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Abstract

The UNIC code is being developed as part of the BO&iclear Energy Advanced Modeling and
Simulation (NEAMS) program. UNIC is an unstructyrééterministic neutron transport code that allaws
highly detailed description of a nuclear reactorecin our numerical simulations. The goal of our
simulation efforts is to reduce the uncertaintiad &iases in reactor design calculations by preively
replacing existing multi-level averaging (homogettian) techniques with more direct solution methods
based on first principles. Since the neutron trartspquation is seven dimensional (three in spawee,in
angle, one in energy, and one in time), these sitiaus are among the most memory and computationall
intensive in all of computational science. To motlted complex geometry of a reactor core, billiofis o
spatial elements, hundreds of angles, and thousHretgergy groups are necessary, which leads tolgaro
sizes with petascale degrees of freedom. Therefioese calculations exhaust memory resources oardur
and even next-generation architectures. In thigpape present UNIC simulation results for two intpat
representative problems in reactor design/analyBIdENIX and ZPR. In each case, UNIC shows excellen
weak scalability on up to 163,840 cores of Blue@@n@rgonne) and 131,072 cores of XT5 (ORNL).
While our current per processor performance isideal, we demonstrate a clear ability to effectvel
utilize the leadership computing platforms. Over toming months, we aim to improve the per-proaesso
performance while maintaining the high parallei@éicy by employing better algorithms (such astiapa
p-refinement, optimized matrix-tensor operatioms] aeighted partitioning for load balancing). Combg
these additional algorithmic improvements with &rgarallel machines in the near future shouldvalls
to realize our long term goal of explicit geometgupled multiphysics reactor simulations. In thegaun,
these high fidelity simulations will be able to lage expensive mockup experiments and reduce the

uncertainty in crucial reactor design and operaii@arameters.



|. Introduction

Nuclear engineering has a rich history of simulati@sed design following sound economical and
safety-driven principles. However, many of the modecactor modeling codes were developed in the
seventies and eighties and targeted serial plasfdsetause of the high computational costs of explic
geometry approximations. In this paper, we desdtigedevelopment of a new reactor analysis code tha
bridges the gap between the approximation-basetyemols and a first-principles approach. The cede
discuss in this paper is specifically targeteddpplications where the legacy tools are leastbldjeand its
development is only possible given the availabitityhe large scale parallel machines.

The performance of nuclear power reactors is gagetvy the fission rate of the uranium based
fuel. A predictive analysis capability is generatlyguired to optimize the safety characteristicsthuf
reactor and minimize the costs associated with aijmgy the reactor. This analysis capability is dedi
from the solution of a Boltzmann integro-differetitransport equation for the neutron density. This
equation is widely used in industrial and scieatifndustry and appears in atmospheric modeling,
astrophysical and nuclear weapons research, meglgaics, and industrial applications such as nainer
assaying and oil-well logging. Among these field® most significant parallelization efforts to eldtave
been applied to the thermal radiative transportagqo (gamma and x-rays) used in weapons related
research, and researchers have utilized severdl stqpercomputers to perform simulations. Unforteha
many of the modeling challenges that arise in bieenhal radiative and the neutron transport equstae
sufficiently different that direct technology trdesability between the codes is impractical.

Our focus is on nuclear reactor systems that censidarge distributed fission source, where the
primary unknown of the Boltzmann transport equati®rihe neutron density or, in nuclear engineering
vernacular, the neutron “flux” (density multiplidloly velocity). This equation has seven independent
variables: three in space, two in angle, one inrggneand time. Because an accurate, first-prinsiple
discretization of these variables is untenableadggsolvers are typically based on approximatidres t
reduce this dimensionality. The neutron transpquiagion can also be shown to asymptotically lirithe
canonical hyperbolic, elliptic, and parabolic palrtdifferential equation forms under simple changes
material properties that may all occur in a nuckeactor. In thick, highly-scattering regions, thensport

equation limits to a (parabolic) time-dependenfudibn equation, which, in steady-state, is elliptin



“free-streaming” regions, the limiting behavior tsyperbolic. Thus, the large dimensionality and
many-faceted solution behaviors for this equatimsent the greatest challenges to the code develope

