
Revision 27: 6/17/09 10:31 AM

Towards petascale ab initio protein folding through parallel scripting

Glen Hocky1, Michael Wilde2,3*
, Joe DeBartolo4,5, Mihael Hategan2, Ian Foster2,3,6, Tobin R. Sosnick2,4,5*, Karl F. Freed1,2,7*

1Department of Chemistry, University of Chicago
2Computation Institute, University of Chicago & Argonne National Laboratory, USA

3Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA
4Department of Biochemistry and Molecular Biology, University of Chicago

5Institute for Biophysical Dynamics, University of Chicago
6Department of Computer Science, University of Chicago, IL, USA

7James Franck Institute, University of Chicago
*wilde@mcs.anl.gov, trsosnic@uchicago.edu, freed@uchicago.edu

Abstract

Petascale computers allow scientists and engineers not only to
address old problems better, but also to consider new methods and
new problems. We report here on work that both applies new
methods and tackles new problems in the area of structural biology.
The project combines an efficient protein structure prediction
algorithm implemented in the Open Protein System (OOPS) system
with the Swift parallel scripting system to enable the rapid and
flexible composition of OOPS components into parallel program,
and the high-performance execution of these programs on petascale
computers. The result is a powerful computational laboratory
environment for predicting protein secondary and tertiary structure,
for further testing and refining OOPS, and for performing training
and scaling tests that enable structure simulation to run on a wide
variety of computing architectures with high efficiency. Comparison
of before and after experiences within two laboratories at the
University of Chicago shows that this use of scripting enables
achieving significant improvements in throughput, time-to-solution,
and scientific productivity. For example, an undergraduate has
recently been able to define and execute new protein folding
simulations on thousands of processors. This approach both
enables new applications for petascale computers, and provides an
avenue for many more researchers to participate in the
computational science aspects of structure prediction.

1 INTRODUCTION
To understand a living cell at the microscopic level, we must
identify, characterize, and comprehend detailed interactions among
sub-components. Decoding the genome has already transformed
biology and medicine but is only the starting point of our research
and methods, whose long-term goal is to begin with a set of genes
identified in a biological process, provide the structure and function
of the proteins, and identify their interactions and connections in
signaling pathways. Success in this endeavor will lay the foundation
for a new generation of therapeutics and drug design.

This research agenda drives our interest in reliable, high-throughput
methods for predicting protein structure from sequence and
recognize docking partners. The availability of such methods will
create a comprehensive resource for understanding these
interactions and will eventually replace slower, empirical
determinations. To this end, we have developed and continue to use,
support, and enhance the Open Protein Simulator (OOPS), a suite of
C++ programs and libraries for predicting the structure and
interaction of proteins and other large molecules [10]. OOPS has
proven successful, through international challenges, such as
CASP8, in predicting the structure of moderate size proteins [14].

As OOPS becomes more accurate and efficient, a number of related
computational challenges emerge in our desire to tackle proteins of
increasing size because current prediction methods have limited
accuracy even for proteins on the order of 100 residues when
homology-based information is minimal. To predict the structures
of larger and multi-domain proteins, statistical sampling becomes a
limiting factor, and thus we require significantly more computing
resources.

Second, we wish to generate more predictions, of higher, and
known, quality, faster, and with less effort required of the users to
enable greater focus on the primary intellectual challenges and less
on the distracting but necessary efforts involved in performing
increasingly parallel, large scale computations. This goal requires
both more computing capacity and the ability to specify and execute
new OOPS applications rapidly and easily.

Third, progress towards the first two challenges requires the ability
to use a wider range of more powerful computers and to reduce
barriers to using new computing systems.

In pursuit of these goals, we have sought to create a “protein
prediction laboratory” enabling the rapid specification of complex
protein prediction applications based on OOPS software. To this
end, the cumbersome, inflexible, and manually intensive collection
of ad hoc shell and Python scripts that had previously been used to
drive OOPS have been replaced by the Swift [1] parallel scripting
system. Swift provides a high-level syntax that provides for well-
structured, abstract, location-independent scripts. The Swift runtime
system also automates parallelization, data management, and error
recovery, and supports execution on a wide variety of computer
systems. This approach allows great flexibility in composing
existing programs to address new requirements, to explore
algorithmic variations, and to implement entirely new applications,
such as new folding and docking algorithms, and replica exchange
simulations with multiple order parameters.

