
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— To enable the Life Science community to fully use

TeraGrid resources for computing and data management, we

developed an integrated cyber computational environment named

the Open Life Science Gateway (OLSGW) [1]. Based on a service-

oriented framework, the gateway aggregates a group of

bioinformatics applications and data collections into a web portal.

Furthermore, this gateway provides a platform for life science

researchers to collaboratively conduct bioinformatics computing,

building their communities and sharing data and workflows.

In the era of web 2.0, gadgets such as iGoogle gadgets are

becoming increasingly popular for integration and customization

of web contents from different sources. Social networking is also

gaining attention because it has created powerful new ways to

build virtual communities in a bottom-up manner. Google’s

OpenSocial framework [2] standardizes the practices of both

gadget programming and online social networking, enabling web

developers to write social gadgets that can run in any OpenSocial-

compliant container. These new web technologies can leverage

science gateway portals in terms of rich user interface and social

network capability, which will promote the adoption of science

gateways for advanced education purpose.

This paper introduces the OLSGW service-oriented

framework and describes our efforts to develop OpenSocial

gadgets for running bioinformatics analysis tools on the TeraGrid

resources. The gadgets can be deployed in OpenSocial containers

such as the iGoogle Sandbox [3] and Apache Shindig [4]. With

these gadgets, biologists and biology students can easily run their

analysis programs and browse outputs through social web sites.

Index Terms— OpenSocial, Gadget, Science Gateway,

TeraGrid, Bioinformatics

I. INTRODUCTION

Software tools and algorithms for high-throughput

bioinformatics data analysis, such as sequence search,

alignment, and protein structure analysis, are CPU-intensive,

requiring tremendous computing power that is usually beyond

the capability of clusters at a single biomedical research

institute. Hence, such institutes often seek to take advantage

of available high-end computing resources such as those of the

TeraGrid to run their computing tasks on a much larger scale.

However, the complexity of Grid middleware makes it a

challenge for biologists and bioinformaticians to use the

TeraGrid resources without extensive knowledge of Grid

technologies. To address this problem, we have developed a

cyber computational environment named Open Life Science

Gateway (OLSGW) that integrates a group of bioinformatics

applications and data collections into a portal. Biologists with

no prior experience of Grid computing can easily use this

gateway environment to run their analysis programs and

compose computational workflow scripts without the

challenges of a sharp learning curve. This science gateway

establishes a solid foundation for high-throughput genome and

protein analysis workflows, helping scientists make great

strides in solving the pressing problems faced by

bioinformatics groups.

Like many science gateway systems, OLSGW follows the

JSR-168 portlet specification by using the GridSphere [5]

portlet container and customizing OGCE [6] portlets.

Although the portlet solution is successful in integrating web

contents for enterprise portals, it is not widely accepted in the

public cyberspace, in which gadget based personal portals and

social network sites have attracted millions of users, especially

young people. To extend the OLSGW community and promote

collaboration capability in the science gateway, we therefore

started exploratory work in building gadgets for OLSGW

services.

A standardized gadget framework is important for building

AJAX gadgets for science gateway applications. Google’s

OpenSocial framework standardizes the practices of both

gadget and social-networking sites, enabling web developers to

write gadgets with social capability that can run in any

OpenSocial compliant container. Moreover, an Apache open

source project named Shindig was also launched last year to

build a few reference implementations based on OpenSocial

specification; and an OpenSocial developer community is

emerging rapidly by following up the development of Shindig.

Therefore it is the ideal platform for gateway developers to

understand the internals of the OpenSocial framework and test

their own gadgets.

This paper is organized as follows. In Section 2, we

introduce our general framework for the open life science

gateway. Section 3 presents the details about the design and

implementation of gadgets in the OpenSocial framework.

Section 4 displays a gadget example and points out the issues

around gadget authorization. Finally, Section 5 summarizes

our work and briefly outlines future studies.

II. GENERAL SERVICES FRAMEWORK FOR LIFE SCIENCE

RESEARCHERS

The framework of Open Life Science Gateway is designed

based on a service-oriented architecture: each bioinformatics

command-line tool is regarded as a “Service”, which can be

described in a XML file in the community-specific format. The

gateway generates necessary stubs from the XML description

for a bio-application and deploys the stubs as an RPC service

Toward an OpenSocial Life Science Gateway

Wenjun Wu
1
, Michael E. Papka

1,2
, Rick Stevens

1,2

1
Computation Institute, University of Chicago & Argonne National Laboratory, USA
2
Mathematics and Computer Science Division, Argonne National Laboratory, USA

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

in the system. Users are allowed to send requests to invoke the

service through gadgets or a web services interface. On

receiving user requests, the gateway creates service instances,

and executes them on the computing and storage resources of

the TeraGrid.

