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Model-reality comparison can be viewed in a
communications context. In this analogy, the

aware that computed SE results re specific to a given
discretisation; or (2) treat the data as continuous and

observed “real” data are a sent message, and the model use the Ml combined with some benchmark quantity.

output are the received message. The model plays
the role of a noisy channel over which the message
is transmitted (Figurgl1).

Information theory offers a way to assess literally
the “information content” of any system, and offers
a means for objective quantification of model-
observational data fidelity. The Shannon entropy
(SE) H(X) is the measure of the amount of
uncertainty, variability, or “surprise” present in a
system variablé, while the Mutual Information (MI)
I(X,Y) measures the amount of shared information
or redundancy between two variablé§ and Y.
Information theory’'s roots lie in the analysis of
communication of data across a noisy channel (Figure
), and offer a scheme for quantifying how well
a messageX coming from a transmitter arrives as
Y at the receiver. A more general information-
theoretic measure of message degradation is the
Kullback-Leibler Divergence (KLD), which quan-
tifies insufficiency of agreement in the probatility
desnity functions associated witi and Y. The
ratio of Ml to SE yields the amount of information
shared by two datasets versus the information content
of one alone. Alas, the aforementioned information-
theoretic techniques work best for discrete rather than
continuous systems. This is because evaluation of
the Shannon Entropy (SE) for continuous systems—the
differential entropy—does not constitute the continuum
limit of the SE. Relative quantities such as the Ml
and KLD are always valid in the continuum case, and
are the continuum limit of their discrete counterparts,
but are just thatrelative This begs the question:

Is there some way | can benchmark it against some
continuum surrogate for the SE? Thus, one faces
a choice when using information theory for model
validation and intercomparison: (1) adopt coarse-
graining strategies that are physically relevant, always

In this paper, | adopt strategy (1), and restrict scope to
a variable that has well-agreed-upon discretisations—
total cloud cover, which by observational convention
is frequently coarse-grained by oktas, tenths, or
percent.

| review basic concepts from information theory. |
put forward the notion that the SE is an alternative
measure of climate variability, and evaluate it for
reanalysis data and climate model output, producing
global maps of the SE. | discuss how to structure
sampling from two datasets to construct “messages”
for use in information-theoretic model validation. |
derive from the SE and MI a pair of fidelity ratios for
assessing model-reality fidelity, and evaluate them for
total cloud amount. | apply a modified KLD to asses
model-reality agreement for local temporally-sampled
total cloud, and explain the relative strictness of the
KLD- and MlI-based validation standards. | conclude
with a a roadmap for analysing and validating the
informatics of climate.
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Figure 1. Communications system with source
producingH (X) and receiver seeinf (Y). Amount

of data communicated correctly from source to
receiver is the mutual informatiol( X, Y").



1 INTRODUCTION

Climate model output evaluation remains an area of actigeareh. Many researchers rely on comparison of
statistical moments such as the mean and variance, or oalaton analysis. Moment-based statistical tests
such as the- and F-tests rely on an assumption of normality of the underlyingudation. Correlation analysis
between variables is appropriate under the assumptionsrofaiity, linearity, and homoskedasticity. Information
theory provides an attractive approach to higher-ordeistital analysis that avoids the assumptions associated
with correlation analysis and moment-based hypothesis.td$ie strategy in information theory is based on the
underlying probability density either for a finite set oftstfor a discrete variable, or for a probability density
function for a continuous variable.

In this study, | explore the idea of Shannon entropy as arcaidi of climate variability. | also present two
new quantities for assessing model-reality fidelity that laased on Shannon entropy and mutual information. |
define a procedure for computing these quantities and dstignassociated uncertainties. | find these “fidelity
ratios” impose a very high standard of model-reality figethiat is hard to meet for a typical climate model. |
employ a more lenient standard for model probability dgrsitmparison—the Kullback-Leibler divergence—and
explain how the low fidelity ratios result in some cases dygotor agreement between the model’s and reanalysis’
respective probability densities.

This is not the first use of information-theoretic quanstien climatology. Bagrov first introduced a
“similarity index” for meteorological model-reality comapson that assumed underlying continuous normal
distributions [(Bagravi[1963]). Much work has been done om tise of mutual information as an indicator of
predictability (DelSole and Tippktt [2006]). Muual infoation has also been employed to study relationships
between climate variables(Knuth et al. [2005]). Relatim&r@py has been used to validate global distributions of
surface temperature (Shukla et al. [2006]). To my knowletiys is the first use of information theory to express
climate variability, and to present geographic distribn$i of H, MI-based fidelity ratios, and the KLD.