The present status report on our progress towards these goals
describes the algorithms used by OOPS (Section 2), their
computational structure and costs (Section 3), and the parallel
scripting approach we employed to extend the power of OOPS
(Section 4). Finally, we present in Section 5 results obtained by co-
author G. Hocky, an undergraduate student at the University of
Chicago, who sought to apply the OOPS Swift-based scripting
framework to a range of protein structure prediction problems.
These results are anecdotal, but suggestive of the power of the
approach.

Revision 27: 6/17/09 10:31 AM

2 PROTEIN STRUCTURE PREDICTION
ALGORITHM

The Open Protein Simulator (OOPS) is a set of open source
applications for fast simulation of protein folding, docking and
refinement. It uses the C++ protein library PL [3] for representing,
moving, and calculating the energy of protein structures, and
provides a set of useful analysis tools for evaluating the quality of
predicted models. OOPS and its component ItFix algorithm have
proven successful at predicting the structure of moderate-sized
proteins [13].

The iterative fixing (ItFix) protein structure determination algorithm
used within OOPS takes as input a protein sequence, an initial
secondary structure, a starting annealing temperature, and other
parameters. If successful, it produces a protein structure as output.

Figure 1 shows the basic structure of the ItFix algorithm, which
consists of multiple rounds. (The number of rounds is typically
limited by a maximum and a convergence test.) At each round, it
performs between 100 and 1000 independent, randomly seeded
Monte-Carlo-based simulated annealing (MCSA) computations
[10]. Then, it gathers statistical data about that round, specifically
on the average origins or assignments of the secondary structures at
each position in the sequence. Sometimes this analysis involves
clustering of structures through various techniques. It then
determines whether or not to stop sampling angles from certain
secondary structure types at those positions, checks for convergence
and, if convergence has not occurred, launches the next round with
this information as a new input file. Additionally, at each analysis
step, various plots are created from the output data, including
average 3D atomic contact maps (and movies), RMSD (3D position
accuracy) versus energy plots, and secondary structure prediction
accuracy.

The MCSA application called by ItFix consists of a simulated
annealing (SA) loop that iterates until it “cools” sufficiently [10]. At
each iteration, it rotates the φ/ψ backbone torsional angles in
accordance with well-understood physical constraints, seeking
moves that produce lower energy and more native-like structures.
Thus, each iteration comprises first a move() and then the
calculation of the energy of the new configuration, followed by
acceptance or rejection of the move based on energy and a
temperature-weighted probablity of accepting a higher-energy
move.

ItFix and OOPS have unique characteristics that make them well-
suited for high-throughput and rapid-response structure prediction
and related operations such as simulating the docking
configurations of large biomolecules. ItFix incorporates basic
chemical principles and mimics a folding pathway to restrict its
search space. It employs a highly conditional reduced molecular
representation [16], which enables a broader and faster search [10].
In contrast, most other methods include all the atoms and
consequently expend much computation time searching through
side chain space. Most other algorithms also rely heavily on known
structures or fragments (homologies, templates, etc.) [8, 31]. Their
success rapidly diminishes as the amount of known information
decreases.

3 COMPUTATIONAL CHALLENGES IN
PROTEIN STRUCTURE PREDICTION

The ItFix folding algorithm has reduced significantly the time
required to predict a protein from sequence, relative to other

methods of similar quality. However, in its current implementation,
the algorithm still requires ~1000 CPU hours on a modern
microprocessor for a medium-sized protein: more than a month.

Fortunately, the hierarchical structure in Figure 1 suggests obvious
opportunities for parallel execution. First, the multiple independent
invocations of MCSA can be executed in parallel; as each MCSA
invocation runs for 0.5 to 3.0 hours, has a small memory footprint
(10s of megabytes), and outputs small text files (compressible to <
1MB per MCSA simulation), this strategy is quite straightforward.

Second, it may be possible to exploit parallelism within MCSA.
Exploiting for now only the former opportunity, we have produced
a code that can compute a single structure in a day on a 150-CPU
cluster.

While we plan to consider parallelization of MCSA in the future,
that work has not been a priority because our observations of how
ItFix and OOPS used in practice within the Freed and Sosnick labs
suggest different challenges:

• Researchers often want to invoke ItFix many times at once for
different proteins. Thus, even without parallelization of
MCSA, we see large runs, involving hundreds of thousands of
independent activities, with associated procedural challenges
in terms of bookkeeping, error detection, restarting, and so
forth. (See Figure X.)

• The ItFix algorithm has several free parameters that are
currently trained by chemical intuition and repeated trials. In
order to best understand performance, researchers often want
to run extensive benchmarks to evaluate algorithmic
improvements. Again, the result is large runs involving many
invocations of MCSA and other procedures.

