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Abstract 

The UNIC code is being developed as part of the DOE’s Nuclear Energy Advanced Modeling and 

Simulation (NEAMS) program. UNIC is an unstructured, deterministic neutron transport code that allows a 

highly detailed description of a nuclear reactor core in our numerical simulations. The goal of our 

simulation efforts is to reduce the uncertainties and biases in reactor design calculations by progressively 

replacing existing multi-level averaging (homogenization) techniques with more direct solution methods 

based on first principles. Since the neutron transport equation is seven dimensional (three in space, two in 

angle, one in energy, and one in time), these simulations are among the most memory and computationally 

intensive in all of computational science. To model the complex geometry of a reactor core, billions of 

spatial elements, hundreds of angles, and thousands of energy groups are necessary, which leads to problem 

sizes with petascale degrees of freedom. Therefore, these calculations exhaust memory resources on current 

and even next-generation architectures. In this paper, we present UNIC simulation results for two important 

representative problems in reactor design/analysis - PHENIX and ZPR. In each case, UNIC shows excellent 

weak scalability on up to 163,840 cores of BlueGene/P (Argonne) and 131,072 cores of XT5 (ORNL). 

While our current per processor performance is not ideal, we demonstrate a clear ability to effectively 

utilize the leadership computing platforms. Over the coming months, we aim to improve the per-processor 

performance while maintaining the high parallel efficiency by employing better algorithms (such as spatial 

p-refinement, optimized matrix-tensor operations, and weighted partitioning for load balancing). Combining 

these additional algorithmic improvements with larger parallel machines in the near future should allow us 

to realize our long term goal of explicit geometry coupled multiphysics reactor simulations. In the long run, 

these high fidelity simulations will be able to replace expensive mockup experiments and reduce the 

uncertainty in crucial reactor design and operational parameters. 

 



 

I. Introduction 

Nuclear engineering has a rich history of simulation-based design following sound economical and 

safety-driven principles. However, many of the modern reactor modeling codes were developed in the 

seventies and eighties and targeted serial platforms because of the high computational costs of explicit 

geometry approximations. In this paper, we describe the development of a new reactor analysis code that 

bridges the gap between the approximation-based legacy tools and a first-principles approach. The code we 

discuss in this paper is specifically targeted for applications where the legacy tools are least reliable, and its 

development is only possible given the availability of the large scale parallel machines. 

The performance of nuclear power reactors is governed by the fission rate of the uranium based 

fuel. A predictive analysis capability is generally required to optimize the safety characteristics of the 

reactor and minimize the costs associated with operating the reactor. This analysis capability is derived 

from the solution of a Boltzmann integro-differential transport equation for the neutron density. This 

equation is widely used in industrial and scientific industry and appears in atmospheric modeling, 

astrophysical and nuclear weapons research, medical physics, and industrial applications such as mineral 

assaying and oil-well logging. Among these fields, the most significant parallelization efforts to date have 

been applied to the thermal radiative transport equation (gamma and x-rays) used in weapons related 

research, and researchers have utilized several “top” supercomputers to perform simulations. Unfortunately, 

many of the modeling challenges that arise in the thermal radiative and the neutron transport equations are 

sufficiently different that direct technology transferability between the codes is impractical. 

Our focus is on nuclear reactor systems that consider a large distributed fission source, where the 

primary unknown of the Boltzmann transport equation is the neutron density or, in nuclear engineering 

vernacular, the neutron “flux” (density multiplied by velocity). This equation has seven independent 

variables: three in space, two in angle, one in energy, and time. Because an accurate, first-principles 

discretization of these variables is untenable, legacy solvers are typically based on approximations that 

reduce this dimensionality. The neutron transport equation can also be shown to asymptotically limit to the 

canonical hyperbolic, elliptic, and parabolic partial differential equation forms under simple changes in 

material properties that may all occur in a nuclear reactor. In thick, highly-scattering regions, the transport 

equation limits to a (parabolic) time-dependent diffusion equation, which, in steady-state, is elliptic. In 



 

“free-streaming” regions, the limiting behavior is hyperbolic. Thus, the large dimensionality and 

many-faceted solution behaviors for this equation present the greatest challenges to the code developer.  