In this study | use total cloud cover to illustrate inforntcatilimate variability. Total cloud cover has the
advantage of having standardised discretisations ametmbiscrete-variable informatics, and is of climatolagic
significance because it is an integrated diagnostic of patenisations of atmospheric column physics, feeds back
into atmospheric radiative transfer, and is a variable foiclv widespread observations exist.

2 INFORMATION THEORY

Here we review key concepts from information theory and @gfinms used in the rest of this paper. Further details
may be found in standard textbooks (Cover and Thbinas [2[B&61a [1994])..

Consider a discrete variablg that can have any aV possible valuesX € {z1,...,2nx}. The probability of
observing each valu¥ = z; is 0 < p(x;) < 1, subject to the constrairﬁjfilp(xi) = 1. TheShannon Entropy
(SE) orH(X) is defined as

N

H(X) == p(;)log [p(x:)]. 1)

=1

The units of H depend on the base of the logarithm; for basH is measured irmbits, for natural base H is
measured imats If X is the set of values seen in a signal, tHé(X) is theamount of information in the signal
Note also that the SE is nonnegative and finite.

Consider two discrete variable§ € {z;,...,zx} andY € {y1,...,yn} defined with respective probabilities
{p(z1),...,p(zn)}and{p(y1),...,p(yr)}, subjectto the above normalisation and nonnegativitytraims used
to define the SE. The probability of seeing the combinationy;) is thejoint probability 0 > p(z;,y;) < 1, and
subject to the normality constraibt;* , 2 p(x;,y;) = 1. Thejoint entropyH (X,Y) measures the combined
information content ofX” andY’, and is defined as

N M

H(X,Y) =" plxi,y;)log [p(wi,y;))- )

i=1 j=1



If the variablesX andY” are statistically independent, then the joint entrépiX, Y) is the sum of the SEF (X)
andH (Y). If X andY are somehow related and share information, then

H(X,Y)=H(X)+H(Y) - I(X;Y), 3)

wherel(X;Y) is thetransinformationor mutual information(MI)

-\ { plxi, ;) ] @

I(X;Y) = Z Zp(gcivyj) log p(zi)p(y;)

i=1 j=1

The units for the Ml are dictated by base for the logarithnd) {ust as the units are for the SE [d (3). The Ml
is symmetric; that id(X;Y) = I(Y; X). If the variablesX andY constitute identical signals, thed(X) =
H(Y)=1(X;Y). The Ml satisfies the properti@s< I(X,Y) < H(X) and0 < I(X,Y) < H(Y). The fidelity
of transmitting a signak and receiving” can be quantified using thilelity ratios

FYX = and FXY = (5)

Fy x is the fraction of information present in signal that was successfully transmitted ¥g note that0 <
Fyx < 1. Fxy is the fraction of information present in signdlthat was successfully received frakit note that
0 < Fxy < 1. Inthe case of perfect transmission of soukt¢o receiverY’, Fxy = Fyx = 1.

As we will see in Sectioli]l4, the mutual information is a higanstard of quality for dataset intercomparison.
Another approach is to ask: How well do two probability déiesithat share a common partitioning scheme
agree? Th&ullback-Leibler DivergencéLD) or relative entropyis an information-theoretic standard for judging
how well two probability densities based on a common partitig scheme agree. Suppose for some variable
X € {1,...,zn} we have two candidate probability densitjgsY) and ¢(X), which may be viewed as the
“true” and “modeled” densities, respectively. The KDy, is defined as

Dk _ 3 ) log [ 222
kr(p |l g) =Y plai)log | === 6)

=1

The KLD is not symmetric; that isDxr(p || ¢) # Dkr(q || p). The units for the KLD are defined the same
way as for the SE and MI. The KLD is sometimes called kudlback-Leibler gainor information gainrequired

to represenp(X) giveng(X). the “true” and “observed” distributions fo¥, respectively. On average one needs
Dkr(p || q) extra bits of information per symbol to represeiit) usingq(x) as a starting point. The KLD is
nonnegative. If there is perfect agreement betwgen) andq(X), Dk = 0. There is no upper bound for values
of D ,; for example, singularities can arise i (6)ifr;) = 0 andp(x;) # 0, leading to infinite KLD..

