we enhance the morphing procedure by incorporating per-
mutations of atoms. Instead of transforming the nth atom onto itself, we
transform it onto the σ(n)th atom:

xn(λ) = (1− λ) an + λbσ(n) , 0 ≤ λ ≤ 1 , (4)

where σ is a permutation. Since the farther the atoms travel, the more costly
is the morphing path for the free-energy computation, we seek to find the per-
mutation σ that minimizes the mean-square distance traveled by the atoms,

1
N

N∑
n=1

||an − bσ(n)||2 , (5)

where || · · · || is the Euclidean norm.
In this work, we investigate the problem of determining the permutation

that minimizes this sum. We call this problem the least-squares protein mor-
phing problem. In the next section, we show that this combinatorial problem
can essentially be solved in polynomial time by linear programming.

3 Linear Programming Formulation

The least-squares morphing problem determines the permutation of the labels
of the target points that minimizes the mean-square distance between the
current position and the target position. It can be expressed formally as
follows.

Problem Π: Given A := (a1, . . . ,aN ) ∈ RNp and
B := (b1, . . . ,bN ) ∈ RNp, solve

min
σ∈ΠN

N∑
i=1

||ai − bσ(i)||2. (6)

Here, ΠN is the set of all permutations with N elements, and ai and bi (i =
1, 2, . . . , N) are elements of Rp. The definition of the Euclidean norm in terms
of inner products results in the relationship

||x− y||2 = 〈x,x〉+ 〈y,y〉 − 2 〈x,y〉 , x,y ∈ Rp.

Recall that the definition of the inner product is 〈x,y〉 =
∑p
k=1 x

kyk. Here
and in the following, we denote the entries of a vector x ∈ Rp by xk ∈ R,
k = 1, 2, . . . , p.
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We now define the permutation matrix P(σ) ∈ RN×N to be the matrix
whose entries {pij(σ)}i,j=1,2,...,N satisfy

pij(σ) =
{

1, j = σ(i)
0, otherwise . (7)

The permutation matrix thus operates as

P(σ)


x1
x2
...
xN

 =


xσ(1)
xσ(2)

...
xσ(N)

 . (8)

We define the matrices A,B ∈ Rp×N :

A =


a1
1 a

1
2 . . . a

1
N

a2
1 a

2
2 . . . a

2
N

...
...

...
...

ap1 a
p
2 . . . a

p
N

 , B =


b11 b

1
2 . . . b

1
N

b21 b
2
2 . . . b

2
N

...
...

...
...

bp1 b
p
2 . . . b

p
N

 . (9)

The definition of these matrices allows us to reformulate Problem Π in terms
of permutation matrices.

Lemma 1 Let the permutation σ∗ be a solution of the optimization problem

max
σ∈Πn

trace
[
AP(σ)BT

]
. (10)

Then, σ∗ is a solution of Problem Π. Here the trace operator returns the
sum of the diagonal entries of a square matrix.

Proof First, we rewrite the objective function of the Problem Π in terms of
inner products:

N∑
i=1

||ai − bσ(i)||2 =
N∑
i=1

[
〈ai,ai〉+ 〈bσ(i),bσ(i)〉 − 2〈ai,bσ(i)〉

]
. (11)

On the other hand, we have

trace
[
AP(σ)BT

] (8)
=

p∑
k=1

N∑
i=1

aki b
k
σ(i) =

N∑
i=1

〈ai,bσ(i)〉. (12)

From (12) and (11), it follows that σ ∈ Πn minimizes
∑N
i=1 ||ai − bσ(i)||2 if

and only if it maximizes trace
[
AP(σ)BT

]
, since the term

∑N
i=1〈bσ(i),bσ(i)〉

in (11) does not depend on σ. The proof is complete. �
We now define two convex sets that are important in the proof of Theorem

1.