• Researchers often make changes to the computational
structure—not at the lowest level of the MCSA application,
but to things like convergence criteria.

• Researchers also experiment with new applications of the
OOPS framework, for example to crystal structure refinement
and studies of biomolecular interactions. These applications do

main(protein, secStr)
 ItFix(protein, nRounds=10, roundSize=300, secStr)

ItFix(protein, nRounds, roundSize, secStr)
 roundNum=1
 while not converged and roundNum < nRounds
 foreach j in 1..roundSize
 models[j], structs[j] = Mcsa(p, secStr)
 newSS = analyze(models, structs)
 converged = checkConvergence(newSecStr, secStr)
 s=newSecStr
 roundNum++

MCSA(protein, secStr)
 initialConf=genRandConf(protein, secStr)
 E = energy(initialConf.model)
 temp, stepsToUpdate, moveSet = GetInitialValues()
 while (not converged)
 position=chooseRandPosition()
 model = move(position, moveSet)
 newE = energy(model)
 model, E = accept_or_reject(E, newE,t)
 if nstep mod steps == 0 then reduce(t)
 nsteps++
 return model, struct

Figure 1: The ItFix folding algorithm

Revision 27: 6/17/09 10:31 AM

not change the basic MCSA building block, but do again
involve the specification of new high-level structure.

• Because computing demands always seem to exceed available
resources, researchers frequently seek to make use of multiple
computers, including local clusters and computers at NSF and
DOE centers.

These observations on how ItFix and OOPS are used suggest a need
for mechanisms that allow for concise, readable specification of
high-level structure that exposes opportunities for parallel
execution; the robust management of large number of tasks; and the
convenient dispatch of computation to multiple parallel computers,
both local and remote.

These considerations motivated our exploration of the use of the
Swift parallel scripting system within OOPS.

Figure 2: OOPS ItFix data flow diagram, showing algorithm
applied to multiple proteins concurrently, in multiple rounds.

4 PARALLEL PREDICTION SCRIPTING
Swift [29] comprises:

1. a high-level, functional scripting language (“SwiftScript”),
designed for expressing computations that invoke executable
programs, with a dataflow model used to ensure that program
invocations (“tasks”) are executed only when their input data is
available;

2. a data model that allows for the mapping of file system
structures (individual files, directories, etc.) into Swift
language variables; and

3. a runtime system to manage the scheduling of tasks for
execution, the dispatch of executable tasks to parallel
computers, and the movement of data consumed and produced
by those tasks.

Figure 2 illustrates some basic Swift constructs. In brief:

• (L1-3) Defines an interface to an application program,
predict_structure. This interface maps from typed
Swift variables to command-line program syntax. It expects a
protein sequence specified in FASTA format and returns a
structure prediction in the form of a “trajectory” file in our
“PDT” format.

• (L5-9) Invokes the procedure predict (and thus the
predict_structure program) in parallel, for each file
listed in the command line argument “proteins.”

Swift’s dataflow model means that the multiple invocations of
predict can run concurrently, as none is dependent on data
produced by another. Swift’s runtime system handles the dispatch
of individual predict calls to an available computer, and the
movement of the associated data to and from those computers.
Thus, we are able in just eight lines to describe a potentially large
amount of computing.

The Swift runtime system can deal with computations that involve
many concurrent activities. By using two-level scheduling methods,
as implemented for example in Falkon [24, 25], it has executed
computations involving hundreds of thousands of tasks on
supercomputers with tens of thousands of processors. (These
methods first deploy task executors onto nodes and then stream
tasks to those executors.) The Swift runtime system can also
dispatch tasks to multiple computers, using Globus mechanisms
[17] to overcome inevitable heterogeneities in authentication, job
submission, and data movement methods. Swift implements various
heuristics to decide where to send which task, and when.

When we first discussed combining OOPS with Swift, we sketched
out simple pseudo-code examples, similar to Figure 1, of how we
would use Swift programs to combine OOPS functions into high-
performance applications. Our original conception has stood the test
of time. While the integration of the OOPS framework with Swift
demanded some extra initial development time, this investment has
paid off. We have more concise and manageable programs; can run
complex computations more easily and reliably; and are able to run
our programs across many sites without modification.

To illustrate how we use Swift in OOPS, we present a simplified
version of the basic ItFix program structure. The complete currently
executing Swift script is available online [2].