Our focus is on immediate improvement to areas @tegacy solvers are insufficient: nuclear
reactor dynamics. These problems require the solwf the time-dependent Boltzmann transport eqoati
and the simultaneous solution of the thermal-hyliraand structural-mechanics equations [1]. Tworgea
ago we started a multi-year development projectremte a dynamics solver capability using the open
science high performance computing resources abrirg National Laboratory (IBM BlueGene/P) and
Oak Ridge National Laboratory (Cray XT5) [2-4]. Thmtial condition for this formulation requireseh
solution of a time-independent k-eigenvalue equalig that is the focus of this manuscript. We ntbtat
with a linear implicit time formulation, all subsgent solutions at the end of each time step exkisiy
similar requirements to that needed to solve thgalink-eigenvalue problem. We focus on the recent
success we have had with the SN2ND solver [5], ivkimlves the second-order even-parity formulatibn o
the neutron transport equation.
I1. Neutron Transport Simulation Complexity

The primary issue in nuclear reactor analysis ésdiear scale of the problem to be solved. In this
regard, we have thus far limited our dynamics solevelopment to sodium cooled, fast reactor dasigs
these reactors have been proposed as an alternatiezluce the volume of spent fuel disposition. (i.
fission the fuel rather than store it indefinitelghd the nuclear industry has insufficient engiimeer
experience. With time, we will also apply our remcanalysis tools to more prevalent pressurizecemwat
reactor (PWR), boiling water reactor (BWR), and @&nadian deuterium uranium (CANDU) reactors [6]
to help address the smaller pool of unansweredtignsshat these thermal reactor designs pose.

We begin with the spatial domain of a typical sadicooled fast reactor, some examples of which
are shown in Figure 1. For neutron transport, welizait our focus to just the “core” of the reactrown
in the center picture of Figure 1, the scale ofolihrelative to the plant, can be inferred from tigltmost
picture in Figure 1. The core is typically made afpabout two to five hundred ducted fuel assemblies
similar to those depicted in the left picture ofjtiiie 1. The assemblies are composed of many (6Pf360
pins. Radially, the core is built of fuel assembltbat form a rough cylinder, leading to a totaldeling

diameter of between two to six meters and a hedftihree to five meters. This core size and thdigba



heterogeneity of the fuel assemblies require apprately half a billion to a billion finite element®

accurately represent the spatial heterogeneityttamdssociated spatial gradients in the neutrosiyen

@ | E
e
L e )
Primary
Wegss|
- DRACS
Care

Fuel Assembly
Design
Figure 1. Fuel Assembly, Reactor, and Plant Schematics of Sample Sodium-Cooled Fast Reactor
Next we consider the energy and angular requir¢sreecause they are tightly coupled. Neutrons
lose fractions of their energy by scattering withtemials, and the amount of energy loss per saadgter
depends on the scattering material and angle. &i@uishows the “cross section” data (roughly, the
probabilities of interaction versus neutron enerfgy)the Uranium 238 and Iron 56 isotopes that tituts
two of the largest components of a sodium coolsti rieactor. Note that these are on a log-log sdédest

other isotopes present in a nuclear reactor havgscection representations with similar complewiith

widely-varying energy dependencies.
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Figure 2. Cross section Data for U-238 and Fe-56.



The large amount of material heterogeneity in teengetry combined with the severity of the energy
dependence in the cross section data leads to dleitibutions of comparable complexity to the
space-energy distribution of the cross section.dagsuch, it is entirely impractical to use a sihmoo
polynomial functional representation in energy, atichistorical and modern energy discretizatiompky
a “multi-group” (0" order finite element in energy) flux representatifi] by utilizing “effective”
multi-group constants. Additionally, because neutsgattering couples the energy and angle terntk, wi
the rapid changes in the energy dependence ofrtfss sections seen in Figure 2 come rapid varigition
the magnitude of the flux in the angular variabléhen combined, we estimate that a first-principles
approach will require 100,000 energy groups an@a @ngles (collocation ofOorder finite elements on
the sphere), which leads to approximately’ Hegrees of freedom in space, energy, and angkesft time
step. Thus, even on today’s supercomputers, somedbapproximation is necessary to obtain solgion
I11. Neutron Transport Equation for Reactor Analysis

Fortunately, we only need a solution that meetsréogirements of the engineering analysis, and
thus simplifications can be implemented. The finstl most important simplification reduces the deasan
of the energy representation. To do this we implanmaulti-level modeling and simplification stepbgt
details of which are beyond the scope of this papetr whose purpose is to produce a set of coamepg
cross section data that preserve key neutron ocgacdites in each energy group [1]. These approiomst
rely upon substantial experience on particulartaagystems and experimental validations of theliptiere
abilities of the legacy tools. As we develop oudeothe significance of these approximations withidish
relative to the legacy approaches, as we will enalibetter matching of the “reference” configunaticsed
in the coarse group cross section data to the myatehand. The end result is that we reduce thd fare
100,000 groups to much less than 2,000 groups, avijeneral ability to use less than 100 groupsriost
analyses (2 groups are typically used in most itmgugactor analysis codes). In this work, we us&é3a
group approximation that pushes our current sdlvéine limits of the available memory on BlueGene/P