FN =

{
wij ≥ 0, i, j = 1, 2, . . . , N

∣∣∣∣∣
∑N
j=1 wij = 1, i = 1, 2, . . . , N ;∑N
i=1 wij = 1, j = 1, 2, . . . , N

}
SN =

{
W ∈ RN×N

∣∣∣{wij}i,j=1,2,...,N ∈ FN
}
.
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A matrix is an element of SN if and only if its entries belong to the set FN .
Such matrices are called bistochastic matrices. They have nonnegative entries
that add up to 1 on both rows and columns. Note that permutation matrices
are bistochastic matrices. The relationship between bistochastic matrices and
permutation matrices is further clarified by Birkhoff’s theorem. Recall that
a vertex of a closed convex set is a point that cannot be expressed as a
nontrivial convex combination of two distinct points in the set [10].

Birkhoff’s theorem [3,11] A matrix is a vertex of the set of bistochastic
matrices SN if and only if it is a permutation matrix.

We are now ready to state our main result.

Theorem 1 Consider the linear programming problem,

max
{wij}i,j=1,...,N∈FN

N∑
i=1

N∑
j=1

wij〈ai,bj〉 . (13)

The problem has a solution w∗ij, i, j = 1, 2, . . . , N , which represents the en-
tries of a permutation matrix, P(σ∗). The permutation σ∗ is a solution of the
least-squares morphing problem, Problem Π.

Proof The problem stated in the theorem can be considered a linear assign-
ment problem with costs 〈ai,bj〉. That problem is known to have a permuta-
tion matrix solution [8], which would address the first part of the statement.
For completeness and for the computational biology audience, we include the
proof of that fact, in the context of this work.

The entries of any bistochastic matrix are feasible for the linear program
(13). From the definition of FN , it follows that 0 ≤ wij ≤ 1. Therefore the
feasible set is also bounded. Following the Fundamental Theorem of Linear
Programming [10], the linear program (13) has a solution

{
w∗ij
}
i,j=1,2,...,N

that is a vertex of its feasible set FN . The mapping W → {wij}i,j=1,2,...,N ,
which maps a bistochastic matrix to the set of its entries, is a linear iso-
morphism between FN and SN . Therefore the solution

{
w∗ij
}
i,j=1,2,...,N

, a
vertex of FN , is the image of a vertex of the set of bistochastic matrices. From
Birkhoff’s theorem, there exists a permutation σ∗ such that that vertex of
SN is the permutation matrix P(σ∗) whose entries are

{
w∗ij
}
i,j=1,2,...,N

.
For the second part of the proof, denote by W the bistochastic matrix with

entries {wij}i,j=1,2,...,N . It is immediate that the objective function of the
problem (13) can be written as trace

(
AWBT

)
. Therefore the linear program

(13) is equivalent to the problem

max
W∈SN

trace
(
AWBT

)
.

A solution of this problem is P(σ∗). Since the set SN contains all permutation
matrices, the permutation matrix P(σ∗) is a solution of the same problem
restricted over the set of permutation matrices,

max
W∈ΠN

trace
(
AWBT

)
,
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which is precisely problem (10). From Lemma 1, the permutation σ∗ solves
Problem Π. The proof is complete. �

Linear Programming problems have polynomial complexity when solved
with interior-point algorithms [17]. On the other hand, Theorem 1 requires
an optimal vertex, not merely an optimal solution, which is what the interior-
point algorithms are guaranteed to find in polynomial time. Although a ver-
tex solution of (13) can be found by the simplex algorithm [10], the simplex
algorithms can take an exponentially large number of steps [12].

We point out, however, that primal nondegeneracy, the existence of unique
primal solutions, is a generic property of linear programs [14]. This means
that the set of problems for which the solution returned by the interior-point
algorithm is not unique is, in some sense, of measure zero. In that case, from
Theorem 1, the unique solution will be precisely the required permutation
matrix. While this does not completely settle the issue of complexity, it does
indicate that the polynomial complexity of interior-point methods can be
expected.