Our focus is on immediate improvement to areas where legacy solvers are insufficient: nuclear 

reactor dynamics. These problems require the solution of the time-dependent Boltzmann transport equation 

and the simultaneous solution of the thermal-hydraulic and structural-mechanics equations [1]. Two years 

ago we started a multi-year development project to create a dynamics solver capability using the open 

science high performance computing resources at Argonne National Laboratory (IBM BlueGene/P) and 

Oak Ridge National Laboratory (Cray XT5) [2-4]. The initial condition for this formulation requires the 

solution of a time-independent k-eigenvalue equation [1] that is the focus of this manuscript. We note that 

with a linear implicit time formulation, all subsequent solutions at the end of each time step exhibit very 

similar requirements to that needed to solve the initial k-eigenvalue problem. We focus on the recent 

success we have had with the SN2ND solver [5], which solves the second-order even-parity formulation of 

the neutron transport equation.  

II. Neutron Transport Simulation Complexity 

The primary issue in nuclear reactor analysis is the shear scale of the problem to be solved. In this 

regard, we have thus far limited our dynamics solver development to sodium cooled, fast reactor designs, as 

these reactors have been proposed as an alternative to reduce the volume of spent fuel disposition (i.e. 

fission the fuel rather than store it indefinitely) and the nuclear industry has insufficient engineering 

experience. With time, we will also apply our reactor analysis tools to more prevalent pressurized water 

reactor (PWR), boiling water reactor (BWR), and the Canadian deuterium uranium (CANDU) reactors [6] 

to help address the smaller pool of unanswered questions that these thermal reactor designs pose. 

We begin with the spatial domain of a typical sodium cooled fast reactor, some examples of which 

are shown in Figure 1. For neutron transport, we can limit our focus to just the “core” of the reactor shown 

in the center picture of Figure 1, the scale of which, relative to the plant, can be inferred from the rightmost 

picture in Figure 1. The core is typically made up of about two to five hundred ducted fuel assemblies 

similar to those depicted in the left picture of Figure 1. The assemblies are composed of many (60-300) fuel 

pins. Radially, the core is built of fuel assemblies that form a rough cylinder, leading to a total modeling 

diameter of between two to six meters and a height of three to five meters. This core size and the spatial 



 

heterogeneity of the fuel assemblies require approximately half a billion to a billion finite elements to 

accurately represent the spatial heterogeneity and the associated spatial gradients in the neutron density.  

 
Fuel Assembly 

Design 
  

Figure 1. Fuel Assembly, Reactor, and Plant Schematics of Sample Sodium-Cooled Fast Reactor 

 Next we consider the energy and angular requirements because they are tightly coupled. Neutrons 

lose fractions of their energy by scattering with materials, and the amount of energy loss per scattering 

depends on the scattering material and angle. Figure 2 shows the “cross section” data (roughly, the 

probabilities of interaction versus neutron energy) for the Uranium 238 and Iron 56 isotopes that constitute 

two of the largest components of a sodium cooled fast reactor. Note that these are on a log-log scale. Most 

other isotopes present in a nuclear reactor have cross section representations with similar complexity with 

widely-varying energy dependencies.  

 
Capture Cross Section for U-238 

 
Total Cross Section for Fe-56 

Figure 2. Cross section Data for U-238 and Fe-56. 



 

The large amount of material heterogeneity in the geometry combined with the severity of the energy 

dependence in the cross section data leads to flux distributions of comparable complexity to the 

space-energy distribution of the cross section data. As such, it is entirely impractical to use a smooth 

polynomial functional representation in energy, and all historical and modern energy discretizations employ 

a “multi-group” (0th order finite element in energy) flux representation [1] by utilizing “effective” 

multi-group constants. Additionally, because neutron scattering couples the energy and angle terms, with 

the rapid changes in the energy dependence of the cross sections seen in Figure 2 come rapid variations in 

the magnitude of the flux in the angular variable. When combined, we estimate that a first-principles 

approach will require 100,000 energy groups and 1,000 angles (collocation or 0th order finite elements on 

the sphere), which leads to approximately 1017 degrees of freedom in space, energy, and angle for each time 

step. Thus, even on today’s supercomputers, some form of approximation is necessary to obtain solutions. 

III. Neutron Transport Equation for Reactor Analysis 

Fortunately, we only need a solution that meets the requirements of the engineering analysis, and 

thus simplifications can be implemented. The first and most important simplification reduces the demands 

of the energy representation. To do this we implement multi-level modeling and simplification steps, the 

details of which are beyond the scope of this paper, but whose purpose is to produce a set of coarse group 

cross section data that preserve key neutron reaction rates in each energy group [1]. These approximations 

rely upon substantial experience on particular reactor systems and experimental validations of the predictive 

abilities of the legacy tools. As we develop our code, the significance of these approximations will diminish 

relative to the legacy approaches, as we will enable a better matching of the “reference” configuration used 

in the coarse group cross section data to the system at hand. The end result is that we reduce the need for 

100,000 groups to much less than 2,000 groups, with a general ability to use less than 100 groups for most 

analyses (2 groups are typically used in most industry reactor analysis codes). In this work, we use a 33 

group approximation that pushes our current solver to the limits of the available memory on BlueGene/P. 

