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Abstract. With the availability of hundreds and soon-to-be thousands of com-
plete genomes, the construction of genome-scale metabolic models for these or-
ganisms has attracted much attention. However, manual work still dominates the
process of model generation and leads to the huge gap between the number of
complete genomes and genome-scale metabolic models. The challenge in con-
structing a genome-scale models from existing databases is that usually such a
directly extracted model is incomplete and contains network holes. Network holes
occur when a network is disconnected and certain metabolites cannot be produced
or consumed. In order to construct a valid metabolic model, network holes need
to be filled by introducing candidate reactions into the network. Toward the high-
throughput generation of biological models, we propose a Bayesian approach
to improving draft genome-scale metabolic models. A collection of 23 types of
biological and topological evidence is extracted from databases the SEED [1],
KEGG [2] and BiGG [3]. Based on these pieces of evidence, 23 individual pre-
dictors are created using Bayesian approaches. Afterwards, in order to combine
these individual predictors and unify their predictive results, an ensemble of indi-
vidual predictors is built on majority vote and four classifiers: Naive Bayes Clas-
sifier, Bayesian Network, Multilayer Perceptron Network and AdaBoost. A set
of experiments is performed to train and test individual predictors and integrative
mechanisms of single predictors, and evaluate the performance of our approach.

1 Introduction

The number of annotated genomes is approaching 1000, thanks to high-throughput se-
quencing technology in biology and automated genome annotation tools in bioinfor-
matics. The availability of these complete genomes provides a significantly important
way of analyzing genomes at system level. One type of such analysis has been car-
ried out through the construction of a genome-scale metabolic model for a microorgan-
ism from its genome sequence. Starting from the extraction of gene-protein-reaction
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(GPR) associations from genome and pathway databases, it is possible to build genome-
scale metabolic models using constraint-based approaches such as flux balance analy-
sis [7, 8, 10].

However, a genome-scale metabolic model generated from directly extracting GPR
associations from existing databases is usually incomplete and contains network holes.
Network holes are those places where certain metabolites cannot be produced or con-
sumed as there are no reactions to connect these metabolites. In order to construct
a valid model, every metabolite should have fluxes pass through it. candidate reac-
tions need to be introduced to fill network holes. A number of factors can lead to
network holes such as missing genes, wrong or missing annotations, poor mappings
from functions to biochemical reactions. At present, manual search for hole-filling can-
didates dominates the work of filling network holes in the construction of genome-
scale metabolic models. Due to the huge volume of data available to act as evidence
and the large scale of metabolic networks, manual work is time-consuming and labor-
intensive. Up to now, approximately 27 genome-scale metabolic models have been con-
structed [6]. In comparison, the number of complete genomes is approaching 1000.
With the exponential growth of the number of genomes, the gap between the number
of genomes and the number of genome-scale metabolic models is expanding. In order
to bridge this gap and generate 1000 genome-scale metabolic models in the near future,
it is desirable that computational approaches be applied to fill network holes and thus
accelerate the model-building process.

2 Related Work

Computational approaches have been proposed to improve metabolic networks or metabolic
pathways. Green and Karp [14] showed a Bayesian approach to identify missing en-
zymes for filling pathway holes in Pathway/Genome databases (PGDB) by integrating
evidence from homology, operon, and metabolic pathway relationships. However, the
networks generated from their approach are incomplete at network level and there are
still network holes in networks.

Kharchenko et al. [15] developed a computational approach for selecting candidate
genes that can be assigned to missing metabolic enzymes, based on the gene expression
data and structure of partially reconstructed metabolic network. Chen and Vitkup [12]
presented a method that uses local structure of a metabolic network combining with
phylogenetic profiles to suggest candidate genes for enzymes without corresponding
genes. Kharchenko et al. [11] expanded their methods to include multiple types of func-
tional association evidence, including clustering of genes on the chromosome, similar-
ity of phylogenetic profiles, gene expression, protein fusion events and a local structure
of metabolic network to infer genes encoding for a specific metabolic function. How-
ever, the collection of algorithms presented in [11, 12, 15] focuses on filling network
holes where a single network hole is present in a neighborhood of metabolic networks.
In practice, it is common that patches of network or a collection of holes occur in a
metabolic network, especially in organisms whose genomes are not well annotated and
there are many network holes in their metabolic networks. Therefore, these approaches
are not suitable for the massive production of genome-scale metabolic models.