We next consider the time discretization. The ayerspeed and multiplication time of neutrons in
a reactor core is such that time steps on the aflmilliseconds are needed for rapid transienhades
such as a control rod ejection accident, makingribetronics component the “stiff” part of the oukra

multi-physics system. The duration of the simuladéedident varies from hours to days, which makes th



time spent in the neutron transport solver thetiimgisimulation factor. Most modern legacy toolg@vhis
problem by using a point kinetics (space-angle-gnérdependent) model or a few energy-group diffasi
theory methodology on a structured geometry grjd\[dith the improvements in the energy approximatio
and the use of transport rather than diffusion thewe expect to significantly improve the accuramnd
fidelity of the safety analysis modeling for theseaulations.
I11.A. Overview of the Development of Parallel Tools

Unstructured mesh deterministic methods use thei-gndup approximation in energy combined
with either a hybrid finite element or a continudirste element decomposition in space. Historaadjle
discretization schemes include spherical harmopiglyghomial) expansions, finite element, or angle
collocation (8 order finite element known as discrete ordinate)To date, most parallelization efforts in
neutron transport have focused on improvement efsthuctured geometry discrete ordinates solvef [7
with moderate to good success on small to mediurgegarallel machines, although it is difficultfiod
performance data for these tools on more than 20d8essors. Unfortunately, these tools are notulisef
given the unstructured geometries required in glealphysics environment. While some might argua th
we can impose local homogenization rules, this iesebstitutes one problematic legacy approach with
another (albeit better) one. Even if we were t@tdiat approach, it would seem wiser to just ueddfacy
transport tools based upon assembly homogeniz§tidhy as those tools can easily execute on serial
process machines. In addition to our own work, éhbas been substantial research on unstructured
methodologies [11-13], but these codes are eitbeobtainable, not set up for the specific needsattor
analysis, or not proven for large geometry hetemegeas applications on massively parallel machines.

We also remark briefly that large scale parall¢iora of the Monte Carlo method for
“embarassingly parallel” calculations has beenipalarly effective. However, the dynamics probletiat
we are targeting include massive memory requiresnérat prevent each processor from accessing the fu
space-energy representation of the problem in tloat® Carlo method. The solution is to use domain
decomposition in the Monte Carlo algorithm whiclvesely impacts its scalability. Also, Monte Carlo
solutions can contain stochastic uncertainties loe order of the expected perturbations from the
thermal-structural feedback effects. Thus, a masgiparallel deterministic solver for dynamics peghs

truly fills a gap in the available predictive capies of modern neutron transport tools.



IV. UNIC: Modernization and Development of Reactor Analysis Tools

In this section we present an overview of our sofutilgorithm to the time-independent (the initial
condition) neutron transport equation. We also wdiscalgorithmic choices we have made to reduce
execution times by cutting down on extraneous fit@apoint work and maintaining parallel scalability
IVV.A Neutron Transport Equation

The multigroup form of the neutron transport equationsists o6 equations with 1¢<G:
QMy, (F,Q)+, (P, (F,Q)=S,[.Q). 1)

¢,(r,Q) is the group neutron angular flux ari, ; () is the total cross section (sum of all reaction
probabilities). Thus, the first term is a streanfieakage term, and the second is a collision rein@ven.

The system of equations is coupled via the souB{¢, f)) which we expand in terms of group-to-group

scattering and fission as
A~ G A A ~ ~ 1 G ~ A~
S,(F,Q) = Zlfzs,g-ﬁg(m [Q Y, (F,Q)dQ '+EX9.21"9' () o ), €.QWA" @2
g: g:

Here,k is the system eigenvalue, also known as its effeatiultiplication factor. The scattering source in
Eq. (2) redistributes neutron energies and anglesianisotropic way, while the fission source seitiutes
neutrons into the isotropic fission spectrym

Based upon the parallelization successes of othdwoes with the Poisson equation, we focused
part of our initial development on second-order hodblogies that implement continuous spatial finite
element approximations such that we can take adgantf parallel conjugate gradient methods. Toinbta

the second-order discrete ordinates formulatiom iseSN2ND, we expand the angular flux in Eq. (ipi
even-parity, ¢/, (T, f)) and odd-parity, i/, (T, f)) , components