Figure 1 Open Life Science Gateway Framework

Figure 1 illustrates the primary components in this

framework. Two layers are shown: the application service

layer and the run-time layer. On the application service layer,

the application registry keeps the meta-information of every

legacy bio-application, which describes the command-line

format, the installation locations, and the run-time requirement

of the application. The PISE/Mobyle [7] package gives the

command-line description for widely used bio-applications,

which usually has argument lists, input files, and output files.

Based on their description, bio-application RPC services can

be provided for running the application on the TeraGrid

resources. On the client side, from the same application

description, the application service factory can build portlets

and gadgets codes. The run-time layer supports the execution

of deployed RPC services, including web services and

JavaScript-oriented JSON-RPC services for creating,

launching, and managing Grid jobs.

In this framework, a job is viewed as a running service

instance. Deployed portlets, JSON-RPC services and web

services call the generic Job Factory to create a job instance

after they receive a user request, and deposit the job instance

in a persistent job storage queue. The engine for job execution

– Job manager – pulls the pending job instance from the job

storage and submits it to the allocated TeraGrid sites through

Globus GRAM.

A. Generic RPC Services

Generic RPC services, including both a generic SOAP-

RPC service and a JSON-RPC service, unmarshal RPC

requests from clients and create the job objects along with job

execution scripts. This generic SOAP-RPC service serving the

SOAP clients written in languages such as Java or Perl, is

designed to handle SOAP requests for job operations including

initiation, status query, result retrieval, and job destroy. It

offers four major methods that can be invoked through SOAP.

Currently, the generic SOAP-RPC is deployed in an AXIS

container. Via SOAP::Lite library, Perl users only need to

specify the parameters for a particular bioinformatics

application and send a SOAP request to the generic SOAP-

RPC service. Beside the SOAP-RPC service, the actual Java

implementation of this interface can be exposed as a

GridSphere portlet service and a JSON-RPC service.

The client stub of the SOAP-RPC service has been

wrapped as a GridSphere portlet service, through which the

portlets can call the SOAP-RPC service for submitting

application jobs. In this way, the portlet container can run in a

decoupled environment from the AXIS container and the Job

Manager. If both can be hosted in a shared environment, it

should be more efficient for the portlets to use local method

calls instead of RPC.

The purpose of providing JSON-RPC directly to OLSGW

gadgets is to implement a lightweight AJAX communication

channel between the gadgets and OLSGW services. Normally

it is believed that this approach should be faster than

processing SOAP messaging in JavaScript because of the

overhead caused by XML parsing. Just like the portlets, the

JSON-RPC service can either run SOAP-RPC stubs to make a

remote SOAP call or directly invoke the local method in the

SOAP-RPC implementation. Since our JSON-RPC is Java

based, it is also straightforward to expose the relevant Java

classes through a JSON-bridge from the JSON-RPC-Java

implementation [8]. Table 2 gives an example of calling the

JSON-RPC service in JavaScript to run a clustalw application

in OLSGW.

TABLE 2

UNITS FOR MAGNETIC PROPERTIES

function runClustalW(){

 allcookies = document.cookie;

 var ws_services_key = get_cookie("wskey");

 // create a JSONRpcClient object

 jsonrpc = new JSONRpcClient("/jobsubportlets/JSON-RPC");

 var params = new Object();

 // java class hint

 params.javaClass = 'java.util.Hashtable';

 params.map = {};

 params.map['actions'] = document.getElementById("action");
 params.map['quicktree'] = document.getElementById("quicktree");

TABLE 1

GENERIC RPC SERVICE INTERFACE

Interface Generic Web-Service

{

String JobID runJob(String application, Hashmap<String,String>

params);

String checkStatus(String jobId);

String getResults(String jobId);

String destoryJob(String jobId);

}

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

B. Application Service and Job Factories

Two other components in OLSGW also help the generic

RPC services to accomplish their tasks. One component is the

Application Service Factory, responsible for parsing an

application XML description, generating service stubs and

formatting application-specific web pages and portlet codes.