In [13], DeJongh et al. presented their tools for the generation of substantially com-
plete metabolic networks for over 400 complete genome sequences currently in the
SEED. Their tools are based on the notation of scenarios that represent segments of
metabolic pathways with connected reactions accompanied by input and output com-
pound sets. Assembling scenarios by connecting their input and output compound sets
together, an organism-specific reconstruction of metabolic network can be then con-
structed. Although the work in [13] enhances the curation of associations between
functional roles and reactions and thus generates better GPR associations for the recon-
struction of genome-scale metabolic networks in the SEED. However, the reconstructed
networks produced by their tools are still partially complete and include many network
holes. Therefore, in order to obtain a complete metabolic network and then build a valid
model, further work is needed to fill network holes in these draft metabolic networks.

3 Our Approach and Tools

The Rapid Annotation using Subsystem Technology (RAST) server [18] provides a
rapid and fully automated annotations for bacterial genomes. Users can submit their
new genomes and normally, RAST will complete annotations and make the annotated
genome available within 12–24 hours. The SEED [1, 17] provides an environment and
tools that curate function assignments based on subsystems. The work in [13] generates
a more accurate reaction set for an annotated genome using the technology of metabolic
scenarios tightly coupled with subsystems. The work in [13] also provides hundreds of
draft metabolic models that are can be further improved.

Following the efforts in [13], we design a set of computational tools to improve draft
metabolic models that have generated, with an aim of the high-throughput generation
of complete genome-scale metabolic models. This toolset includes mainly four parts:
parsers to integrate and reconcile data from different databases, network hole detectors
that analyze network connectivity and identify network holes, evidence extractors that
mine through integrated data and extracts pieces of evidence out of the data, and a set of
predictors and the ensemble of predictors that use evidence to suggest candidate hole-
filling reactions. In this paper, we focus on the later two sets of tools for extracting
evidence and construction of predictors. The hole-filling mechanism proposed in this
paper looks at the genome-scale metabolic model gained from an organism’s genome
annotations and all pieces of evidence mining extensively through known information in
existing databases. By expanding a draft model exhaustively in every direction, we seek
to improve genome-scale metabolic models and enable mass production of metabolic
models.

Without any prior knowledge, a biochemically possible reaction can be assumed to
be randomly distributed. In other words, the probability of including any reaction in a
model is treated as 1

|R| if all biochemically possible reaction in KEGG, R, is consid-
ered. However, we know that, in fact, the probability of each reaction is highly skewed
in different datasets. It is natural that some reactions happen more often than others.
Therefore, the probabilities of reactions should be adjusted after seeing certain datasets.
And these adjusted probabilities can be viewed as priors to pump into the calculation of



adjusted reaction probabilities after seeing other datasets. In this paper, reaction proba-
bilities are adjusted by using Bayes’ rule.

3.1 Evidence Extraction

In order to generate a candidate reaction list that can be incorporated to complete a
partial metabolic model, a set of evidence should be extracted from available data.
As shown in Table 1, there are totally 23 pieces of evidence, within seven different
types, that extracted from different data sources. They are (a) reaction priors, (b) the co-
occurrence of reaction pairs, (c) segment priors, and (d) the co-occurrence of reaction
segment pairs for datasets in two reconstructed BiGG models, iJR904 and iSB619;
KEGG reference pathway map; KEGG modules; KEGG organism maps; and all draft
models in the SEED; as well as (e) the co-occurrence of gene pairs in all organisms in
the SEED, (f) the co-occurrence of gene pairs in the SEED, and (g) the co-occurrence
of gene-genes pairs in the same clusters on chromosomes in the SEED.