YT, Q) =4, (T, Q) +¢, (7, Q). &)
We then rewrite Eq. (1) using Eq. (3) to get thstforder even-parity and odd-parity equations
QMg (r, Q) +Z, (Mg (M.Q)=S;(F,Q). 4)
Assuming a discontinuous finite element approxiorain the odd-parity flux, we solve for the odd-ipar

flux and substitute it into the even-parity equatio obtain the second-order even-parity transpgquition.
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zt,g(F)

-Q QU (F,Q)+2,,(F; (F.Q)=S (F,.Q)-Q S, F.Q) (5)

zt,g(f)

We next weight Eq. (5) with a set of spatial tfiahctions f (I), integrate over volume, and apply the

divergence theorem to the first term such that ttaia the natural vacuum boundary condition ternthen

surfaces of the domain boundary.

jdvfmﬁf(r) 1 )fzuﬁwg(r,fz)+jdv f(F)Z, , (Fw; (F,Q)

(T ©)
+[dr f(mr)\fz m\wg*(mr,fz) =[av f(NQ (. Q)
Finally, we implement a continuous finite elemeatnfulation for the even-parity flux. The coefficten
matrix produced from the terms on the left sid€eqf (6) can be shown to be symmetric positive dtefin
and thus suitable for the conjugate gradient metlomy, provided that the terms on the right sid&qf (6)
are “lagged” in an iterative approach to be diseddselow.
IV.B. SN2ND Solver Implementation

As mentioned, the spatial approximation is treataca standard continuous finite element method,
and we employ classic domain decomposition whelight® can be applied to the vertices to balance the
local work with the communication costs requiredctmnect the domain. In angle, we chose the discret
ordinates approximation, which requires us to definset of directions on the unit sphere. With rega

parallelization, we employ the generic decompositb(S)pace, (A)ngle, and (G)roup shown in Figdire
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Figure 3. Space, Angle, Group Decomposition for a Parallel Machine.

In this approach, each MPI process sees four conwamions: space, angle, group and the global



communicator. The advantage of this approach isthigagroup and angle communication does not operla
with respect to space, and thus the communicaticdhese two directions can be done simultaneously o
the parallel machine.

When a discrete ordinates approximation is apgbeflg. (6), we find that, for each group, the set
of angular equations are only coupled via the sotieem on the right side of Eq. (6) termed the imith
group source. This equation is typically cast istattering iterations where the scattering sowsdagged
in iteration [1,2]. The equation is accelerated $glving a synthetic diffusion equation for the
angle-integrated (scalar) flux, which is essentiadl multi-grid preconditioner in angle [5]. Thus, a
“scattering iteration” of SN2ND involves solving A @iffusion-like equations (assuming 100 directiams
the angular cubature) simultaneously to obtainahgular discrete ordinates flux for each group.sthe
equations are currently solved using a parallel $@&hodology available in PETSc [17], although we a
now moving towards developing a multi-grid precaiadier. To update the source (or perform a syntheti
acceleration step) on the right side of Eq. (6)tmen collect the information on the angular comitator
of each process. This requires a global reduceatiparfor the locally visible spatial mesh partitifor
each group (simultaneous communication on groupspade communicators if fully partitioned in engrgy

In our current implementation, we do not considaapielization by group because we can already
saturate the available parallel machines with gaice-angle parallelization scheme. However, thiamse
our memory requirements are linear with respethéonumber of energy groups, which can be probliemat
on low memory machines like BlueGene/P [3]. In ourrent solver, we can distribute any number of
angles on a given process and generally have fthatdwo to three angles per process works begh Wi
regard to solving the synthetic acceleration eguative have currently assigned the first processauh
angular communicator to again utilize the para$€®R algorithm in PETSc, which introduces a load
imbalance by angle parallelization.

The steady state transport equation shown in Egsafd (2) requires an eigenvalue search
procedure to obtaik and the associated flux vector. The gold standi@rdall modern neutron transport
codes is to use inverse power iteration [1] asiitimnizes the amount of effort required to find theminant

eigenvalue. Assembling all of the group and dietgquations derived from Eq. (6), we write
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where A is the coefficient matrixB is the scattering source operator, &nis the fission source operator.
The power (or outer) iteration methodology finde tominank eigenvalue using the following recurrence

relationships

i 1 -1(i- i i~ w, 6"
6" ZWFT gD, kO =KD <<W—' 6(i—1)>>' (8)

In SN2ND, we currently use the Gauss-Seidel methatratively invert T during each outer iteration in
Eqg. (8), because for fast reactors only a singlaiton is required for convergence (because nesitbaly
lose energy during scattering events over the gnampge of interest in fast reactors, the energypling is
lower triangular). For time dependent problems #retmal reactor calculations, a Gauss-Seidel scheme
not expected to be as efficient, and we intend 4o a more general Krylov method with our current
Gauss-Seidel scheme as a preconditioner. We natte tirylov solver will also assist in making theoae
methodology scalable in energy for time dependertiipms.