We next consider the time discretization. The average speed and multiplication time of neutrons in 

a reactor core is such that time steps on the order of milliseconds are needed for rapid transient scenarios 

such as a control rod ejection accident, making the neutronics component the “stiff” part of the overall 

multi-physics system. The duration of the simulated accident varies from hours to days, which makes the 



 

time spent in the neutron transport solver the limiting simulation factor. Most modern legacy tools avert this 

problem by using a point kinetics (space-angle-energy independent) model or a few energy-group diffusion 

theory methodology on a structured geometry grid [1]. With the improvements in the energy approximation 

and the use of transport rather than diffusion theory, we expect to significantly improve the accuracy and 

fidelity of the safety analysis modeling for these simulations. 

III.A. Overview of the Development of Parallel Tools 

Unstructured mesh deterministic methods use the multi-group approximation in energy combined 

with either a hybrid finite element or a continuous finite element decomposition in space. Historical angle 

discretization schemes include spherical harmonic (polynomial) expansions, finite element, or angle 

collocation (0th order finite element known as discrete ordinates) [1]. To date, most parallelization efforts in 

neutron transport have focused on improvement of the structured geometry discrete ordinates solvers [7-9] 

with moderate to good success on small to medium-range parallel machines, although it is difficult to find 

performance data for these tools on more than 2048 processors. Unfortunately, these tools are not useful 

given the unstructured geometries required in a coupled physics environment. While some might argue that 

we can impose local homogenization rules, this merely substitutes one problematic legacy approach with 

another (albeit better) one. Even if we were to take that approach, it would seem wiser to just use the legacy 

transport tools based upon assembly homogenization [10], as those tools can easily execute on serial 

process machines. In addition to our own work, there has been substantial research on unstructured 

methodologies [11-13], but these codes are either not obtainable, not set up for the specific needs of reactor 

analysis, or not proven for large geometry heterogeneous applications on massively parallel machines. 

We also remark briefly that large scale parallelization of the Monte Carlo method for 

“embarassingly parallel” calculations has been particularly effective. However, the dynamics problems that 

we are targeting include massive memory requirements that prevent each processor from accessing the full 

space-energy representation of the problem in the Monte Carlo method. The solution is to use domain 

decomposition in the Monte Carlo algorithm which severely impacts its scalability. Also, Monte Carlo 

solutions can contain stochastic uncertainties on the order of the expected perturbations from the 

thermal-structural feedback effects. Thus, a massively parallel deterministic solver for dynamics problems 

truly fills a gap in the available predictive capabilities of modern neutron transport tools. 



 

IV. UNIC: Modernization and Development of Reactor Analysis Tools 

In this section we present an overview of our solution algorithm to the time-independent (the initial 

condition) neutron transport equation. We also discuss algorithmic choices we have made to reduce 

execution times by cutting down on extraneous floating point work and maintaining parallel scalability. 

IV.A Neutron Transport Equation 

The multigroup form of the neutron transport equation consists of G equations with 1<g<G: 

,
ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( , )g t g g gr r r S rψ ψΩ⋅∇ Ω + Σ Ω = Ω
� � � � �

. (1) 

ˆ( , )g rψ Ω�  is the group neutron angular flux and , ( )t g rΣ �
 is the total cross section (sum of all reaction 

probabilities). Thus, the first term is a streaming/leakage term, and the second is a collision removal term. 

The system of equations is coupled via the source ˆ( , )S r Ω�  which we expand in terms of group-to-group 

scattering and fission as 
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Here, k is the system eigenvalue, also known as its effective multiplication factor. The scattering source in 

Eq. (2) redistributes neutron energies and angles in an anisotropic way, while the fission source redistributes 

neutrons into the isotropic fission spectrum χ.  