Table 1. Summary of Evidence

Type BiGG
Models

KEGG Ref Map KEGG
Modules

KEGG Org
Maps

SEED Orgs

(a) [1] 634 [2] 4,953 [3] 434 [4] 3,324 [5] 1,318
(b) [6] 893 [7] 5,358 [8] 1,765 [9] 10,178 [10] 3,036
(c) [11]5,175 [12]36,145 [13]11,607 [14] 237,903 [15] 70,326
(d) [16]16,421 [17]101,101 [18]36,831 [19]1,027,801 [20] 326,834
(e) / / / / [21] 376,880
(f) / / / / [22] 139,183
(g) / / / / [23] 302,664

Table 1 lists the 23 pieces of evidence and their corresponding statistics. Each row is
a type of evidence and each column is a dataset.The content of each cell represents the
index of an evidence, followed by the number of data points in the dataset. For example,
“[1]634” means that for the first ([1]) evidence, which is reaction priors in BiGG Models,
there are 634 reactions in the dataset. The details of each type of evidence is described
as follows.

(a) Reaction Priors: For any reaction r in the KEGG (all reactions in KEGG are
denoted as R), if it has been seen in existing pathway maps with some prior probability,
then these priors can be used to infer the probability of including r as a hypothetical
reaction in a model. Reaction prior Pr(r) for any reaction r in any dataset, from , is
calculated using the ratio between the frequency of r and the dataset size.

(b) Co-Occurrence of Reaction Pairs: For any reaction r ∈ R, if it co-occurs with
another reaction in existing pathway maps, then the probabilities of their co-occurring
can be used to infer the probability of including r as a candidate reaction. A pair of
reactions, (r1, r), is called to co-occur if there is a set of one or multiple common
compounds, noted as compound set C, among primary products of reaction r1 and
primary substrates of reaction r. The conditional co-occurrence of a pair of reaction



(r1, r), Pr(r|r1), is defined as the frequency of reaction pair r1 − C − r, divided by
the frequency of reaction r1. This co-occurrence indicates the probability of inferring r
after seeing r1 in the dataset.

(c) Segment Priors: A pathway segment is a linear sequence of reactions connected
by common compounds. Every pathway map is decomposed into a set of pathway seg-
ments including from two to six reactions. For any reaction r ∈ R, if it has been seen in
pathway segments of existing maps with some prior probability, then these priors can
be used to infer the probability of including r as a hypothetical reaction. Segment priors
are calculated by dividing the frequency of segments by the size of dataset.

(d) Co-Occurrence of Reaction-Segment Pairs: For any reaction r ∈ R, if it co-
occurs with a pathway segment in existing maps, then the probabilities of their co-
occurring can be used to infer the probability of including r as a candidate reaction. A
reaction-segment pair, (r, s), is said to co-occur if the products of reaction r have one or
multiple common compounds with the substrates of the first reaction in the segment s,
or the opposite, the substrates of reaction r have one or more common compounds with
the products of the last reaction in the segment s. The conditional co-occurrence of a
reaction-segment pair (r, s), Pr(r|r1), is defined as the frequency of segment r−C−s
or s− C − r, divided by the frequency of segment s. This co-occurrence indicates the
probability of inferring r after seeing s in the dataset.

(e) Gene Co-Occurrence in Complete SEED Organisms: For any gene g, if it
co-occurs with another gene g1 in known genomes, then the probabilities of their co-
occurrence can be used to infer the probability of including g as a candidate gene that
may encode for some reaction to fill a network hole. The co-occurrency of gene pairs is
calculated by dividing the number of organisms that a pair of genes occur by the num-
ber of organisms that one gene occur. In account of homology across many organisms,
protein families in the SEED, denoted as FIGfams, are used in the calculations of gene
co-occurrence.