We note that this approach does not reqUite be exactly inverted at each outer iteratiostdad,
we only require that the error in the flux vectarkq. (7) be slightly lower than the error in thesfon
source vector. We implemented an optimized schemectount for this behavior and combined it with
conventional Tchebychev acceleration [1,2]. Togetheese approaches have allowed us to signifigantl
reduce the overall time to solution. Figure 4 shdwesimpact of making these optimization changethen
C5G7 benchmark [18] where the outer iteration eigére, fission source, and flux vector are plotited
addition to the within group flux error for eacheegy group. In Figure 4, the un-accelerated aproaices
roughly twice the number of outer iterations as Tlehebychev accelerated one. More importantly, the
effort spent on solving the within group flux eqoas for each outer iteration is substantially itlin the
optimized version (the targeted flux error obtairfed each group flux at each iteration is relaxdd).
practice, this makes the effort spent on each atgeation nearly constant, although the dynamiorer
adjustments can introduce variability in the tosalution time from problem to problem by requiring

slightly different numbers of outer iterations a#l e seen in the numerical results.
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Figure 4.0ptimization and Tchebychev Acceleration Impact on the C5G7 Benchmark.
V. Problems Chosen For Study

Two reactor problems have been chosen to demoadtiatperformance of the SN2ND solver.
Both problems consider the steady state eigenwadlgion, the initial condition for the time depemd
problems that we will be studying in the near fatuAlso, both problems cannot be solved well using
existing homogenization methodologies. For bothblmms, we present weak scalability as we increfase t
number of angles on the entire BlueGene/P machiAegonne and most of the XT5 machine at ORNL (no
issues are expected in using all 150,000 processfotBis machine, but time constraints prevented an
attempt at this). These weak scaling studies aghhhirelevant to our work to assess the impacthef t
angular discretization on the accuracy of the eigkre (as well as the flux solution, although the
eigenvalue is more convenient for reporting). Asitiomned, the SN2ND solver allows for parallelizatioy
direction, and we generally have found it best $& two or three directions per process to balahee t
communication costs with the computational burdéswever, with the memory limitations on BlueGene/P
and our desire to obtain comparable results on Xié.executed the SN2ND solver with only a single
angle per process. As will be shown, the time neguito update the scattering source in Eq. (6) is a
substantial amount of computational effort and waveh not yet optimized it for performance. We
emphasize that the SN2ND solver (as part of UN&Ghithe early stages of development, and its fbass
been on demonstrating the feasibility of highereliity reactor core simulations on large-scale pelral

machines. These simulations have helped identiereé performance issues that, when addressed, will



substantially improve the per-processor performantethe SN2ND solver (potentially an order of
magnitude or more).
V.A PHENIX End of Life Experiments

The first problem is taken from the end of life ekments of the PHENIX reactor [19]. A solution
using UNIC is desired because the legacy solvaasefd on conventional homogeneous approaches) have
difficulty in representing various control rod canfrations accurately. In this benchmark, only ¢betrol
rod assemblies are represented heterogeneously.tyifé of spatial representation is directly refevia
that our initial time dependent calculations wils@ focus on representing only part of the geometry
heterogeneously. Figure 5 depicts a slice of thEIRIX core center along with a typical unstructuradsh
(prisms) and the flux solution at two important egyegroups in the lower part of the control rodeasbly
created using VISIT [20]. We note that the solutiopbtained with SN2ND are, to the best of our
knowledge, the most reliable means of obtaining dbeect solution compared with all other modern

deterministic solution methods.

S — 0.4 MeV 2eV
Figure 5. Planar Configuration of PHENIX Geometry M odel and Flux Solution

At present, we have not performed all of the retpeegalculations desired by the benchmark
authors, nor have we done an essential multi-gemgpiracy assessment; only space and angle studies h
been performed. We chose a standard 33-group seati®n set with afxpansion of the scattering kernel
which we typically use for homogenous problems. &mse the problem specification was originally
intended for homogeneous problems (which is indieadf the simulation capabilities of most avaikabl
tools), we had to construct a specification appederfor heterogeneous geometries. Unfortunately, w
made a geometric error in the thermal expansioih@fcontrol rods that compromises the accuracyuof o

results, although the code performance is unaffiedtée intend to resolve any remaining geometry and



cross section uncertainties for the final papea ¢ater publication. Using CUBIT [21], we createéshes
considering different degrees of radial mesh refiest (three levels) and axial mesh refinement éhre
levels), leading to a total of nine meshes. Ouugitions demonstrated that the medium level appréaic
both the radial and axial directions was suffidigrdccurate. This mesh contains 284,682 quadratic
LaGrangian prismatic elements and 1,741,833 spatitices.

