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Abstract. We propose a scheme for improving existing singular value decomposition-
based tools for recovering and predicting decisions. Our main contribution is an
investigation of advantages of using a functional, rather than popular linear ap-
proximation of the response of an unknown, complex model. A significant attrac-
tive feature of the method is the demonstrated ability to make predictions based
on a highly filtered data set.

1 Introduction

The problem of prediction of model-constrained decisions is important in many theoret-
ical and applied fields, such as data mining, factor analysis and uncertainty quantifica-
tion. This class of problems is often formulated as an optimization problem of finding
the best fit between artificial and real-life data manifolds. Since an explicit structure
behind the real-life data is not available, high-quality manifold learning techniques [2]
play an important role in optimization.

We propose a method that improves on the standard approaches to the problem
of finding the best fit to observed data that are based on singular value decomposi-
tion (SVD) and on the extraction of latent factors [3]. The novelty of the method is
twofold: its generalization of a widely used linear representation of the relationship
between the training set and outputs, and its construction of an adaptive high-order
polynomial interpolation scheme to estimate the relative probability of each possible
outcome. Empirically, the precision of prediction grows with the increase in the order
of the polynomial basis, indicating that the proposed approach is beneficial for learn-
ing and prediction problems wtih nonlinear relationships between model response and
inputs. A distinctive feature of our method is that it treats decision outcomes as events,
rather than real-valued outputs of some functional. The proposed scheme is demon-
strated on a database of movie ratings, provided in [1].

2 Motivation and general scheme

The general question is how to predict the response of a model dependent on many
inputs, i.e. to discover the unknown relationship F(q) : T ∪ Q → R, where T and
Q are the training set and the query set, respectively, and q is a particular point. The
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effects of some of the inputs on the model can be inaccessible, or very complicated. The
response is then estimated based on the available observations of the model behavior for
a set of inputs. A mathematical response model F ≈ F is constructed so that the known
decisions are reproduced almost perfectly, and the deviation from truth for the unknown
decisions is minimal. Commonly, F is described as a linear function. In modelling of
nonlinear effects, however, a polynomial interpolation provides higher quality.

Latent factor methods [4] estimate the response of an unknown function based on a
small number of quantities derived from the training set using essentially data compres-
sion techniques. Suppose that the most important factors S = (s1, s2, ..., sk) are used
to approximate the response to query q:

F (q, T ) ∼ F ′(q, S),

where S = S(T ). We introduce a constructive approach to design a class of decision
functions θ based on subsets of latent factors. The members of this class will simulate a
work of different F ′ and S. The function θ will be constructed as an explicit polynomial
expression on a set of factors, that is, an expansion in the polynomial basis with the
coefficients obtained by regression on the training set. The steps used in our approach
are: (a) application-oriented preprocessing; (b) Randomized filtering of the training set;
(c) Latent factors identification; (d) Estimation of decision probabilities by polynomial
approximation on latent factors; (e) Application-oriented postprocessing.

We shall formulate the proposed method using notation convenient for our applied
example: a group of decision-making agents (users) is given access to a set of similar
media or products (content). The users evaluate some of the units of content by assign-
ing one of the suggested tags, or ratings, to each unit. Given samples of rated content,
we seek to recover, or predict, the ratings that are not available.

3 Proposed method

Let M = {mi}Ni=1, U = {ui}ni=1 and R = {ri}Ki=1 be the sets of content, users
and available ratings, respectively. Denote by R the binary approval of the real rating
assignment (1 for ”approves some ri for the content”, 0 for ”does not approve some
ri content”). To meet our goal, the decision-making function θ, needs to be able to
estimate a likelihood of each rating:

θ : U ×M ×R→ (−ε, 1 + ε) (or θ(ui,mj , rk) = ξr), (1)

where ξr ≈ 1 corresponds to a highly likely rating rk and ξr ≈ 0 corresponds to an
unlikely rating rk. A sufficiently small distortion ε is allowed to account for the interpo-
lation error and other numerical effects. We suggest a representation of a decision of ui
on mj is a function of other users decisions on mj and the main optimization problem
is formulated as follows.

Problem: Given ui, rk, Mi ⊆M , construct θ such that∑
m∈Mi

‖θ(ui,m, rk)−R(ui,m, rk)‖2 is minimized. (2)



Let Ωk ∈ {0, 1}Ni×n, where Ni = |Mi|, be a matrix extracted from a training
set Ωk(p, q) = R(up,mq, rk). As a preprocessing step, one has to prepare Ωk per rk
that will participate in the decision. If the value R(up,mq, rk) is not available, then
Ωk(p, q) = 0, with the exception of the position corresponding to the current query. We
denote it by entry 1, to avoid the implication that every rating rk is extremely unlikely.