(f) The Co-Occurrence of Gene-Genes Pairs on Gene Clusters in SEED Organisms:
A gene cluster is a group of genes that sit close to each other on chromosomes of an
organism. Metabolic genes sitting on the same cluster tend to encode reactions that
also construct a pathway segment. The co-occurrence of gene-genes pairs in clusters
is calculated by the number of organisms that a gene-genes pair occur divided by the
number of organisms that the set of genes occurs.

(g) Gene Co-Occurrence on Gene Clusters in SEED Organisms: The co-occurrency
of gene pairs in is calculated by the ratio of the number of organisms that a pair of genes
sitting on the same cluster and the number of organisms that one gene occur.

3.2 Predictor Construction

Faced with the challenge of searching for hole fillers in large volume of data, it is
desirable to build computational predictors that infer plausible candidate reactions to
reconcile network holes, based on known knowledge. Specifically, the 23 pieces of
evidence extracted above are used, and 23 individual predictors are built according to
each evidence. These predictors are of seven types according to the seven types of
evidence they use.



(a) Predictors Using Reaction Priors: Five individual predictors, P1 – P5, are con-
structed to reflect reaction priors from five different datasets of BiGG models, KEGG
reference pathway map, KEGG network modules, KEGG organism pathway maps, and
SEED draft models. The underlying idea of these five predictors is that reactions with
higher priors in known datasets are more likely to be selected as candidate reactions than
those with lower priors. Each predictor based on priors from different datasets gener-
ates a set of candidate reactions. A scoring function S(r) of a predictor in this group,
for any r in one dataset, is set to be Pr(r), which is the prior of reaction r. With scores
assigned to all reactions r in the dataset, these reactions are ranked by their scores S(r),
and only those reactions with high scores are selected as candidate reactions, noted as
Rc.

(b) Predictors Using Co-Occurrence of Reaction Pairs: Five predictors, with in-
dex of P6 to P10, are built to include the five pieces of evidence extracted from co-
occurrence of reaction pairs in the five datasets. A scoring function S(r) is defined in
Equation 1 for each of these five predictors. Let’s denote all reactions in one of the
five datasets as Rd and all reactions in the draft model as Rm. For each reaction pair
(r, r1), where r1 ∈ Rd, r1 /∈ Rm and r ∈ R, the co-occurrence of (r, r1), Pr(r|r1) is
calculated . In order to capture all the possible reactions co-occur with reaction r in a
local neighborhood of r, the process of calculating Pr(r|r1) is proceeded in 5 runs. In
each run, all the reactions r that co-occur with any reaction r1 that is in the dataset but
not in the model are considered. The reaction r with highest co-occurrency with r1 is
inserted into the reaction list Rm and removed from Rd. At the same time, this high-
est co-occurrency is recorded. Then with the updated Rm and Rd, the probability of
Pr(r|r1) is re-calculated. After 5 runs, the product of all the five highest co-occurrency
scores is obtained for any reaction r. And the greatest co-occurrency product that con-
tains r is chosen as the score of r and the pathway of reactions that is corresponding to
this score is considered as a candidate hole filler. All reactions in such a pathway are
considered as candidate reactions if this pathway has a high score. This makes sure that
reactions in five steps away from r are considered. The number 5 is selected since a
pathway segment with at most 6 reactions are used in this work, which in turn is chosen
between the tradeoff of computational cost and the predictive capability of neighbor
steps away. After sorting all reactions r ∈ R by their scores S(r), a list of candidate
reactions Rc that have high scores is selected.

S(r) = max
5∏

i=1

max
r1∈Rd,r1 /∈Rm

Pr(r|r1) (1)

(c) Predictors Using Segment Priors: Five predictors based on segment priors in
the five datasets are constructed, with abbreviations of P11 to P15. For all each reaction
r ∈ R, search for all the segments s in the dataset that contain reaction r, sort these
segments s by their priors Pr(s) and assign the maximal probability of these segments,
to the score of r.