In Table 1, we present the weak scaling resultsasl@eved using SN2ND on BlueGene/P. We
partitioned the mesh using MeTiS [22] into 2,048qeis leading to ~850 vertices per process, whiokas
the minimum that we can use with the parallel SQgorithm in PETSc (below this, communication
overhead increases substantially on both machifes)e increase the number of angles (note that the
even-parity formulation only requires the half-sggheset of angles orn®, we make a corresponding
increase in the number of processors. The eigeavalpidly converges as the number of directions is
increased, which is expected given that a majofitye domain is homogenized. An initial glanceidades
a drop in weak scaling to 75% on the entire magHhioevever, the number of “Fission” (outer) iteraso
needed to solve Eq. (8) is correspondingly seeindease as well. It is important to understand tha
number of fission source iterations required fonvargence varies naturally depending upon both the
space-angle-group approximation, the effectiveris§chebychev acceleration on the fission iteratjon
and the peculiarities of our optimization schermw gdapting tolerances on each fission sourcetibena
and that none of these are tied to the overallllgfization of the algorithm, which is primarily éosed on
space-angle distributed work of the scatteringatiens. If we normalize the time to solution basedn the
number of fission iterations, then we can claina¢bieve 97% weak scalability with 128 angles on,032
cores of XT5 and 88% weak scalability with 160 asgbn 163,840 cores of BlueGene/P.

Table 1. Weak Scaling Study by Angle for the PHENIX Problem on BlueGene/P

4n Fission Tptal source Weak
Cores Kest . Time Update -
Angles Iters. / Time Scaling
(sec) (sec)
32,768 32 0.96006 23/152 3493 2934 100p0
49,152 48 0.96004 23/152 3510 293B 100p0
65,536 64 0.96007 23/153 3526 2934 99%
73,728 72 0.96015 23/156 3593 2934 97%
131,072 128 0.96019 271156 4209 3437 83%
163,840 160 0.96019 271173 4676 3436 75%

" See text for discussion on “effective” weak sciligh



Table 2 shows the weak scaling results on up tq0F21lcores of XT5, as well as the “effective” weak
scaling numbers that are generated by normalizngbtfission iterations. The larger memory of thEsX
machine also allowed us to use our finest mesh¢lwbontains 833,280 quadratic LaGrangian prismatic
elements and 4,017,189 vertices.

Table 2. Weak Scaling Study by Anglefor the PHENIX Problem on XT5

4 Fission Tptal Source Weak Effective

Cores Kest . Time | Update - Weak
Angles Iters. / Time Scaling ;

(sec) (sec) Scaling

32,768 32 0.96017 25/63 1574 851 100% 100%
49,152 48 0.96014 22 /64 1399 748 112% 99%
65,536 64 0.96017 22 /64 1402 745 112% 99%
98,304 96 0.96017 25/65 1623 847 97% 97%
114,688 112 0.96017 26 /65 1687 882 93% 97%
131,072 128 0.96029 28 /68 19Q2 944 83% 93%

Similar to the previous case, the number of fissieource iterations varies as we change the
space-angle-group approximation (previously we batween 23 to 27 on BlueGene/P, here we see 22 to
28 iterations). We note that the total time to Soludrops substantially for XT5 (which is expectidce a
XT5 processor is about three times faster in clivpeguency), and the ratio of updating the sourctotal
time drops from ~80% on BlueGene/P to ~50%. Asnalfnote, the largest problem we executed on
BlueGene/P in Table 1 solved 9.2 billion degreef@ddom, while the largest problem on XT5 in Table
solved 17 billion degrees of freedom.
V.B Zero Power Reactor 6 Experiment 6A

The other problems we chose to simulate for oujeptahis year are the Zero Power Reactor
(ZPR) experiments 6a and 7 [23]. The ZPR experimemdre performed to acquire fundamental data on
nuclear reactor designs of interest. These paatia@tperiments focused on uranium fueled (ZPR-66d)
plutonium fueled (ZPR-6/7) sodium cooled fast readystems. Eventually, the SN2ND simulations of
these experiments will be used to help validatectbde and better ascertain the approximation eirors
legacy approaches by enabling direct comparisom®wiputed results. While the experiment ZPR-6/7 has
more data and is our preference, we have onlyséthel 6a experiment at present. For scoping studies
also reduced the number of unique fuel drawer tyg&s introduced asymmetries into the geometry to

investigate local flux heterogeneities. In essenhese results provide a preliminary assessmerhef



space-angle requirements of these experiments awvel dlowed us to identify the parts of the soltrext
need improvement before the entire problem canrbelated.