Based upon the parallelization successes of other authors with the Poisson equation, we focused 

part of our initial development on second-order methodologies that implement continuous spatial finite 

element approximations such that we can take advantage of parallel conjugate gradient methods. To obtain 

the second-order discrete ordinates formulation used in SN2ND, we expand the angular flux in Eq. (1) into 

even-parity, ˆ( , )g rψ + Ω� , and odd-parity, ˆ( , )g rψ − Ω� , components 

ˆ ˆ ˆ( , ) ( , ) ( , )g g gr r rψ ψ ψ+ −Ω = Ω + Ω� � �
. (3) 

We then rewrite Eq. (1) using Eq. (3) to get the first order even-parity and odd-parity equations 

,
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. (4) 

Assuming a discontinuous finite element approximation in the odd-parity flux, we solve for the odd-parity 

flux and substitute it into the even-parity equation to obtain the second-order even-parity transport equation. 
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We next weight Eq. (5) with a set of spatial trial functions ( )f r
�

, integrate over volume, and apply the 

divergence theorem to the first term such that we obtain the natural vacuum boundary condition term on the 

surfaces of the domain boundary. 
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 (6) 

Finally, we implement a continuous finite element formulation for the even-parity flux. The coefficient 

matrix produced from the terms on the left side of Eq. (6) can be shown to be symmetric positive definite 

and thus suitable for the conjugate gradient methodology, provided that the terms on the right side of Eq. (6) 

are “lagged” in an iterative approach to be discussed below. 

IV.B. SN2ND Solver Implementation 

As mentioned, the spatial approximation is treated via a standard continuous finite element method, 

and we employ classic domain decomposition where weights can be applied to the vertices to balance the 

local work with the communication costs required to connect the domain. In angle, we chose the discrete 

ordinates approximation, which requires us to define a set of directions on the unit sphere. With regard to 

parallelization, we employ the generic decomposition of (S)pace, (A)ngle, and (G)roup shown in Figure 3.  

 

Figure 3. Space, Angle, Group Decomposition for a Parallel Machine. 

In this approach, each MPI process sees four communicators: space, angle, group and the global 



 

communicator. The advantage of this approach is that the group and angle communication does not overlap 

with respect to space, and thus the communication in these two directions can be done simultaneously on 

the parallel machine. 

When a discrete ordinates approximation is applied to Eq. (6), we find that, for each group, the set 

of angular equations are only coupled via the source term on the right side of Eq. (6) termed the within 

group source. This equation is typically cast into scattering iterations where the scattering source is lagged 

in iteration [1,2]. The equation is accelerated by solving a synthetic diffusion equation for the 

angle-integrated (scalar) flux, which is essentially a multi-grid preconditioner in angle [5]. Thus, a 

“scattering iteration” of SN2ND involves solving 100 diffusion-like equations (assuming 100 directions in 

the angular cubature) simultaneously to obtain the angular discrete ordinates flux for each group. These 

equations are currently solved using a parallel SOR methodology available in PETSc [17], although we are 

now moving towards developing a multi-grid preconditioner. To update the source (or perform a synthetic 

acceleration step) on the right side of Eq. (6), we then collect the information on the angular communicator 

of each process. This requires a global reduce operation for the locally visible spatial mesh partition for 

each group (simultaneous communication on group and space communicators if fully partitioned in energy). 

In our current implementation, we do not consider parallelization by group because we can already 

saturate the available parallel machines with our space-angle parallelization scheme. However, this means 

our memory requirements are linear with respect to the number of energy groups, which can be problematic 

on low memory machines like BlueGene/P [3]. In our current solver, we can distribute any number of 

angles on a given process and generally have found that two to three angles per process works best. With 

regard to solving the synthetic acceleration equation, we have currently assigned the first process on each 

angular communicator to again utilize the parallel SOR algorithm in PETSc, which introduces a load 

imbalance by angle parallelization. 

The steady state transport equation shown in Eqs. (1) and (2) requires an eigenvalue search 

procedure to obtain k and the associated flux vector. The gold standard for all modern neutron transport 

codes is to use inverse power iteration [1] as it minimizes the amount of effort required to find the dominant 

eigenvalue. Assembling all of the group and direction equations derived from Eq. (6), we write 
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where A  is the coefficient matrix,B is the scattering source operator, andF is the fission source operator. 

The power (or outer) iteration methodology finds the dominant k eigenvalue using the following recurrence 

relationships 
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In SN2ND, we currently use the Gauss-Seidel method to iteratively invert T  during each outer iteration in 

Eq. (8), because for fast reactors only a single iteration is required for convergence (because neutrons only 

lose energy during scattering events over the energy range of interest in fast reactors, the energy coupling is 

lower triangular). For time dependent problems and thermal reactor calculations, a Gauss-Seidel scheme is 

not expected to be as efficient, and we intend to use a more general Krylov method with our current 

Gauss-Seidel scheme as a preconditioner. We note that a Krylov solver will also assist in making the above 

methodology scalable in energy for time dependent problems. 

