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ABSTRACT 
In this work we improve the existing tools for the recovery and 
prediction of human decisions based on multiple factors.  
We use a latent factor method and obtain the decision-influencing 
factors from the observed correlations in the statistical 
information by principal factor identification based on singular 
value decomposition (SVD). 
We generalize on widely used linear representations of decision-
making functions by using adaptive high-order polynomial 
interpolation and applying iterative and adaptive post processing 
to obtain an estimated probability of every possible outcome of a 
decision. The novelty of the method consists in the use of flexible, 
nonlinear predictive functions and in the post processing 
procedure. 
Our experiments show that the approach is competitive with other 
SVD-based prediction methods and that the precision grows with 
the increase in the order of the polynomial basis. In particular, the 
method may be successfully applied when the objective is to get a 
high number of precisely exact predictions.  
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1. INTRODUCTION 
The ability to predict the outcome of a human, social, or 
algorithmic decision is important in every customer-oriented 
field. In many modern applications, such as policy and stock 
planning, customer recommendation services and social 
networking, human judgment is now assisted by automatic 
procedures that analyze large amounts of uniformly structured 
data about customers and provide fast, repeatable predictions. 
In this paper, we propose and demonstrate a method to improve 
the existing tools for recovery and prediction of decisions based 
on multiple factors.  
We consider the following general situation. A group of decision-
makers (users) is given access to a set of similar products 

(content). These users evaluate the content by choosing and 
assigning one of the suggested tags (ratings) to some content. 
Given samples of rated content, we seek to recover, or predict, the 
missing ratings.  
The main contribution of this work is to reinforce the widely used 
singular-value-decomposition-based principal factor identification 
by high-order polynomial interpolation, instead of using the 
popular SVD-based linear methods. In addition to  demonstrated 
improvement in performance, this reinforcement opens several 
directions for making the general prediction framework more 
flexible: for example, by introducing correction variables and 
combining with the steepest-descent learning procedures. 
The method is based on SVD data compression, high-order 
polynomial interpolation, and subsequent probability estimation. 
The method is mostly free from assumptions on the structure of 
the data and is easy to adapt to new situations. 
Applied problems of the considered type include ranking 
scientific papers by predicted preferences of a researcher (Google 
Scholar-type search [4]), establishing connections between users 
of a social networking services (LinkedIn-type search [1]), and 
predicting ratings that customers assign to movies (Netflix 
problem [8]). The Netflix problem, in particular, provides a large 
example database; we used small, randomly chosen parts of this 
database to test the performance of our methods. 
In general, for a statistical surface learning problem, the 
polynomial approximation is often expected outperforms linear 
approximation – provided there is enough reliable data to 
construct a high-order surrogate model. For example, high-quality 
polynomial interpolation was successfully used to predict the 
behavior of the models exhibiting non-linear dependency with 
uncertainty on a large number of parameters [5]. It was shown 
that high-order polynomial approximation produces results of a 
much better precision than a first-order sensitivity analysis in the 
quantification of uncertainty for multiphysics models in nuclear 
engineering. In comparison with linear approximation, the method 
provides an order of magnitude of increase in quality, for only a 
modest computational overhead.  
In the following sections, we introduce notation and explain our 
method in comparison with similar approaches; introduce 
measures of accuracy and prediction, and test the performance of 
the method. 

 

2. EXPLANATION OF THE METHOD 
Approaches to automatic prediction differ from problem to 
problem. Many successful techniques require additional data, 
such as advanced classifications of the content, linguistic 
information, or timing of ratings. Some empirically effective 
predictions are obtained by blending (weighted averaging) results 