Figure 6 provides two pictures of the explicit getng model (left, center) and the power
distribution for the enriched U-235 plates in thack matrix assembly (right). A gray color in Figuas
used for the matrix tube and drawer fronts thatleaeed into each tube position. The solid greerasep
are two inch depleted uranium blocks directly lahdeo the tubes surrounding the main core andia@

blanket. We separated the matrix assemblies, vdthadme of the drawers from the front matrix assgmbl

and pulled a section of the plates out to givetteb@erspective on the overall geometry.

Figure 6. ZPR-6 Experiment 6A Geometry and U-235 Plate Power Solution.
The fully-explicit geometry is rather difficult teolve because of the large number of material
boundaries as indicated by the left picture in Fégt. Also, for even-parity methods, the extrensahall
voids separating the plates and various other coewmts are unacceptable, and we have made the

geometric simplifications shown in Figure 7 (ceptarmich we expect to refine with time.

Simplified l

(Homogenization) Scheme 11MeV Group Flux

iron Oxide]
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Explicit Geometry
Figure 7. Fuel Drawer Modd for Initial ZPR-6 Assembly 6A Benchmark



We note that in all legacy homogenization approachiege plates in each drawer are effectively “mixed
together”, which makes the observed plate-poweriligion generated using SN2ND in Figure 6 (right)
and the 1.1 MeV flux distribution in an axial slioé the center-most drawer shown in Figure 7 (dight
impossible to obtain.

Even with the simplification shown in Figure 7 (findeft to center), we generate quadratic finite
element meshes with upwards of 20 million vertittest are currently beyond the memory on BlueGene/P.
Thus we employed linear meshes for our initial $og@nd parallel scalability studies, which we faet
indicative of the computational effort in the pradidioning phase that we will expect to perform enc
spatial p-refinement is in place. We constructedoarse mesh with 545,664 hexahedral elements and
575,168 vertices to use on BlueGene/P, and a nefireed mesh with 2,058,264 hexahedral elements and
2,119,175 vertices to use on XT5. Switching thesshmes to quadratic typically increases the number o
vertices by a factor of 8 to 9, and the more refingesh is what we expect to need for the homoggniza
approach shown in Figure 7.

For brevity, we only provide weak angle scalinguitssfor the XT5 machine as Table 3, although
we note that we also successfully simulated thablem on 163,840 cores of BlueGene/P. We split the
mesh into 512 pieces with ~4139 vertices per pmces

Table 3. Weak Scaling by Angle and Flop Rate for the ZPR 6/6a Problem on XT5

0,
4 Fission | Total Eff. Agaredate % of Mé)mocjr
Cores T Keit Iters. / Time Weak gareg Machine y
Angles : ; Tflop/s Bandwith
Time (sec) | Scaling Peak
Bound
8,192 32 1.00542 20/37 745)0 100% 5.3 7.1 43
16,384 64 1.00638 17/38 6479 98% 10.5 6.9 42
32,768 128 1.00632  23/42 968(7 88% 19.2 6.4 39
65,536 256 1.00761 27/45 1204.6 83% 36.6 6.1 37
131,072 512 1.0076L 29/5( 1441.3 75% 67.9 5.6 34

While it appears as though the eigenvalue is instar#tly converging, this is an artifact of the
Legendre-Tchebychev cubature. With the Legendreeligthev cubature, the number of directions defined
perpendicular to the plate geometry can be sepienidgently of those defined parallel to the platengetry.
Because of the monolithic plate orientation we seeorrespondingly strong heterogeneity when we
increase the number of directions perpendiculathto plates. Even going from 512 to 640 angles on

BlueGene/P provided a change of 0.03% in the ememv(which is significant in the reactor physics



community) indicating this explicit geometry proliehas a solution with a much stronger angular
dependence than the preceding PHENIX problem.

In Table 3, we again have good weak scaling, athowe do see a drop in performance as the
number of angles is increased, which is consistétit the behavior seen in PHENIX on the preceding
results for both BlueGene/P and XT5. At presentane not certain whether this is a load imbalance in
angle due to the heterogeneity (some directiongeguire more effort to solve than others) or whethis
is an artifact of the machine network (we are penfag a global reduce operation of a significarsized
vector on the angle communicator which appearege scalability on XT5).