We leverage Swift data typing and mapping [20] to abstract input
and outputs, group related items in structures, detect type errors, and
map the simple logical structure to the specific data layout that we
want to maintain in our archival storage repository. We first declare
some useful atomic types to be simple files: for example, Fasta for
the sequence being folded, and PDB, the known 3D structure, when
available, for accuracy comparison. (Other such simple types are
elided). Then we define some compound types, which as in other
languages, are used to organize multiple related values.

1. app (PDT structure) predict(Fasta protein) {
2. predict_structure @protein @structure;
3. }
4.
5. foreach pfile, i in @arg("proteins") {
6. Fasta protein <pfile>;
7. PDT structure[];
8. structure[i] = predict(protein);
9. }

Figure 3: A simple Swift example

Revision 27: 6/17/09 10:31 AM

1. type Fasta;
2. type PDB;
3. ...
4.
5. type MCSAIn {
6. Fasta fasta;
7. PDB pdb;
8. SecSeq secseq;
9. }
10.
11. type MCSAOut {
12. OOPSSecStr SecStr;
13. OOPSLog log;
14. OOPSEnergy Energy;
15. OOPSpdt pdt;
16. OOPSrmsd rmsd;
17. OOPSLibrary Library;
18. }

We use app procedures to define Swift interfaces to application
codes. For example, the Swift procedure mcsa defines an interface
to the oops_mcsa program (L19). Note how the procedure
extracts components from the Swift procedure arguments and uses
them to construct the arguments to oops_mcsa (L20).

19. app (MCSAOut out) mcsa (MCSAIn i, SecSeq secseq,

 int jobnum, string cfgParams[])
{

20. oops_mcsa @i.fasta @secseq @i.pdb @out.pdt
 @out.rmsd jobnum cfgParams stdout=@out.log;

21. }

We often also find it useful to define Swift interfaces to small utility
functions. For example, in the following we use the Unix sed
program to replace the values of science parameters in OOPS run
configuration files. Any of the approximately 50 scientific
parameters in about 8 configuration files can be dynamically set,
and used in a parameter sweep, in this manner. In L22-24 below, we
set parameters values that control the simulated annealing
temperature ranges and descent rates.
22. app (file oParams) setTemps (file inParams, string

 start, string update)
{

23. sed "-e" @strcat("s/@DIT@/",start,"/") "-e"
 @strcat("s/@TUI@/",update,"/")
 @inParams stdout=@oParams;

24. }

Next, we define our parallel application logic. First, we specify how
a single ItFix round is performed, via multiple concurrent calls to
mcsa. The procedure singleRound (L25) sets various science
configuration parameters (L28-29) and then uses a foreach
statement (L30) to make the multiple calls to mcsa, accumulating
the outputs in the array out.
25. (MCSAOut out[]) singleRound

(string protein, MCSAIn mcsaIn, SecSeq secSeq,
int round, int nsim, string startTemp,
string tempUpdate)

26. {
 file inParams <@arg("params")>;

27. file editedParams =
 setTemps(inParams, startTemp, tempUpdate);

28. string config [] = readData(editedParams);
29.
30. foreach sim in [0 : (nsim-1)] {
31. out[sim] =

 mcsa(mcsaIn, secseq, sim, config);˙
32. }
33. }
34.

The procedure ItFix (L35) implements the ItFix algorithm,
calling singleRound repeatedly (and serially) (L48) until either
convergence is detected (L51-52) or the specified rounds limit is
reached (L52).
35. ItFix(string protein, int nsim, int maxrounds,

 string startTemp, string tempUpdate)
36. {

 OOPSIn oopsin <ext; exec="OOPSIn.map.sh",
 i="input", p=protein>;

37.
38. string outdir = @arg("outdir");
39. OOPSOut result[][] <ext;

 exec="SecSamplerOutAll.map.sh",
40. d=outdir, p=protein, r=maxrounds,

 s=nsim, t=startTemp, u=tempUpdate>;
41. SecSeq secseq[] <simple_mapper; prefix =

 @strcat(outdir, "/", protein, "/", protein,
42. ".ST", st, ".TU", tu, "."),
43. suffix=".secseq">;
44. boolean converged[];
45. external done[];
46. secseq[0] = cpSecSeq(oopsin.secseq);
47.
48. iterate i {
49. (done[i], result[i]) =

 singleRound(protein, oopsin, secseq[i],
50. i, nsim, startTemp, tempUpdate);
51. (converged[i], secseq[i+1]) =

 analyzeRoundDir(protein, i, secseq[i],
 done[i]);