(d) Predictors Using Co-Occurrence of Reaction-Segment Pairs: Five predictors,
with index from P16 to P20, are built according to reaction-segment co-occurrence in
the five datasets. Each of such predictor infers a set of candidate reactions that co-occur
and connect, via a common compound set, with some segments in the datasets.



(e) Predictors Using Gene Co-Occurrence in Complete SEED Organisms: The
gene co-occurrence in all complete genomes of the SEED is applied build a predictor
P21. A scoring function is designed to assign a score, S(r), to each reaction r ∈ R
based on the corresponding gene’s co-occurrence with other genes in the model. Just as
the mechanism of calculating scores for reaction co-occurrency, the genes within five
steps away from a given gene are considered to cover the local neighborhood.

(f) Predictors Using The Co-Occurrence of Gene-Genes Pairs on Gene Clusters in
SEED Organisms: Predictor P22 is constructed using the co-occurrency of gene-genes
pairs in the same gene clusters of all SEED organisms. The assumption here is that if
one gene g sits in the neighborhood of a collection of genes gs on the chromosomes in
many organisms, then when seeing a set of neighbor genes gs in a new organism, we
can propose that g is also present in the new organism.

(g) Predictors Using Gene Co-Occurrence on Gene Clusters in SEED Organisms:
Predictor P23 is built based on the gene co-occurrency on the same gene clusters in
SEED organisms. The score of r, S(r) can be calculated from the co-occurrence of any
gene it’s associated with other genes in the same gene clusters.

In summary, 23 reaction predictors of seven types are constructed to suggest candi-
date genes to fill network holes.

3.3 Ensemble of Predictors

Individual predictors based on various evidence may produce inconsistent or incorrect
predictions. In order to improve the predictive accuracy and resolve inconsistence in
individual predictors, ensemble methods need to be incorporated to integrate individual
predictors. One simple assembly of individual predictors is to retrieve the results of each
predictor and pick the reactions that are predicted by most predictors. Assume there are
non-selfish and nonbiased behaviors among all individual predictors.

An alternative approach of integrating individual predictors is treating the selec-
tion of candidate hole-filling reactions as a classification problem. In this scenario, two
classes, class 0 and class 1 are considered. Any reaction in KEGG (r ∈ R) is assigned
to class 1 if it is a hypothetical reaction that should be included in a network, and ded-
icated to class 0 otherwise. Each individual predictor generates a score that represents
a corresponding attribute; hence 23 individual predictors produce 23 attributes. Every
instance is a reaction that includes all the 23 attribute values and one extra flag that
indicates the class this reaction belongs to. After reducing the hole-filler problem to a
classification problem, many classifiers in machine learning can be applied. Four such
classifiers—naive Bayes classifier, Bayesian network, multilayer perceptron network,
and boosting mechanism—are used in this paper.

4 Experiments and Results

To evaluate the set of computational tools, two groups of experiments are designed. The
first group of experiments is for a self-consistency check on two reconstructed models
of iJR904 [9] for Escherichia coli K-12 and iSB619 [19] for Staphylococcus aureus
N315. A set of core metabolic genes selected from [16] is removed from these two



models and examined to see how well the predictors would fill network holes caused by
the knockout of these core genes. The second set of experiments starts with removing
10% of the reactions in a model at a time, eventually removing 80% of the reactions in
the model and see the change of recovery rates.

4.1 Results of Core Knockouts

4.1.1. Results of Individual Predictors and Majority Vote Integrator
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Fig. 1. TP/FP Rates of Individual Predictors and Majority Vote on Reconstructed iJR904 and
iSB619 Model

Figure 1 shows the true positive (TP) rate and false positive (FP) rate of each in-
dividual predictor and the majority vote of individual predictors on the reconstructed
iJR904 model (Figure 1(a)) and iSB619 model (Figure 1(b)). The x axis shows the
predictor indices, with 1 to 23 representing individual predictors and 24 representing
the majority vote integrator of all individual predictors. The details of all individual
predictors indexed from 1 to 23 are explained in Table 1. The y axis indicates the true
positive rate (shown as the first bar, in blue, in each group) or false positive rate (shown
as the second bar, in red, in each group) for each predictor or majority vote integrator.