Of course, the linear program (13) that we solve in order to determine
our permutation is in a linear programming class narrower than the one for
which the genericity result [14] holds. Therefore, using such a result as an ar-
gument for expecting low complexity, while encouraging, must be considered
with some skepticism before actual numerical demonstrations are provided.
We point out, however, that this is probably true of any instance of linear
programmng applications. In addition, we provide numerical demonstrations
of the effectiveness of the method based on (13) in Section 4.

4 Numerical Demonstration of Least-Squares Morphing for
Free-Energy Calculations

In this section we compare the efficiencies of the free-energy computation
using the direct and the least-squares morphing schemes. We also analyze
the performance of the linear programming method for minimizing the mean-
square distance.

Note that the the linear programming approach posited by Theorem 1 is
an essential part of a new method of computing conformational free energy
of proteins. Since no other free-energy method we are aware of uses least-
squares morphing, our linear programming approach does not compete with
any existing baseline method for solving Problem Π.

Therefore our performance assessments will focus on two issues. First,
we will assess whether the linear programming approach is sufficiently fast
to determine the least-squares permutation so as not to slow the rest of the
calculation. In particular, since we use an interior-point method, we do not
reach the solution permutation matrix in a finite number of steps. In ad-
dition, given the possible degeneracy risk outlined at the end of Section 3,
the solution returned by the interior-point algorithm may be a point other
than a vertex of the feasible set. We thus wish to determine whether the
method converges sufficiently fast to a point from which the optimal per-
mutation σ∗ can be unambiguously determined. The second issue we will
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Fig. 1 Two conformations of deca-alanine: helix and hairpin. The traces of back-
bone are shown as tubes.

Fig. 2 Simulation box containing a deca-alanine molecule submerged in water.

assess is whether least-squares morphing is superior to direct morphing for
free-energy computations.

4.1 The Free Energy Calculation Example

We use as an example deca-alanine [7]. Deca-alanine is a polypeptide chain
composed of ten alanine residues. It is often used as a model system in
computational studies of proteins. We selected two different conformations of
deca-alanine, helix (conformation A) and hairpin (conformation B) as shown
in Fig. 1, and aligned them such that their centers of mass and principal axes
coincide, respectively. Molecular dynamics simulations were then performed
with deca-alanine in a box of water (Fig. 2) along a direct morphing path
and along a least-squares morphing path between the two conformations, and
free-energy differences were computed by free-energy perturbation (FEP). We
used the same simulation parameters as in Ref. [13], where further details of
the molecular dynamics simulations can be found.

While direct morphing is entirely described in [13], our implementation of
least-squares morphing requires additional detail. A least-squares morphing
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Fig. 3 The free-energy profile computed by the direct morphing scheme. 50 FEP
steps were used along the morphing path. The total free-energy difference is esti-
mated to be ∆F = 3.6± 0.69 kcal/mol.

path, which involves a permutation of the protein atoms, is not a complete
transformation of conformation A into B, because of the chemical diversity of
the atoms. To be specific, the protein atoms have different charges, radii, and
so forth. Thus, for each conformation, we performed an alchemical FEP [16]
in which the protein atoms were converted into chemically identical dummy
atoms. Dummying at A followed by a least-squares morphing from A to B
and then inverse-dummying at B constitutes a complete transformation of
conformation A into B.

In addition, in designing the morphing procedure, we grouped the protein
atoms into two sets, hydrogens and heavy atoms, and applied the dummying
and the least-square morphing procedures separately for each set. We find
that this separation significantly reduces the cost of the dummying steps
without much sacrifice in the morphing step. But the significance for linear
programming is that two instances of Problem Π need to be resolved by linear
programming: one for the heavy atoms and one for the hydrogen atoms. (In
the case of deca-alanine, we had 57 hydrogen atoms and 55 heavy atoms.) All
these choices include some amount of trial and error and heuristic, typical
of the development of a new technique. Further study needs to be done
to find out which separation scheme is the most efficient in general. Note,
however, that the solving of the optimal permutation problem itself is on
solid theoretical ground provided by Theorem 1.