Using XSLT templates, the factory can create JSP pages, the

portlet skeleton and gadgets that invoke the generic RPC

services. The other component is the Job Factory. Based on

the parsing output from the Application Service Factory and

the command line arguments given by the Generic RPC

service, the Job Factory builds a job execution script and

constructs a job object in the persistence job storage. If the

argument list contains input sequences, the Job Factory also

copies the sequence data into a temporary file for data staging.

III. BUILDING OPENSOCIAL GADGETS FOR OLSGW

Two types of OpenSocial gadgets exist: HTML gadgets and

URL gadgets. We can develop either type for the Open Life

Science gateway. Section 3.1 and Section 3.2 discuss the

advantages and disadvantages of both approaches separately.

A. URL Gadgets

A URL gadget needs only a URL link pointing to the web

resource that handles the gadget’s user interface and

programmatic logic. It works like a regular IFrame, which

renders the content fetched from the remote site referenced by

its URL. It is straightforward to wrap any HTML pages in the

GridSphere portal of the OLSGW as URL gadgets.

A detailed guideline [9] is followed to turn these existing

pages into gadgets. For OLSGW gateways, we write a login

JSP page based on GridSphere’s authentication mechanism

and transform the portlet JSP pages for application job

submission into HTML pages with JavaScript codes that call

the generic JSON-RPC service. After being wrapped in a

gadget description XML, each page is then turned into a URL

gadget.

Although it is easy and quick to develop URL gadgets on

the basis of your existing pages, there are disadvantages in this

approach:

1. URL gadgets cannot make use of OpenSocial APIs to

add more social-networking features and improve user

experience in data sharing and workflow collaboration.

2. Some web browsers, such as Microsoft Internet Explorer

and Apple Safari, do not permit third-party sites to set cookies

according to their default security policy. Hence, OLSGW

URL gadgets may encounter problems in these browsers. In

particular, the cookies are not allowed to be created while

users get authenticated in the OLSGW login gadget running

inside an IFrame from the iGoogle sandbox. Other application

gadgets cannot find the cookie to get the necessary user

authorization information.

B. HTML Gadgets

 With HTML gadgets, both issues can be addressed. A

HTML gadget has all the logics in its body, which usually

consists of the gadget XML as well as HTML markups and

JavaScript codes. The OpenSocial specification also enables

gadgets to aggregate information from multiple sources and

interacts with existing services.

As presented in Section 2, OLSGW gadgets need to

communicate with a hosted JSON-RPC service to run

bioapplications. Normally a JavaScript library implements

JSON-RPC by directly making an AJAX request. However,

browser security models prohibit gadget JavaScript from

making cross-domain AJAX requests, which prevents

developers from using standard AJAX libraries to fetch

content from other sites. Fortunately, the Gadgets API

provides a function called makeRequest that allows the gadget

JavaScript to communicate with remote services through a

proxy in the gadget’s OpenSocial container.

In OLSGW, the JSON-RPC-Java package is used to

transparently call server-side Java code from JavaScript. It

includes a JavaScript class, named JSONRpcClient that

dynamically queries the object RPC methods available on the

RPC server and creates JavaScript function stubs for each

method. A function stub makes a XMLHttpRequest call to

pass arguments to the remote RPC server, get a result JSON

object back, and return it to the user’s callback function.

Obviously it is essential to replace the XMLHttpRequest

calls in the function stubs by gadgets.io.makeRequest if we

want gadgets to use the JSONRpcClient for JSON-RPC calls.

Moreover, major refactoring must be made in the

JSONRpcClient constructor because it carries out the query of

the available methods through a synchronous

XMLHttpRequest. Because the gadgets.io.makeRequest can

execute only asynchronously, a callback handler should be

added in this constructor to handle the initialization of function

stubs and be guaranteed to be completed before subsequent

JSON-RPC calls.

C. Gadgets Authorization

Using HTML gadgets also makes it possible to set up a new

way of authentication and authorization for accessing remote

RPC services. As we pointed out in Section 3.1, URL gadgets

can use cookies only for tracking remote login and

authorization information. We need a common user

authorization delegation mechanism to allow users to directly

visit the authorization page from the science gateway site and

authorize the OpenSocial container to call the RPC services.