produced by several prediction methods. The performance is 
further enhanced by shrinking, or detecting and excluding 
significantly unusual users and seldom-rated content – also, 
essentially, a weighted averaging applied to the elements of 
content in the database. On the basic level we find less variety: 
many approaches amount to a form of linear regression.  
We introduce a general, easily implemented unsupervised method 
that is not limited to linear approximations and does not derive its 
quality from weighted averaging. We start our discussion with a 
reference to one basic approach to rating prediction. 
Latent factor methods [2] assign a small number of (numerical, 
unknown) additional characteristics, called content-factors to each 
unit of content; similarly, they assign a small number of user-
factors to each user. Each unit of content has features that make a 
particular rating likely, and each user has tendencies to assign 
particular ratings. The procedure then introduces a decision-
making function dependent only on content-factors and user-
factors, commonly known as latent factors. Depending on the 
definition, the output of the decision-making function may be the 
predicted rating itself, some real-valued average between several 
predicted ratings, or some measure of likelihood of a rating that 
would lead to the choice of the most likely. The assumption is that 
one can select, from some class of functions, a decision-making 
function such that the difference between the actual and the 
predicted ratings is minimal. A latent factor method, then, 
depends on solving an optimal interpolation problem.  
For the purposes of interpolation, the number of relevant variables 
may be low. However, both the shape of the function and the 
explicit values of the factors may be unknown and must be 
interpolated from the known decisions. To do so calls for a simple 
form of the function.  
We point out a special, explicit case of the method where factors 
are simply all ratings. In this case, the number of relevant factors 
is very high, but they are all known, allowing for a more flexible 
function construction. 
We present an approach that can be classified as a sequence of 
two latent factor procedures. The first set of factors is the 
principal combination of ratings, allowing good compression of 
the database. The second set of latent factors is created as a 
measure of deviation of the user from a group of users that agreed 
on a rating. 

2.1 Decision-Making Function 
Let us introduce notation. Let  and  be 
the sets of content and users, respectively. The ratings can be 
multiple choice – for example, a response o a request to “rate 
something on the scale from 1 to 5”, or binary – for example, 1 
stands for "approve a rating ", 0 for "do not approve a rating 

". We denote the multiple choice and the binary discrete 

assignments of ratings  and  correspondingly: 
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where  is a possible rating. We introduce a decision-making 
function 

ir
θ  to approximately estimate the likelihood of each 

rating: 
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That is, ξθ =),,( kji rmu , where 1≈ξ  corresponds to a highly 

likely rating  and  kr 0≈ξ  corresponds to a unlikely rating . 
We allow a small numerical distortion 
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ε  of the interval  

due to interpolation error. 
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In a limited set of circumstances, direct evaluations of the 
decision-making function are sufficient for prediction. In general, 
we find that additional post processing is required in order to 
distinguish between the values of ξ  from the same small 
neighborhood of 1. 
To simplify the discussion, we construct θ  as a user-centered 
function. That is, we assume that a decision of a fixed user  on 

an arbitrary unit of content  is a function of the decisions of 

other users on the same unit. Thus, 
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In a reverse content-centered approach, a binary version of rating 
function  and various mixes of these types of approaches can 
be defined similarly. The choice between assumptions and their 
combinations depends on the dimensions of the database and the 
structure of sparsity. 
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Denote by  a user-centered matrix of ratings. Its entry 

with an index  is 
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where iq Mm ∈ is a content rated by the user  and iu ip Fu ∈ . 

The matrix  is defined similarly. These matrices 

contain all the available (sparse) multi dimensional information 
needed for our approach.  
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To complete the definition, we must decide on the matrix entry 
corresponding to the unit of content  that was not rated by the 

user . There are several ways to represent this lack of 

information in and ; in general, a representation is 
chosen to best fit a specific problem. We find that placing 0 in the 
corresponding entry is appropriate for the matrix , where it 
represents the simple fact that the rating  was not given. The 

placement of 0 in the matrix  implies that an extremely low 
rating was assigned; placement of any nonzero entry creates 
significant false information. In our experiments, such entries 
were filled with random noise (real numbers in the range of 
possible numerical ratings). 
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We represent decision-making by a function iθ  constructed in 

such a way that is minimal in the  

norm. Similarly, we can minimize . 

k

i

k

i

rb
u

rb
ukji RDrm ,, ),,( −θ 2L

k

i

k

i

rd
u

rd
ukji RDrm ,, ),,( −θ

The construction of iθ  is based on high-order polynomial 
interpolation by collocation, so the number of variables (or 
principal factors) needs to be low. One way to reduce the list of 

relevant factors is to compress the information stored in . k
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In our experiments, the compressed form is a projection of the 

matrix only a lower-dimensional subspace, obtained by 

SVD decomposition. We define a covariance matrix 
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and choose the basis defined by the matrix ),...,,( 21 ηφφφ=Φ  
whose column vectors span the η -dimensional eigenspace of the 
covariance matrix. Depending on the dimensions of the database, 
it may be more practical to find the eigenvectors by using 