For a continuous variabl® € (—oco, 00), itis possible to define differential entropyDE) H(X) for z € (—o0, c0)

by replacing the marginal probabilitipéz; ) with a continuous probability density functigiix), and replacing the
summation over state indexin (@) with an integral with respect to. It is tempting to think that the DE is the
continuum limit of the SE[{3); alas, it is not a valid measufénformation content because the integral in the
definition of the DE is sensitive to the bin widtlds, and because it is possible fp(x) > 1 for some values

of z, thus making it possible to have infinite or negative valukthe DE. Furthermore, the values of the DE
are not invariant under coordinate transformations. Tviorination-theoretic quantities are, however valid in the
continuum limit: The mutual information and the Kullbacleibler divergence. In this study, the scope is restricted
to discretised variables whose quantisation arises froteonelogical observation conventions.

3 DATA AND ANALYSIS

The “reality” data used in this study are the National Ceriter Environmental Prediction / Department of
Energy Reanalysis 2 dataset (NCEP-2; Kanamitsulet al. [2@B2t cover the period January 1979-December



2008. Monthly averages are drawn from this dataset, whiah lma downloaded from the NCEP-2 Web
site (National Oceanagraphic and Atmospheric AdministreEarth System Research Laboratary [2009]). The
data reside on a T62 Gaussian grid with 192 longitudes anda®ides. There are 360 monthly averages
in the sample at each grid location. The NCEP-2 total clouswarh data (“tcdc”) is used in this study,
and have values in percent cloud cover ranging from zerd(O percent. The “model” data are from a
500-year control run of the Community Climate System ModeC8EM3; [Collins et &l. [[2006]). Monthly
averages were drawn from the repository of CCSM3 model iatemn output data maintained by the Earth
System Gridl(United States Department of Energy and UniveE®rporation for Atmospheric Research [2009]).
The data reside on a T85 Gaussian Grid comprising 256 lothgstand 128 latitudes. There are 6000 monthly
averages in the sample at each grid location. The CCSM3 ¢ttatl amount data (“CLDTOT") is used in this
study, and have values ranging from zera toFor the SE calculations in this study, the data were usedh@in t
respective grids. For the Ml and KLD calculations, the CCStiéda were interpolated from their T85 grid the
the NCEP-2 T62 grid using an inverse-great-circle-distameighted scheme that is valid assuming the geoid is a
sphere.

Cloud amounts in the reanalysis and model data were coaaded into oktas, tenths, and percent, thus avoiding
problems associated with the DE. Data values are mappethmiatervall0, 1]. The data are then multiplied gy

10, or 100 for oktas, tenths, or percent, respectively. A class vaduwessigned by rounding to the nearest integer to
the data value. Thu$, 11, and101 classes result from coarse-graining by oktas, tenths, arépt, respectively.
The data are organised as time series of global geograpstitbdtions; that is, they are three-dimensional datasets
with dimensions longitude, latitude, time). For this stuiitye series for fixed values of longitude and latitude are
used as the samples from which SE, MI, and KLD are computeds,Tinaps of of these quantities may be drawn
to illustrate the geographic distribution of entropy anklestinformation statistics.

Calculation of the SE and MI from equatioii$ (3) abd (4) araightforward; any instances in whigliz;) = 0 in

@) andp(z;,y,) = 0in @) provide zero contribution to the SE and MI, respedjivEidelity ratiosFy x andFxy

are computed usindl(5). Singularities can arise in the KLBwation using[B). For this study, singularities in
the KLD calculation are avoided through addition of a smabervability threshold termto each value of(x;),

and subsequent renormalisation by divisionlby N¢, whereN is the number of classes in the coarse-graining
scheme. The observability threshold was chosen t@bg— whereNg is the number of time samples (6000 for
the CCSM3 data). Thus, large—rather than infinite—KLD valtesult where classis observed fop(x;) but not

for q(z;).

A sliding window sampling scheme is used to estimate uniteiga in the SE, MI, fidelity ratios, and KLD. For
the SE calculations, a 20-year window is used to compiitand the window is advanced one year, removing the
first year from the sample, and introducing a new year at itis Eor the NCEP-2 data and CCSM3 data this results
in 11 and 481 samples for their respective SE calculatiohs.riiean H) and standard deviatiarny are computed
from the ensemble of resulting SE values. For the Ml and KLBwations, all 30 years of the NCEP-2 data and
a sliding 30-year window of CCSM3 data are used, resultingnirensemble of 471 values of the Ml and KLD.
Ensemble averages and standard deviations are subsgquemputed for the M, fidelity ratios, and KLD.