4.2 Numerical Results

Linear Programming Performance. We used MATLAB for the linear pro-
gramming calculation. The matrices obtained by the linear programming
resolution of (13) and the use of Theorem 1 were unmistakably permutation
matrices, with their elements close to either zero or one within 10−7.
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Fig. 4 The free-energy profile computed by the least-square morphing scheme.
FEP steps 1 to 10 correspond to the dummying at the helix conformation, 11
to 20 the least-square morphing path, and 21 to 30 the inverse-dummying at the
hairpin conformation. The total free-energy difference is estimated to be ∆F =
3.8± 0.44 kcal/mol.

The computational cost of the linear programming calculation is trivial
compared to that of FEP; each linear programming calculation took a few
wallclock seconds using the interior-point linprog solver in MATLAB with
the default tolerance parameters. By comparison, each FEP step, which uses
C-compiled software NAMD [15], took 20 wallclock hours on a machine with
a comparable processor and memory configuration. Therefore we find that
the linear programming approach is an efficient method to design optimal
procedures for free-energy calculations.

Least-Squares Morphing Versus Direct Morphing. Along the direct mor-
phing path constructed by Eq. 3, the atoms must travel quite large distances
(the root-mean-square distance amounts to 8.4 Å), and we used 50 FEP steps
for the free-energy computation. Figure 3 shows the free-energy profile com-
puted along the direct path. The total free-energy difference is estimated to
be ∆F = F (B) − F (A) = 3.6 ± 0.69 kcal/mol, where the uncertainty was
obtained by block averaging as in Ref. [13].

Shown in Fig. 4 is the free-energy profile along the entire transforma-
tion path consisting of the dummying step at the helix conformation, the
least-squares morphing, and the inverse-dummying step at the hairpin con-
formation. The total free-energy difference estimated by this scheme is ∆F =
3.8± 0.44 kcal/mol. Compared to the direct morphing path, the atoms move
much shorter distances along the least-squares path (the root-mean-square
distance is 2.1 Å), and we were able to use only 10 FEP steps for the morph-
ing. Even if we include the 20 FEP steps that we used for the two dummying
procedures (10 for each), it is still much lower than the 50 steps needed in the
direct morphing scheme. The number of steps needed to reduce the uncer-
tainty of the direct morphing approach to the level of least-squares morphing
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approach would be higher than 50, making the latter even more convincingly
a winner.

With the least-squares morphing scheme we were able to achieve a smaller
numerical uncertainty with fewer FEP steps, that is, with lower computa-
tional cost. In this test case, the least-squares morphing scheme proves to be
significantly more efficient than the direct scheme. The saving in computing
time amounts to hundreds of hours because of the very expensive FEP steps.

5 Conclusions and Future Work

Morphing, the continuous virtual transformation of a protein conformation
into another, is an important aid in efficient calculations of conformational
free-energy differences, which are essential for the understanding of the func-
tion of proteins. We introduce a particular type of morphing, which we call
least-squares morphing, that has the potential to reduce the lengths of the
paths traveled by atoms between the two conformations. When this reduc-
tion occurs, the number of very costly free-energy perturbation (FEP) steps
needed to complete such a calculation radically decreases. Moreover, the use
of least-squares morphing mostly eliminates the possibility of trapping of
water inside protein, which could be disastrous for free-energy computations
[13].

Least-squares morphing searches for the permutation of the labels of the
atoms in the target conformation that minimizes the mean-square distance
traveled. We show, by using Birkhoff’s theorem, that this permutation can
be obtained by solving a linear program with N2 nonnegative unknowns with
2N constraints, where N is the number of atoms involved. We demonstrate,
using calculations for deca-alanine, that the cost of the linear program is
insignificant compared to the cost of an FEP step. In addition, least-squares
morphing results in substantially fewer FEP steps and better free-energy
uncertainty compared to direct morphing.

Future research will be devoted to the application of least-squares mor-
phing to complex conformational changes of proteins, which typically involve
hundreds or thousands of atoms. We will also investigate the relationship be-
tween different parametric choices, for example, between the number of FEP
steps and the uncertainty in free-energy differences estimated.
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