52. } until (converged[i] || (i==(maxrounds-1)));
53. }

We can now provide the main program, in which we call may ItFix
directly, to predict the structure of a single protein, or alternatively
build up more complex programs. For example, the following
program runs each of a set of protein sequences (from file plist), in
up to maxrounds rounds:
54. main_loop()
55. {
56. int nsim = @toint(@arg("nsim"), 3);
57. int maxrounds = @toint(@arg("maxrounds", "3"));
58. string protein[] = readData(@arg("plist"));
59. foreach prot in protein {
60. ItFix(prot, nsim, maxrounds,"","");
61. }
62. }

Thus, the simple code fragment in lines 54-62 above, given 10
proteins, nsim=1000, would, in each round of up to 3 rounds of
prediction, execute 10 x 1000 = 10,000 simulations. The actual
degree of parallelism is controlled by swift runtime settings and by
the availability of processor resources.

5 EXPERIENCE ON LARGE SYSTEMS
As the main work of our group is algorithm and method
development, we are continually testing and evaluating the
accuracy, spatial, and time performance of new codes. The OOPS
code base is constantly evolving. Prior to deployment of our parallel
scripting methods, it was virtually impossible to continually test
evolving changes at scale. The methods described here make a new
approach possible.

We are already using this framework to test some improvements to
the ItFix algorithm. In this section we show some examples of what
you can do in short main programs, once the core library routines
above have been created and validated.

Revision 27: 6/17/09 10:31 AM

5.1 Usage rates
In the first two weeks of April 2009, just shortly after the ItFix
Swift script was developed, the system has seen impressive use in
pursuit of scientific inquiries by author Hocky:

ALCF Intrepid Blue Gene/P:

 67178 jobs, 208,763 CPU hours

TeraGrid:

 22495 jobs, 2397 CPU hours

Ranger:

 17488 jobs, 1425 CPU hours

Over 100 GB of compressed science results data was produced from
the Blue Gene runs alone.

5.2 Parameter sweeps
Given the library of Swift procedures defined above, the
programmer can use flexible scripts to leverage many processors
with relative ease, as in the following code.

int nsim = @toint(@arg("nsim"), 3);
int maxrounds = @toint(@arg("maxrounds", "3"));
string protein[] = readData(@arg("plist"));
string startT[] = readData(@arg("startT"));
string tUpdate[] = readData(@arg("tUpdate"));

foreach prot in protein {
 foreach sT in startT {
 foreach tUp in tUpdate {
 ItFix(prot, nsim, maxrounds, sT, tUp);
 }
 }
}

This simple code fragment, given 10 proteins, nsim=1000, two
starting temperatures and 5 update intervals, would, in each round
of up to 3 rounds of prediction, execute 10 x 1000 x 2 x 5 = 100,000
simulations. On highly parallel systems such as the Argonne
Intrepid BGP, this simple code fragment can fully utilize a
substantial portion of the machine’s 163,840 processor cores.
Similar code with a slightly more general parameterization of ItFix
can sweep across any combination of settable parameters that
govern the OOPS MCSA algorithm.

5.3 Data analysis and visualization
We have integrated a range of visualization tools (e.g., PyMol for
protein visualization; scatter plots of protein energy level vs. the
root-mean-square distance (RMSD) of backbone atoms of the
predicted structure to the known structure) into the framework via
simple analysis scripts. These visualizations are a primary tool used
by our labs to assess prediction quality. Analysis in the current
script is accomplished by collectively summarizing round results
from log files, generating diagnostic 2D secondary structure
predictions, and calculating the lowest RMSD and predicted 3D
models. Quantitative molecular accuracy results and molecular
visualization are also produced in a web-based format (Figure 7).

5.4 OOPS Experiments conducted in Swift
As mentioned, the ItFix algorithm has several free parameters. Each
individual folding simulation is a Monte Carlo Simulated Annealing
(MCSA) procedure, meaning that the simulation is started at a

Starting Temperature (ST) and after a Temperature Update Interval
(TUI) the temperature is decreased based on a temperature
scheduling algorithm [10]. The idea is to have a simulation that
drives a molecule its lowest energy state, which in the case of
proteins we call the native state. This occurs because in the MCSA
loop, a structure is accepted only if it has a lower energy then the
previous, or if it has a higher energy, on with a conditional
probability decreasing with temperature.