 We note that this approach does not require T to be exactly inverted at each outer iteration. Instead, 

we only require that the error in the flux vector in Eq. (7) be slightly lower than the error in the fission 

source vector. We implemented an optimized scheme to account for this behavior and combined it with 

conventional Tchebychev acceleration [1,2]. Together, these approaches have allowed us to significantly 

reduce the overall time to solution. Figure 4 shows the impact of making these optimization changes on the 

C5G7 benchmark [18] where the outer iteration eigenvalue, fission source, and flux vector are plotted in 

addition to the within group flux error for each energy group. In Figure 4, the un-accelerated approach takes 

roughly twice the number of outer iterations as the Tchebychev accelerated one. More importantly, the 

effort spent on solving the within group flux equations for each outer iteration is substantially reduced in the 

optimized version (the targeted flux error obtained for each group flux at each iteration is relaxed). In 

practice, this makes the effort spent on each outer iteration nearly constant, although the dynamic error 

adjustments can introduce variability in the total solution time from problem to problem by requiring 

slightly different numbers of outer iterations as will be seen in the numerical results.  
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Figure 4.Optimization and Tchebychev Acceleration Impact on the C5G7 Benchmark. 

V. Problems Chosen For Study 

Two reactor problems have been chosen to demonstrate the performance of the SN2ND solver. 

Both problems consider the steady state eigenvalue solution, the initial condition for the time dependent 

problems that we will be studying in the near future. Also, both problems cannot be solved well using 

existing homogenization methodologies. For both problems, we present weak scalability as we increase the 

number of angles on the entire BlueGene/P machine at Argonne and most of the XT5 machine at ORNL (no 

issues are expected in using all 150,000 processors of this machine, but time constraints prevented an 

attempt at this). These weak scaling studies are highly relevant to our work to assess the impact of the 

angular discretization on the accuracy of the eigenvalue (as well as the flux solution, although the 

eigenvalue is more convenient for reporting). As mentioned, the SN2ND solver allows for parallelization by 

direction, and we generally have found it best to use two or three directions per process to balance the 

communication costs with the computational burden. However, with the memory limitations on BlueGene/P 

and our desire to obtain comparable results on XT5, we executed the SN2ND solver with only a single 

angle per process. As will be shown, the time required to update the scattering source in Eq. (6) is a 

substantial amount of computational effort and we have not yet optimized it for performance. We 

emphasize that the SN2ND solver (as part of UNIC) is in the early stages of development, and its focus has 

been on demonstrating the feasibility of higher fidelity reactor core simulations on large-scale parallel 

machines. These simulations have helped identify several performance issues that, when addressed, will 



 

substantially improve the per-processor performance of the SN2ND solver (potentially an order of 

magnitude or more). 

V.A PHENIX End of Life Experiments 

The first problem is taken from the end of life experiments of the PHENIX reactor [19]. A solution 

using UNIC is desired because the legacy solvers (based on conventional homogeneous approaches) have 

difficulty in representing various control rod configurations accurately. In this benchmark, only the control 

rod assemblies are represented heterogeneously. This type of spatial representation is directly relevant in 

that our initial time dependent calculations will also focus on representing only part of the geometry 

heterogeneously. Figure 5 depicts a slice of the PHENIX core center along with a typical unstructured mesh 

(prisms) and the flux solution at two important energy groups in the lower part of the control rod assembly 

created using VISIT [20]. We note that the solutions obtained with SN2ND are, to the best of our 

knowledge, the most reliable means of obtaining the correct solution compared with all other modern 

deterministic solution methods.  

   
0.4 MeV 

 
2 eV 

Figure 5. Planar Configuration of PHENIX Geometry Model and Flux Solution 

At present, we have not performed all of the requested calculations desired by the benchmark 

authors, nor have we done an essential multi-group accuracy assessment; only space and angle studies have 

been performed. We chose a standard 33-group cross section set with a P3 expansion of the scattering kernel 

which we typically use for homogenous problems. Because the problem specification was originally 

intended for homogeneous problems (which is indicative of the simulation capabilities of most available 

tools), we had to construct a specification appropriate for heterogeneous geometries. Unfortunately, we 

made a geometric error in the thermal expansion of the control rods that compromises the accuracy of our 

results, although the code performance is unaffected. We intend to resolve any remaining geometry and 



 

cross section uncertainties for the final paper or a later publication. Using CUBIT [21], we created meshes 

considering different degrees of radial mesh refinement (three levels) and axial mesh refinement (three 

levels), leading to a total of nine meshes. Our simulations demonstrated that the medium level approach for 

both the radial and axial directions was sufficiently accurate. This mesh contains 284,682 quadratic 

LaGrangian prismatic elements and 1,741,833 spatial vertices. 