In addition to the scaling data in Table 3, we dludicate the floating point performance. Our
current preconditioners heavily rely upon a spansérix conjugate gradient solver in PETSc. It idlwe
known that the performance of such sparse-matiixovenultiplications is limited by the available mery
bandwidth. On XT5, the STREAM Triad operation aek about 2.27 GB/s per core on XT5 when all
eight cores are used (consistent with the apprassd for all of our calculations). Following the
methodology in Gropp et al [24], we estimate themory bandwidth limited performance bound to be
~17% of the theoretical machine peak for sparseixpatctor multiplication (about 6 bytes per floph
Table 3, we show the percentage of peak machimepwformance that SN2ND is currently achieving in
the second-to-last column, and the percentage afanebandwidth bound in the last column. These data
show that UNIC achieves about 5-7% of theoretiegkpand 34-43% of the memory bandwidth bound on
this machine. Therefore, per-processor performathoeigh low, appears to be scaling well over aesint
fold increase in the processor core count. Givenktiown issues were identified with the scattesagrce
update routines recently and the relatively smatioant of work that we were able to invest in the
preconditioner development until now, low floatipgint performance was not unexpected. Over the
coming months, we will work on optimizing the floag point performance of the code further.

VI1. Conclusionsand Future Work

The preceding calculations give us much hope thatwil actually be able to meet the time
dependent neutronics requirements of the multi-geselopment and analysis project we are working on
for sodium cooled, fast reactors. With relativatyld manpower invested into the SN2ND solver, werav

able to combine several “off the shelf” computiregkages and rapidly produce a neutronics solveéictra



reliably and justifiably utilize large scale pasdlinachines. This new tool already provides aceusad
reliable solutions to several difficult numericarthmark problems for neutron transport, and wieipate
obtaining accurate solutions to the problems dsedisn this manuscript. We hope to have made thear
potential of SN2ND to effectively use availablegarscale machines in addition to future, largeediz
machines. We have demonstrated weak scaling of 5% on 163,840 cores of BlueGene/P and over
130,000 cores of XT5, and completed a space-arajigergence study of two reactor problems. In both
problems we presented flux and/or power solutitias &re not achievable using legacy deterministidst
We discussed how the SN2ND algorithm is scalabte despite its nascent development status, has been
largely successful at producing new science resisitsy BlueGene/P and XT5.

In the near future, we will be carrying out exteresperformance optimizations at the algorithmic
and implementation levels while adapting to thetilmsnemory hierarchy limitations. First, we neead t
improve our per-processor performance on the dpdigcretization. This will improve our overall
performance in the above weak scaling results lgugidg communication overhead on the angular
communicator. We are currently initiating work amotfronts to accomplish this: spatial p-refinemand
the utilization of tensor-matrix vector multipliéan techniques that have previously demonstratedlent
flop performance [25]. With multi-grid p-refinemente expect to vastly increase the amount of leaak
we perform without being concerned with the lowikaklity of memory. Combined with better-optimized
routines, we expect to replace the memory-bandwidiited sparse-matrix operations we are currently
relying upon with more efficient tensor-matrix vecoperations [25] that are compatible with our moet

Second, we need to improve our scaling performameagle. We have already identified a poorly
performing sparse matrix-vector algorithm in thatsering source update process. We can againeutiliz
tensor-matrix vector operations in addition to jalizing the work on the angle communicator (we
currently duplicate this work on each process)addition to these changes, we need to implemeixied f
iteration algorithm by angle to impose proper lbathncing and use more than one angle per prothis.
will reduce the communication costs on the anglmmaonicator that become important at high angle
parallelization. A final change we need to mak&ipartition the synthetic equation over more pssces
of the angular communicator (currently assignegusb the first process). This should allow us taHar

reduce the time to solution and reduce the cur@ad imbalance we see in angle due to the synthetic



equation.

Finally, we must implement a Krylov methodologyngsithe existing algorithm we have built as a
preconditioner. This is essential because with tiftependent problems the inclusion of the fissioure®
will greatly degrade the performance of the Gauwmsk8 algorithm. This will also allow us to do
parallelization by group which will allow us to efftively utilize larger future machines with miltis of
processors. Our long term goal is to be able tdop@r calculations with 200+ groups, 400+ anglegs] an
100+ million vertices efficiently so that we camrstdoing time-dependent calculations with thousaof
time steps in a coupled multi-physics simulaticamiework that resolves the tight coupling among fisys
modules with the same fidelity as is done in edtysjts.
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