decomposition of a smaller matrix ( ) . ( k
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The decision-making function is defined by a multivariable 
polynomial formula 
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where  is a compressed form of information and bDS Φ=
}{ jψ=Ψ  is an arbitrary polynomial basis of the redefined 

interpolating function iθ . A multivariate basis  is sometimes 
called a “polynomial chaos” [3]: 
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where is an l th column of , and is a single variable 

polynomial of order .  
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Usually, well-conditioned sets, such as Hermite or Chebyshev 
polynomials are used as  [6]. However, our best results were 

achieved with   leading 
to the trivial basis.  
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The coefficients  are found by collocation [7]: jx
b

j
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This system of linear equations needs at least as many rows as 
there are polynomials in the basis, perhaps slightly more to make 
up for accidental rank deficiency.  
In practice, we fit the size of the basis so that the system includes 
all available decisions . We then use an optimal least-squares 
(pseudo-inverse) solution of an overdetermined system. 

bR

The number of available entries of  limits the maximal order 
of the polynomial basis and the dimensionality of the reduced 
information matrix . For example, for a full basis of order 2 on 
30 variables we need at least 496 collocation points, for a full 
basis of order 3 on 30 variables we need 5456 points. A small 
number of entries in  forces the use of a polynomial basis of 
small order. Another choice is an incomplete polynomial basis, 
where only some variables are included in the polynomials of 
higher degrees, maybe up to a total degree 5. In our experiments, 
we restrict the dimensionality of  so that there are enough 
collocation points to use the complete basis sets of orders 2 and 3. 
In the presence of additional information on the structure and 
importance of the data, it may be possible to choose the basis 
adaptively. 
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Direct application of the function θ  to a selection of the content 
that was already rated and included in  shows an almost 
perfect recovery of compressed information: for the true ratings 

, the decision-making function returns values around 1; for the 

ratings not equal to , the function returns values around 0, with 
no borderline cases. We observe a dichotomy 
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for all . On the other hand, direct application of ',kk θ  to unrated 
content does not always produce meaningful results. In particular, 
the value ijjki Mmmr ∉),,(θ  may fall well outside the range 

. For such cases, we conclude that principal factors 

influencing the rating of  were not included in the data 
compression process.   
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The following is an essential step of our method. We suggest 
augmenting matrix  with an additional row corresponding to 
movie , filled in as if the content was already assigned rating 

. With an augmented matrix 

D
jm

kr krD , we repeat the process of 
compressing data, constructing the decision-making function and 
recovering the compressed data. An addition of one row does not 
significantly alter the decision-making function (in absolute 
terms, the coefficients do not change much), but it influences 

the projection 
jx

Φ : we are now looking at a different cross-section 
of the same studied surface. Because of the assumption of rating 

 made before data compression, kr 1)(..., ≈jmθ . 
At this point, our prediction is based on an analysis of an 
organized collection of outputs of the decision-making function. 
For each possible rating , we systematically apply the function kr

iθ   to every unit of content actually rated by the user and to the 
unit of content added in the construction of the augmented form 



of . This process produces a set of decision-function 
values 
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to be post processed for a final prediction.  
The only reason for the observed difference between the sets 

  is a different assumption about the rating of a single 

unit of content. Our prediction technique is based on the simple 
idea that a true assumption will result in a smaller distortion of a 
high-quality approximation to the true surface. This can be 
informally justified geometrically (a single, incorrectly included 
point does not lie on a common smooth surface) or logically (a 
false assumption spoils the quality of all conclusions). 
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Experimentally, we will justify two aspects of this statement: (1) 
that we, in fact, have a high-quality approximation of the true 
surface, and quality grows with increased order of the polynomial 
basis; (2) that post processing identifies the correct assumption 
about the rating, as the one leading to that is (in some sense) 

closest to a version with an ideal distinction between 
predictions. 
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2.2 Final Rating Prediction 
In general, the best way to recover the real value of  

depends on the particular application for which 
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iθ  is evaluated. 