In Table 1, we present the weak scaling results we achieved using SN2ND on BlueGene/P. We 

partitioned the mesh using MeTiS [22] into 2,048 pieces leading to ~850 vertices per process, which is near 

the minimum that we can use with the parallel SOR algorithm in PETSc (below this, communication 

overhead increases substantially on both machines). As we increase the number of angles (note that the 

even-parity formulation only requires the half-sphere set of angles or 2π), we make a corresponding 

increase in the number of processors. The eigenvalue rapidly converges as the number of directions is 

increased, which is expected given that a majority of the domain is homogenized. An initial glance indicates 

a drop in weak scaling to 75% on the entire machine; however, the number of “Fission” (outer) iterations 

needed to solve Eq. (8) is correspondingly seen to increase as well. It is important to understand that the 

number of fission source iterations required for convergence varies naturally depending upon both the 

space-angle-group approximation, the effectiveness of Tchebychev acceleration on the fission iterations, 

and the peculiarities of our optimization scheme (for adapting tolerances on each fission source iteration), 

and that none of these are tied to the overall parallelization of the algorithm, which is primarily focused on 

space-angle distributed work of the scattering iterations. If we normalize the time to solution based upon the 

number of fission iterations, then we can claim to achieve 97% weak scalability with 128 angles on 131,072 

cores of XT5 and 88% weak scalability with 160 angles on 163,840 cores of BlueGene/P. 

Table 1. Weak Scaling Study by Angle for the PHENIX Problem on BlueGene/P 

Cores 4π 
Angles 

keff 
Fission  

Iters. / Time 

Total 
Time 
(sec) 

Source 
Update 
(sec) 

Weak 
Scaling 

32,768 32 0.96006 23 / 152 3493 2934 100% 
49,152 48 0.96004 23 / 152 3510 2933 100% 
65,536 64 0.96007 23 / 153 3526 2934 99% 
73,728 72 0.96015 23 / 156 3593 2934 97% 
131,072 128 0.96019 27 / 156 4209 3437 83%* 
163,840 160 0.96019 27 / 173 4676 3436 75%* 

* See text for discussion on “effective” weak scalability 



 

Table 2 shows the weak scaling results on up to 131,072 cores of XT5, as well as the “effective” weak 

scaling numbers that are generated by normalizing to 25 fission iterations. The larger memory of the XT5 

machine also allowed us to use our finest mesh, which contains 833,280 quadratic LaGrangian prismatic 

elements and 4,017,189 vertices.  

Table 2. Weak Scaling Study by Angle for the PHENIX Problem on XT5 

Cores 4π 
Angles 

keff 
Fission 

Iters. / Time 

Total 
Time 
(sec) 

Source 
Update 
(sec) 

Weak 
Scaling 

Effective 
Weak 

Scaling 

32,768 32 0.96017 25 / 63 1574 851 100% 100% 
49,152 48 0.96014 22 / 64 1399 746 112% 99% 
65,536 64 0.96017 22 / 64 1402 745 112% 99% 
98,304 96 0.96017 25 / 65 1623 847 97% 97% 
114,688 112 0.96017 26 / 65 1687 882 93% 97% 
131,072 128 0.96029 28 / 68 1902 948 83% 93% 

 

Similar to the previous case, the number of fission source iterations varies as we change the 

space-angle-group approximation (previously we saw between 23 to 27 on BlueGene/P, here we see 22 to 

28 iterations). We note that the total time to solution drops substantially for XT5 (which is expected since a 

XT5 processor is about three times faster in clock frequency), and the ratio of updating the source to total 

time drops from ~80% on BlueGene/P to ~50%. As a final note, the largest problem we executed on 

BlueGene/P in Table 1 solved 9.2 billion degrees of freedom, while the largest problem on XT5 in Table 2 

solved 17 billion degrees of freedom. 

V.B Zero Power Reactor 6 Experiment 6A 

The other problems we chose to simulate for our project this year are the Zero Power Reactor 

(ZPR) experiments 6a and 7 [23]. The ZPR experiments were performed to acquire fundamental data on 

nuclear reactor designs of interest. These particular experiments focused on uranium fueled (ZPR-6/6a) and 

plutonium fueled (ZPR-6/7) sodium cooled fast reactor systems. Eventually, the SN2ND simulations of 

these experiments will be used to help validate the code and better ascertain the approximation errors in 

legacy approaches by enabling direct comparisons of computed results. While the experiment ZPR-6/7 has 

more data and is our preference, we have only set up the 6a experiment at present. For scoping studies, we 

also reduced the number of unique fuel drawer types and introduced asymmetries into the geometry to 

investigate local flux heterogeneities. In essence, these results provide a preliminary assessment of the 



 

space-angle requirements of these experiments and have allowed us to identify the parts of the solver that 

need improvement before the entire problem can be simulated. 