From the results of the reconstructed iJR904 model in Figure 1(a), 12 predic-
tors are considered as good predictors, as their true positive rates are greater than 0.5
and the false positive rates are smaller than 0.1. However, predictor P1, P6, P11 and
P16 should be excluded. The datasets these four predictors use are reaction priors,
reaction co-occurrency, segment prior, reaction-segment co-occurrency in two recon-
structed iJR904 and iSB619 models in the BiGG. Hence, these four predictors are
biased largely. Then the remaining 8 predictors have good performance in this set of
experiments. They are P5, P9,P10, P15, P19, P20, P22, and P23. Another set of predic-
tors are considered to have fair performance since they have high true positive (with



TP rate ≥ 0.5) and relatively high false positive rates (with false positive rates be-
tween 0.1 and 0.4) at the same time. This set of predictors includes P4 using reaction
priors in KEGG organism maps,P13 using segment priors in KEGG modules, and P14

using segment priors in KEGG organism maps. The majority vote integrator, P24 can
recover all knockout reactions if one reaction is said to be recovered by this integrator
if it’s recovered by any single predictor. When P24 is set to recover a knockout reaction
if more than half of individual predictors have voted for that reaction, then the true pos-
itive rate is reduced to 0.45 and the false positive rate decreases to a very small ratio of
0.008.

The results of the reconstructed iSB619 model in Figure 1(b) show a similar pattern
for the performance of all predictors. Especially, if majority vote integrator P24 is said
to recover a knockout reaction when more than half of individual predictors have voted
for that reaction, then the true positive rate is 0.57 and the false positive rate decreases
to a very small ratio of 0.001. This shows that majority vote is a good since it is capable
to detect approximately 57% of knockout reactions while keeps the false positive rate
very low. What’s more, we can also conclude that predictors use SEED information,
such as predictors P5, P10, P15, P20, P22, and P23, perform well. In addition, the results
show the evidence from gene clusters, used by P22 and P23, provides strong strength to
suggest candidate hole-fillers.

4.1.2. Classifier Results

Weka [5], a data mining software is used to train and test four classifiers includ-
ing naive Bayes classifier, Bayes network, multilayer perceptron network, and Ad-
aBoostM1. Table 2 summarizes the performance of these four classifiers on the class of
1, which is a class of candidate hole-filling reactions. The classifiers are abbreviated as
“NB,” “BN,” “MLP,” and “AB,” respectively. The first part is the training error, and the
second part is the performance on stratified cross-validation. In each part, three rows
represent three different measurements of the performance of classifiers and there are
accuracy, which is the ratio of correctly classified instances in the test dataset, the true
positive rates and false positive rates. The results in Table 2 show that four classifiers
have high accuracy in both training and cross-validation test. Also note that for any of
the four classifiers, the cross-validated accuracy is close to the training set accuracy. We
thus conjecture that the classifiers do not overfit the training set [5].

Table 2. Preformance of Different Classifiers on Core Knockout Results of iJR904 Model

Classifier NB BN MLP AB

Training
Accuracy(%) 99.1487 99.236 99.8254 99.9127

TP 0.863 0.605 0.816 0.921
FP 0.007 0.004 0 0

Cross Val.
Accuracy(%) 99.0177 99.0613 99.6726 99.8035

TP 0.816 0.632 0.684 0.868
FP 0.008 0.006 0.001 0.001

Table 3 shows that all four classifiers have good testing results. Each classifier has
accuracy greater than 98%, the TP rate is relatively high and FP rate is low. This obser-
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Fig. 2. Recovery Rate of Random and Subgraph-Based Knockouts

vation demonstrates that classifiers trained on core knockouts of iJR904 is capable of
recovering core metabolic reactions in iSB619 model.