One solution is a new security protocol, named OAuth [9], that

enables developers to offer their services to gadgets running

outside their service containers, without forcing their users to

expose their passwords and other credentials to gadget host

environments.

params.map['outfile'] = 'OUTPUT';

 var seqinput = document.getElementById("seqinput");

params.map['infile'] = seqinput.value;

 // Hashtable params

 result = jsonrpc.JobService.run(ws_services_key, "clustalw", params);

http://code.google.com/apis/gadgets/docs/fundamentals.html#URL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

OAuth authentication is done in three steps:

1. The consumer obtains an unauthorized request token.

2. The user authorizes the request token.

3. The consumer exchanges the request token for an access

token.

In the context of OLSGW, the OAuth consumer is referred

to the makeRequest proxy in the OpenSocial container. The

JSON-RPC service provider plays the role of the OAuth

provider. By introducing a few OAuth servlets and a filter

chain for the JSON-RPC service, we can implement the OAuth

for authorizing the JSON-RPC service.

Three parties get involved in the OAuth procedure: gadgets,

the OpenSocial container, and the JSON-RPC provider. Inside

the OpenSocial container, a makeRequest proxy handles the

OAuth for remote data fetching, and a callback servlet

responses to the callback requests generated in the

authorization step. On the side of JSON-RPC provider, there

are three URLs for obtaining a request token, authorization

approval, and an access token, which can be mapped to three

different servlets or filters. An extra security filter is also

needed to check the OAuth information to make sure that the

access token is valid to invoke the JSON-RPC service. During

an OAuth session, the JSON-RPC provider has to track the life

cycle of the request token, the access token, the associated

token owner (user ID), and the JSON-RPC session.

Figure 2 depicts the message flow among the three parties

through the whole OAuth protocol procedure.

Figure 2. OAuth implementation for JSON-RPC

After the gadget initiates a gadgets.io.makeRequest with

the relevant OAuth attributes, the container sends a message to

the OAuth provider (request_token_servlet) to obtain a request

token. When the unauthorized request token is passed back to

the container, it creates an oauthApprovalURL that is the

concatenation of the OAuth authorization URL and the

callbackURL. The oauthApprovalURL link is presented to the

user in the gadget. After the link is clicked, a popup window is

displayed for authorization. The authorization form is listed as

follows:

The form asks the authorization servlet in the JSON-RPC

provider to check the user name, the password, and the request

token and decides whether to grant the request from the user.

Our authorization servlet relies upon GridSphere’s

authentication mechanism to validate user’s credential and

redirects the popup authorization page to the callback

URL.This callbackURL refers to the callback servlet running

on the OpenSocial container, which simply closes the popup

window.

As soon as the popup window is closed, the gadget will

automatically call the JSON-RPC service to list all the

available method. The makeRequest proxy firstly requests an

access token to the OAuth provider (access_token_servlet);

and after the arrival of the granted access token, it posts the

XMLHttpRequest to the JSON-RPC URL. Carrying the valid

OAuth tokens, this post request passes through the OAuth

security filter and reaches the JSON-RPC servlet at the end of

this filter chain. When the proxy gets the reply from the

servlet, it forwards the reply to the gadget, in which the list of

the available RPC methods can be found. It enables the gadget

to make the subsequent RPC calls to run the bioapplications.

IV. IMPLEMENTATION AND EXPERIENCES

Adapted from the existing application portlets, three

application gadgets – BLAST, InterProScan, and ClustalW –

have been built for the Open Life Science gateway. We have

tested them in the OpenSocial containers such as Shindig and

iGoogle Sandbox. Figure 3 and 4 show the portlet page and

the gadget page for the clustalw application separately.

Although OAuth provides a standardized way to achieve

authorization delegation for gadgets, there are still a lot of

issues in this specification, especially on the management of

OAuth tokens, customer keys, and secrets. One of the

problems is how to automatically refresh access tokens while

gadgets may want to keep sending multiple RPC requests

without repeating the authorization procedure. By the OAuth

proxy [11], if a gadget has passed through the OAuth

procedure and obtained an access token, Shindig and the

iGoogle Sandbox can renew the token for the gadget for

subsequent io.makeRequests. But when a user has multiple

gadgets that actually access the RPC services hosted in the

TABLE 3

AUTHORIZATION FORM

<form name="authZForm" action="authorize" method="POST">

 <input type="text" name="userId" value="" size="20" />

 <input type=”password” name=”password” />

 <input type="hidden" name="oauth_token" value="<%= token

%>"/>

 <input type="hidden" name="oauth_callback" value="<%=

callback %>"/>

 <input type="submit" name="Authorize" value="Authorize"/>

 </form>

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

same container, he still has to do separate OAuth

authorizations for running them because the OAuth proxy

distinguishes different gadgets by their URLs and manages

their tokens separately. One of possible workarounds is to add

a group token management on the side of JSON-RPC provider

so that it can generate an access token for a gadget without

user authorization if the gadget owner already did so for

another gadget in the same group. And through the pub/sub

feature in the OpenSocial API, the gadgets in a group can
notify each other whether they have finished authorization.