Figure 6 provides two pictures of the explicit geometry model (left, center) and the power 

distribution for the enriched U-235 plates in the back matrix assembly (right). A gray color in Figure 6 is 

used for the matrix tube and drawer fronts that are loaded into each tube position. The solid green squares 

are two inch depleted uranium blocks directly loaded into the tubes surrounding the main core and act as a 

blanket. We separated the matrix assemblies, withdrew one of the drawers from the front matrix assembly, 

and pulled a section of the plates out to give a better perspective on the overall geometry. 

   

Figure 6. ZPR-6 Experiment 6A Geometry and U-235 Plate Power Solution. 

The fully-explicit geometry is rather difficult to solve because of the large number of material 

boundaries as indicated by the left picture in Figure 7. Also, for even-parity methods, the extremely small 

voids separating the plates and various other components are unacceptable, and we have made the 

geometric simplifications shown in Figure 7 (center), which we expect to refine with time.  
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Figure 7. Fuel Drawer Model for Initial ZPR-6 Assembly 6A Benchmark 



 

We note that in all legacy homogenization approaches, the plates in each drawer are effectively “mixed 

together”, which makes the observed plate-power distribution generated using SN2ND in Figure 6 (right) 

and the 1.1 MeV flux distribution in an axial slice of the center-most drawer shown in Figure 7 (right) 

impossible to obtain. 

Even with the simplification shown in Figure 7 (from left to center), we generate quadratic finite 

element meshes with upwards of 20 million vertices that are currently beyond the memory on BlueGene/P. 

Thus we employed linear meshes for our initial scoping and parallel scalability studies, which we feel are 

indicative of the computational effort in the preconditioning phase that we will expect to perform once 

spatial p-refinement is in place. We constructed a coarse mesh with 545,664 hexahedral elements and 

575,168 vertices to use on BlueGene/P, and a more refined mesh with 2,058,264 hexahedral elements and 

2,119,175 vertices to use on XT5. Switching these meshes to quadratic typically increases the number of 

vertices by a factor of 8 to 9, and the more refined mesh is what we expect to need for the homogenization 

approach shown in Figure 7. 

For brevity, we only provide weak angle scaling results for the XT5 machine as Table 3, although 

we note that we also successfully simulated this problem on 163,840 cores of BlueGene/P. We split the 

mesh into 512 pieces with ~4139 vertices per process.  

Table 3. Weak Scaling by Angle and Flop Rate for the ZPR 6/6a Problem on XT5 

Cores 
4π 

Angles 
keff 

Fission 
Iters. / 
Time 

Total 
Time 
(sec) 

Eff. 
Weak 

Scaling 

Aggregate 
Tflop/s 

% of 
Machine 

Peak 

% of 
Memory 
Bandwith 

Bound 

8,192 32 1.00542 20 / 37 745.0 100% 5.3 7.1 43 
16,384 64 1.00633 17 / 38 647.9 98% 10.5 6.9 42 
32,768 128 1.00632 23 / 42 968.7 88% 19.2 6.4 39 
65,536 256 1.00761 27 / 45 1204.6 83% 36.6 6.1 37 
131,072 512 1.00761 29 / 50 1441.3 75% 67.9 5.6 34 

 

While it appears as though the eigenvalue is inconsistently converging, this is an artifact of the 

Legendre-Tchebychev cubature. With the Legendre-Tchebychev cubature, the number of directions defined 

perpendicular to the plate geometry can be set independently of those defined parallel to the plate geometry. 

Because of the monolithic plate orientation we see a correspondingly strong heterogeneity when we 

increase the number of directions perpendicular to the plates. Even going from 512 to 640 angles on 

BlueGene/P provided a change of 0.03% in the eigenvalue (which is significant in the reactor physics 



 

community) indicating this explicit geometry problem has a solution with a much stronger angular 

dependence than the preceding PHENIX problem. 

In Table 3, we again have good weak scaling, although we do see a drop in performance as the 

number of angles is increased, which is consistent with the behavior seen in PHENIX on the preceding 

results for both BlueGene/P and XT5. At present we are not certain whether this is a load imbalance in 

angle due to the heterogeneity (some directions can require more effort to solve than others) or whether this 

is an artifact of the machine network (we are performing a global reduce operation of a significantly sized 

vector on the angle communicator which appears to lose scalability on XT5). 