Table 3. Preformance of of iSB619 Model for Classifiers Training on iJR904 Model

Classifier NB BN MLP AB

Test
Accuracy(%) 98.7532 99.2261 99.1617 98.9467

TP 0.343 0.543 0.743 0.914
FP 0.008 0.004 0.006 0.01

4.2 Results of Random and Subgraph-Based Knockouts

Figure 2 shows the recovery rate of random and subgraph-based knockouts for two
predictors on the reconstructed iJR904 and iSB619 models. The two predictors are
P5 using reaction priors and P20 which uses reaction-segment co-occurrence in SEED
draft models. In each figure, the x axis is the knockout rate, which is the fraction of the
number of knockout reactions and the total number of reactions in the original model.
The y axis is the recovery rate of a predictor for corresponding knockout. The black



line with circled points represents the change of recovery rate over subgraph-based
knockouts. The red line with starred points denotes the change curve of recovery rate
on random knockouts.

In all of the four subgraphs (a) – (d), we see an overall tendency of declining recov-
ery rate with the increase of knockout rate. This shows that usually the more reactions
are removed from a model, the fewer of them can be recovered given the information
of remaining reactions in the model. One exception is that in Figure 2(a), the recovery
rate of predictor P5 on iJR904 model stays rather steady as the knockout rate goes
from to 0.1 to 0.8. This is due to the fact that P5 is based on the frequency of a re-
action in all draft models in SEED, while reactions in these draft models cover the
majority of reactions in iJR904 model. Therefore, P5 can recover the majority of the
network even though a large proportion of iJR904 model is removed. In the cases of
iJR904 model in Figure 2(a) and Figure 2(b), the difference between two lines is trivial.
This observation shows that the predictors perform almost equally well for the random
knockouts and subgraph-based knockouts in iJR904 model. However, in Figure 2(a)
and Figure 2(b), both predictors recover much more reactions in the case of random
knockouts than for subgraph-based knockouts on iSB619 model. This is due to the fact
that iSB619 model is not only smaller but also sparser than the iJR904 model. There
are 812 reactions in the reconstructed iJR904 model while there are 590 reactions in
the reconstructed iSB619 model. Meanwhile, there are 8, 826 pathway segments with
length smaller or equal to 6 in the reconstructed iSB904 model, while the number is
3, 054 for reconstructed iSB619 model. In summary, the results shown in Figure 2
demonstrates that the results from our computational predictors agree with the property
of evidence and models.

5 Conclusion

In this paper, we study the problem of accelerating the process of constructing a genome-
scale models by suggesting a set of reactions to fill network holes. A Bayesian approach
is proposed to take into account of all information gained in databases and mine through
large volume of data. A set of computational tools is built to extract biological and
topological evidence from existing data, construct predictors using different pieces of
evidence, and design an ensemble of predictors to integrate and unify individual predic-
tors. By suggesting a collection of candidate hole-fillers computationally, it improves
the model-building process by speeding up the process of finding hole-filling reactions.
A series of experiments is preformed in order to evaluate the performance of the ap-
proach and computational tools.

These computational tools that support the improvement of large-scale metabolic
models are shown to be able to recover a large proportion of removed reactions in the
reconstructed iJR904 and iSB619 models. Moreover, a collection of experiments gen-
erate new and informative results that shed light on the properties of metabolic networks
and various data and evidence. For example, high true positive rates and low false pos-
itive rates for the two predictors using evidence from gene clusters in SEED organisms
show that gene clusters are helpful in searching for candidate hole-fillers.



By providing computational tools that support the improvement of draft metabolic
models, we expect to generate thousands of genome-scale metabolic models in a high-
throughput way. These tools can be integrated into our efforts of developing a scientific
workflow [20] to eventually automate the construction of genome-scale metabolic mod-
els. These models can be analyzed as a system and insights can be obtained about prop-
erties of organisms such as the genotype-phenotype relationships. With the availability
of thousands of biological models, it is then possible to perform comparative analysis
of these models and a new generation of experimental hypotheses can be achieved.
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