The division of data with different numerical ratings into several binary fractions
is explained by the relationship between the numerical values and missing entries. In
frequency matrices of usual information retrieval problems, zero entries are meaningful,
that is, they are comparable with very small matrix entries. This situation enables the
use of the popular SVD-based methods. In the rating decision problems, however, zero
has a significantly different meaning: it reflects an event of a missing data. Thus, once
we define event recovery as a main goal, a better representation of data can be a set of
events (that one can achieve with the binary structures Ωk) rather than unified in one
matrix numerical values.

We introduced additional uncertainty to the system by filtering out most of the
known data from the originally definedΩk. A nonzero value related to the pair (mp, uq)
was removed from the corresponding Ωk with probability 0.85 if the total number of
values in the respective rowΩk(p, :) was greater than some sufficiently small threshold.

A few principal factors influencing the likelihood of rk are extracted by SVD ofΩk:

Ωk = Φ ·Σ · ΥT =
∑
i

φiσi , υ
T
i (3)

where σi are the singular values listed in ascending order. It is well known that the
optimal lower-rank approximation of Ωk is a truncated version of the decomposition:

Ω̂k = Φ̂ · Σ̂ · Υ̂T =
η∑
i=1

φiσiυ
T
i , (4)

where η is a desired number of principal factors. The projection of query q onto a lower-
dimensional subspace with the basis determined by SVD is defined as

q̂ = Φ̂Σ̂q ∈ Rη . (5)

The subspace is spanned by the left singular vectors φi, defined by

ΩkΩ
T
k φi =

√
σiφi . (6)

Let (φ1, φ2, ..., φη) = Φ̂ be the first η columns of Φ, that is, the eigenvectors cor-
responding to η largest eigenvalues. The factors S = (s1, s2, ..., sη) determining the
likelihood of rating rk to unit of content mj are defined as vectors

S = Φ̂ · diag(
√
σ1, ...,

√
ση) ·Ωk(:, j), (7)

and the desired polynomial (instead of the linear) decision-making function θ is con-
structed as an expansion with polynomials Ψ = {ψj(S)} and coefficients xj ∈ R:

θ =
∑
j

xjψj(S) =
∑
j

xjψj(s1, s2, ..., sη) . (8)



This basis Ψ = {ψj}, ψj(s1, s2, ...sη) =
∏η
l=1 p

(τl)(sl), consists of products of all
possible combinations of single variable polynomials p(τl) of order τl. A trivial ba-
sis p(i)(α) = αi led us to sufficiently good numerical results; other choices such as
Chebyshev and Hermite polynomials also worked well. The expansion coefficients xi
are obtained by solving the linear regression equations

∑
l xlψl(S) = R(ui,mj , rk).

This system of linear equations has as many right-side entries as there are known de-
cisions of the current user. At the same time, there should be at least one equation per
polynomial in the basis. Final recovering ofR(ui,mj , rk) is done by

rpredicted = (
K∑
k=1

rkθ(ui,mj , rk))/(
K∑
k=1

θ(ui,mj , rk)) . (9)

4 Numerical example and discussion

The numerical experiments were performed on randomly chosen data points (ui,mj , rk).
During each experiment, we predicted 2 · 105 ratings for the points extracted from [1].
We measured the root mean-square error, RMSE = ( 1

n

∑
(rtrue − rpredicted)2)1/2.

An error obtained using simple averaging of ratings given by all users provides an
RMSE upper bound of 1.05. A linear method (the interpolating basis consisted of only
linear functions) produced an improvement to 0.90. In the experiments with higher in-
terpolation orders (2 and 3), we observed an improvement to 0.95 and 0.90, respectively.
Using even higher orders severely restricted the number of factors.

In our work, we generalized a widely used method for working with the latent fac-
tors of an information model. The generalization consists of a high-order polynomial in-
terpolation scheme rather than linear combination. The presented algorithmic approach
is highly adaptive and can be reinforced by iterative parameter learning methods. For an
applied example, we introduced an event matrix model as a baseline for a latent factor
methods, which can describe better a fact of missing data and successively interact with
the high-order polynomial scheme. The experiments on data reinforced by introduction
of additional aggressive uncertainty exhibited significant improvement in comparison
to the linear method and an improvement produced by an increase in interpolation order
from 2 to 3.

Overall, the method appears to be competitive in its class, requires a moderate im-
plementation and computational cost, and can be combined with sophisticated post-
processing techniques. We recommend considering the high-order interpolation scheme
for data recovery and prediction algorithms that are based on latent factors.
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