In addition to the scaling data in Table 3, we also indicate the floating point performance. Our 

current preconditioners heavily rely upon a sparse-matrix conjugate gradient solver in PETSc. It is well 

known that the performance of such sparse-matrix vector multiplications is limited by the available memory 

bandwidth. On XT5, the STREAM Triad operation achieves about 2.27 GB/s per core on XT5 when all 

eight cores are used (consistent with the approach used for all of our calculations). Following the 

methodology in Gropp et al [24], we estimate the memory bandwidth limited performance bound to be 

~17% of the theoretical machine peak for sparse matrix-vector multiplication (about 6 bytes per flop). In 

Table 3, we show the percentage of peak machine flop performance that SN2ND is currently achieving in 

the second-to-last column, and the percentage of memory bandwidth bound in the last column. These data 

show that UNIC achieves about 5-7% of theoretical peak and 34-43% of the memory bandwidth bound on 

this machine. Therefore, per-processor performance, though low, appears to be scaling well over a sixteen 

fold increase in the processor core count. Given the known issues were identified with the scattering source 

update routines recently and the relatively small amount of work that we were able to invest in the 

preconditioner development until now, low floating-point performance was not unexpected. Over the 

coming months, we will work on optimizing the floating point performance of the code further. 

VII. Conclusions and Future Work 

The preceding calculations give us much hope that we will actually be able to meet the time 

dependent neutronics requirements of the multi-year development and analysis project we are working on 

for sodium cooled, fast reactors. With relatively little manpower invested into the SN2ND solver, we were 

able to combine several “off the shelf” computing packages and rapidly produce a neutronics solver that can 



 

reliably and justifiably utilize large scale parallel machines. This new tool already provides accurate and 

reliable solutions to several difficult numerical benchmark problems for neutron transport, and we anticipate 

obtaining accurate solutions to the problems discussed in this manuscript. We hope to have made clear the 

potential of SN2ND to effectively use available large scale machines in addition to future, larger sized 

machines. We have demonstrated weak scaling of over 75% on 163,840 cores of BlueGene/P and over 

130,000 cores of XT5, and completed a space-angle convergence study of two reactor problems. In both 

problems we presented flux and/or power solutions that are not achievable using legacy deterministic tools. 

We discussed how the SN2ND algorithm is scalable and, despite its nascent development status, has been 

largely successful at producing new science results using BlueGene/P and XT5. 

In the near future, we will be carrying out extensive performance optimizations at the algorithmic 

and implementation levels while adapting to the hostile memory hierarchy limitations. First, we need to 

improve our per-processor performance on the spatial discretization. This will improve our overall 

performance in the above weak scaling results by reducing communication overhead on the angular 

communicator. We are currently initiating work on two fronts to accomplish this: spatial p-refinement and 

the utilization of tensor-matrix vector multiplication techniques that have previously demonstrated excellent 

flop performance [25]. With multi-grid p-refinement, we expect to vastly increase the amount of local work 

we perform without being concerned with the low availability of memory. Combined with better-optimized 

routines, we expect to replace the memory-bandwidth limited sparse-matrix operations we are currently 

relying upon with more efficient tensor-matrix vector operations [25] that are compatible with our method. 

Second, we need to improve our scaling performance in angle. We have already identified a poorly 

performing sparse matrix-vector algorithm in the scattering source update process. We can again utilize 

tensor-matrix vector operations in addition to parallelizing the work on the angle communicator (we 

currently duplicate this work on each process). In addition to these changes, we need to implement a fixed 

iteration algorithm by angle to impose proper load balancing and use more than one angle per process. This 

will reduce the communication costs on the angle communicator that become important at high angle 

parallelization. A final change we need to make is to partition the synthetic equation over more processors 

of the angular communicator (currently assigned to just the first process). This should allow us to further 

reduce the time to solution and reduce the current load imbalance we see in angle due to the synthetic 



 

equation. 

Finally, we must implement a Krylov methodology using the existing algorithm we have built as a 

preconditioner. This is essential because with time dependent problems the inclusion of the fission source 

will greatly degrade the performance of the Gauss-Seidel algorithm. This will also allow us to do 

parallelization by group which will allow us to effectively utilize larger future machines with millions of 

processors. Our long term goal is to be able to perform calculations with 200+ groups, 400+ angles, and 

100+ million vertices efficiently so that we can start doing time-dependent calculations with thousands of 

time steps in a coupled multi-physics simulation framework that resolves the tight coupling among physics 

modules with the same fidelity as is done in each physics. 
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