4 RESULTS

SE for total cloud cover discretised by oktas and percemh facthirty-year sample of NCEP-2 and CCSM3 data
are shown in FigurBl2. Fields df for total cloud discretised by tenths for a twenty-yearislidwindow sample

of NCEP-2 and CCSM3 with their associated uncertaintigsare presented in Figui® 3. The values of the SE are
quite sensitive to the number of classes, but the overdilgstructure of the SE fields is preserved. In both NCEP-
2 and CCSM3 data, relatively high SE values are associatidthe tropics, particularly in monsoon regions. The
lowest values of SE lie in a band over the Southern Ocean reehtg approximatel$0°S. CCSM3 data have
much more widespread high SE regions over land than NCERehave regions of high entropy in Western Asia
and the US Pacific Northwest that are not present in the rgseml These high entropy regions are associated
with relatively flat probability densities for total cloudnd in this sense indicate greater variability. The assedia
uncertaintiesr; shown in the right panels in Figue 3 are small, at the mosherotder of< 1%.

The fidelity ratio fields derived from the MI and SE for CCSM3 WCEP-2 total cloud are shown in Figutk 4.
Note that worldwide these values are low, with x < 35%. Over some areas of poor agrement (e.g., the Southern
Ocean), there is considerable noise,(, /Fy x ~ 10% of its raw value) in the results, indicative of variability i

the ordering of the tenths classes. The areas of best agnearneeover land masses associated with monsoons and
in other regions such as the US Pacific Northwest, the Middlet,Eand west-central Asia. Signal-to-noise ratios
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Figure 2. Shannon entropy for total cloud for CCSM3 and NCEP-2 usingua discretization strategies.

for these regions are high in the monsoonal areas, but loheither areas with largey,-x. From this MI-based
analysis, the temporal structure of the occurrence of teciisses agrees poorly. This is in part due to interannual
variability, but may have other causes stemming from moidel.b

A model bias cause of poor performance in the fidelity ratidgrive shown in Figur€l4 may be underrepresented
or absent classes in the probability density for CCSM3 ttald discretised by tenths. The KLD offers a scheme
for testing probability density quality, and the KLD fieldtaéb cloud is shown in FigurEl 5, with the NCEP-2 and
CCSM3 cloud probability densities playing the rolegéf;) andg(z;) in equation[(B), respectively. For much of
the world, low KLD values indicate that the probability déies associated with CCSM3 total cloud agree well
with with their reanalysis counterparts, particularly olend masses. Notable exceptions are polar regions over
land, bands over ocean 2°N and30°S, an equatorial band over ocean stretching from the EaBeeific and
across the Atlantic Oceans, and a region in off the west aifeSbuth America. The associated uncertainties in
the KLD valueso i p are bounded above by)%. Some of the higher KLD values in these regions are caused
by absence of cloud amount classes in the CCSM3 probabéitgities, and are the singular terms in the KLD
mentioned in Sectiofl 2. Of particular interest are the negjiof good agreement in probability densities over land
that score poorly in terms of MI, for example parts of Asiaskalia and the Americas. In these areas, CCSM3 is
reproducing the probability density well, but not its aniarad interannual ordering of cloud amount classes.

5 CONCLUSIONSAND FUTURE WORK

An information-theoretic approach to climate variabilitgs been presented and its utility in analysing total cloud
amount variability and model-reanalysis comparison haaenbdemonstrated. This is the first stage in a much
larger plan to study the overall informatics of the climagstem. Most climate variables are quantities that have
no standard discretisations, which will require a rigowstrategy for coarse-graining climate data such as the
sample-based optimal binning strategy for pdf estimam ]). Future work will proceed on a number
of fronts including the spatial informatics, informatidatonships between multiple climate variables, and haw th
informatic structure of the climate system may change datbropogenically-induced global warming.
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Figure 3. Shannon entropy for total cloud for CCSM3 and NCEP-2 with sample standardat®noy;.
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Figure4. Fidelity ratio Fy x for total cloud for CCSM3 and NCEP-2 with sample standardaten o;. Units for
colourscale folf’y x ando g, , are in percent and thousandths, respectively.
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