In our experiments, sets were evaluated, and several different 
post processing strategies were developed to finalize the discrete 
prediction. This evaluation is a pairwise independent process and 
allows us to produce predictions for all needed  
simultaneously. The estimate for the quality of the prediction can 
be derived from the same evaluation because the final vector of 
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iθ  results includes the predictions of known . ),( ji
d muR

A straightforward post processing strategy consists of choosing a 
maximum value among all evaluated iθ  predictions for a specific 

.  jm
It is helpful to reinforce this strategy by a normalization process 
over all known predicted ratings. In particular, iθ  can be turned 
into a probabilistic function by scaling all prediction results to a 
binary vector.  This strategy has produced the best results in 
situations when only one dominating  result was 
observed among the 
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K  possible. 
A more powerful method is a weighted strategy in which a final 
rating is calculated by 

∑

∑

=

=
K

k
k

K

k
kkr

1

1

α

α
 ,    (14) 

where kα  is a weighting coefficient that can be calculated and 
learned in several ways. In our experiments, good results were 
achieved for  
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and slightly better results achieved by a version corrected by the 
size of the group of users that agreed on a rating: 
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Weighted final prediction can be reinforced by introducing 
various correction variables for iθ  and . One approach is 

a simple, fixed-point iteration technique, with a small number of 
identical steps. At each step, we introduce a correction term 
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and modify (15) to a form 
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We have also attempted a polynomial structure for the correction 
term: 
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We then obtained the optimal values of by interpolation, using 
the content that received rating as training points, updated the 
decision-making functions by 

∆

)1(: ∆+⋅= ii θθ , and repeated the 
step. In many cases, this approach resulted in a small 
improvement in the quality of post processed results. However, 
the optimal post processing technique remains to be found. 

3. NUMERICAL RESULTS 
The numerical experiments were performed on randomly chosen 
data points  from a Netflix contest database [3]. 

During each experiment, 10,000 points were extracted and their 
ratings predicted. Other information (provided by Netflix) related 
to the chosen triples was ignored.  
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A rooted mean-square error was suggested by the contest as a 
measure of prediction success, and defined as 
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To get an upper bound for the prediction, we first measured the 
RMSE obtained using simple averaging of the ratings given by all 
users. This approach gave a RMSE upper bound of 1.12 .  
A simple linear method (the interpolating basis consisted of only 
linear functions, an approach that is approximately equivalent to 
generic SVD-based techniques used by many of the Netflix 
contest participants) improved the averaging method by 
approximately 10%. Since this method highly depends on the 
number of latent factors, we experimented with 305 <<η . The 
observed variability of RMSE was approximately 0.5%.  
The next series of experiments was performed using higher 
interpolation orders, namely 2 and 3. We then observed an 
improvement of final RMSE by 0.05 and 0.1, respectively. 
For our specific problem, using even higher orders of 
interpolation severely restricted the number of factors. Also, it 
often caused numerical instability for several data points (thus 
influencing the whole post-processing procedure), which prevents 
us from presenting the corresponding final results. In principle, 
such numerical instability can be eliminated by various strategies 
(including preconditioned collocation and the sensitivity analysis 
with identification and elimination of sources of instability) that 
are beyond the scope of current work.  



The average results of the experiments are presented in Table 1. 
 
Table 1. Results 

Algorithm Order  Average RMSE 

Averaging - 1.12 

Linear interpolation 1 0.98 
High-order polynomial 
interpolation 2 0.95 

High-order polynomial 
interpolation 3 0.90 

 
Clearly, our current numerical results are worse than those 
obtained by the best contest participants. As a basic information 
matrix (for SVD and polynomial/linear latent factor analysis) we 
used only a user-centered matrix that is significantly less 
informative than a full matrix. On the other hand, using such a 
small base information matrix reduced the running time of our 
experiments significantly. Our main goal is to present a new way 
of working with latent factors and to demonstrate that high-order 
polynomial interpolation can successfully extend a popular linear 
approach. 

4. CONCLUSIONS 
We presented a generalization of a widely used linear method for 
working with the latent factors of an information model. The 
generalization consists of a high-order polynomial interpolation 
scheme rather than linear combination. The approach is highly 
adaptive and can be reinforced by iterative parameter learning 
methods.  
It is remarkable that an approach originally developed for 
uncertainty quantification of physical systems with no conscious 
actors has also produced a successful recovery of human 
decisions. 
The experiments on data with limited information content shows a 
significant improvement in comparison to the linear method. The 
improvement increased with the change of the interpolation order 
from 2 to 3.  
Overall, the method appears to be competitive in its class, has a 
moderate implementation and computational cost when applied to 
new data sets, and can be combined with sophisticated post 

processing techniques. We recommend considering the high-order 
polynomial interpolation scheme for data recovery and prediction 
algorithms that are based on latent factors extraction. 
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