Another problem concerns the management of OAuth

customer keys and secrets in both the consumer side

(OpenSocial container) and the provider side. It is not defined

in the OAuth specification but is left to container developers to

decide how to implement the OAuth store of the keys and

secrets. As a reference implementation, Shindig just puts the

store in a flat file and wraps in one of its jar files. For the

iGoogle Sandbox, one must send a email

to oauthproxyreg@google.com with gadget URL, OAuth

consumer key, and secret to register a shared secret. On the

JSON-RPC side, currently we use only a single file for the

storage of the customer key and the secret because only a few

application gadgets are needed for OLSGW.

Figure 3 Clustalw Job Submission Gadget

Figure 4 Clustalw Job Submission Gadget

V. CONCLUSION AND FUTURE WORK

The Open Life Science Gateway provides services to the life

science community, enabling easy access to the TeraGrid

resources for computing and data management. The extensible

and service-oriented framework is introduced in developing

the OLSGW to achieve the integration of many command-line

bioapplication tools. To promote the further application of the

OLSGW, especially as an educational science portal, a few

open social gadgets are developed to allow users to run

bioinformatics analyses through commercial OpenSocial sites

such as iGoogle Sandbox. The paper presents our experience

in building OpenSocial applications based on the existing

science gateways hosted as GridSphere portlets in an Apache

Tomcat container. The paper discusses such problems as how

to call JSON-RPC services from OpenSocial gadgets and how

to implement authentication and authorization for the remote

JSON-RPC service.

Since the OpenSocial framework is still at an early age, a lot

of issues still remain. For example, it is not clear how to

support a single authorization for a user to access a group of

gadgets belonging to the same service. Moreover, we have to

test our gadgets in other OpenSocial complaint containers such

as MySpace and Hi5.

 ACKNOWLEDGMENT

This work was supported in part by the Office of Advanced

Scientific Computing Research, Office of Science, U.S. Dept.

of Energy, under Contract DE-AC02-06CH11357 and the

National Science Foundation by grant OCI-0504086.

REFERENCES

[1] Wenjun Wu, Rob Edwards et al, TeraGrid Open Life Science Gateway,

TeraGrid 2008 conference, June 9-13, 2008, Las Vegas,.

[2] OpenSocial Specification, http://www.opensocial.org/

http://www.opensocial.org/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

[3] IGoogle sandbox,

http://code.google.com/apis/igoogle/docs/igoogledevguide.html

[4] Shindig, http://incubator.apache.org/shindig/

[5] GridSphere, www.gridsphere.org

[6] Open Grid Computing Environment, http://www.collab-

ogce.org/ogce/index.php/Main_Page

[7] C. Letondal, “A Web Interface Generator for Molecular Biology

Programs in Unix,”

[8] Bioinformatics, 17(1), pp 73-82, 2001

[9] JSON-RPC-Java, http://jabsorb.org/

[10] Google Gadgets Page,

http://code.google.com/apis/gadgets/docs/fundamentals.html

[11] OAuth, http://oauth.net/core/1.0

[12] OAuth Proxy, https://sites.google.com/site/oauthgoog/oauth-proxy

http://code.google.com/apis/igoogle/docs/igoogledevguide.html
http://incubator.apache.org/shindig/
http://www.collab-ogce.org/ogce/index.php/Main_Page
http://www.collab-ogce.org/ogce/index.php/Main_Page
http://jabsorb.org/
https://sites.google.com/site/oauthgoog/oauth-proxy

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
 The U.S. Government retains for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

	I. INTRODUCTION
	II. General Services Framework for Life Science Researchers
	A. Generic RPC Services
	B. Application Service and Job Factories

	III. Building OpenSocial gadgets for OLSGW
	A. URL Gadgets
	B. HTML Gadgets
	C. Gadgets Authorization

	IV. Implementation and Experiences
	V. Conclusion and Future Work