We use a statistical scoring function as our measure of energy, and
because our temperature units are arbitrary it is difficult to
determine what values of ST and TUI will give the desired results.
While the ItFix procedure as implemented in Debartolo et al. [13] is
highly successful, the ST and TUI parameter space were not
explored extensively. We wanted to know for that particular
implementation, and for future implementations of ItFix, whether
other combinations of these parameters can give comparable or
better results while using less computer time.

Since we already had a flexible Swift framework implemented for
running OOPS across multiple sites, it was simple to implement a
parameter sweep workflow that explores this space and which
leverages HPC resources to do so. This parameter sweep is
essentially the program provided in Section 5.1. Figure 5 describes
our use of HPC and results.

Figure 4 – The outputs of an initial test run on Intrepid are shown
here for four representative proteins. Note that the protein’s native
secondary structure was used as input, so a direct comparison to
DeBartolo et al. is only relevant for α-proteins, where ItFix
effectively converges to the native secondary structure.

5.4.1 Initial test
In order to evaluate the performance of the ItFix algorithm, we
chose proteins whose structures are well determined experimentally,
and give as input to the ItFix algorithm the native secondary
structure in addition to the amino acid sequence. In the method of
DeBartolo et al., to generate predictions for publication, the ST was
100 and the TUI was 1000 and 2000 simulations were run for each
protein. In our initial test, we ran short simulations on Argonne’s
BG/P (Intrepid). For four proteins, we ran 150 simulations each of
ST of 15 and 25 and TUI of 25, 50, and 100 (see Figure 4).

The results presented immediate information for further
investigation. The four proteins we picked were representative, two
contained only the α-helical secondary structure unit, and two
contained both α and β motifs. For the α/β proteins the results were
predictably bad. We knew from experience that a large amount of
sampling must be done to get properly aligned β structures.
However, the results for α proteins were surprising. For all TUI ad
ST combinations and in just 150 simulations, the results were
nearly comparable to those published by DeBartolo et al., while
using two orders of magnitude less simulation. The obvious

Revision 27: 6/17/09 10:31 AM

conclusion was that once a protein is assigned as α by the ItFix
algorithm, we should consider running many short simulations
rather than fewer long simulations. Two questions then remained:
(a) can we use this method to generate predictions of higher
accuracy than DeBartolo et al. with this method, and (b) what
should we do about α/β and β proteins?

5.4.2 Investigation of α proteins
Because we were running short simulations, this investigation was
particularly fruitful. We used a mixture of Teragrid sites for these
tests (Abe, QueenBee, and Ranger), where simulations all took 2-10
minutes. The results in this test were strong. Running approximately
5000 simulations for each of three alpha proteins resulted in results
comparable or better than those of DeBartolo et al. Additionally, for
each protein the CPU time utilized was approximately 500 CPU-
hours while that used in the ItFix protocol would take more than
2000 CPU-hours depending on system load, etc.

Figure 5 -- Table presenting results of running > 5000

simulations on alpha proteins using TeraGrid resources. The
structures generated are better than those of DeBartolo et al. [13],
and required significantly less computation. The lower images are
the predicted structures (with helices in red and coil in green)
overlaid with the native structures (colored orange).

5.4.3 Investigation of β proteins
Parameter sweep simulations for β proteins demonstrated the
anecdotal evidence described above; it is necessary to do a large
amount of in-simulation sampling in addition to many parallel
MCSA runs to generate a good ensemble of structure for β or α/β
targets. Since this was the case, we then decided to investigate the
performance of Intrepid with our simulation framework for use in
future folding investigations where large amounts of sampling are
necessary.

5.4.4 Replicate/compare DeBartolo et al. runs
In previous sections, we used our scripting framework to investigate
properties of ItFix. Another thing we wish to learn is what resources
will be useful for which kinds of future applications. One thing we
would like to know is whether a resource such as a BG/P with many
low-power processors can be useful for our types of studies. In
Figure 6 we show that an ItFix investigation can be successfully and
stably executed with Swift/Falkon. Though the runtimes are longer
than would be expected on stock processors, the availability of
thousands of processors and the stability of our system shows that
use of Intrepid can be fruitful in future investigations. After this
simulation we also successfully ran simulations with the exact

protocol of DeBartolo et al. for T1mky and T1tif, results of which
can be seen on our project web site [2].

Figure 6 – Results of running eight proteins on 2 racks (8192

CPUS) on Argonne’s BG/P, Intrepid. Below are results from this
investigation for T1af7. On the left is a scatter plot showing the
correlation between our statistical energy potential and accuracy of
the protein structures for the 985 simulations that ran to
completion. On the right is an image showing the lowest RMSD
structure. This table, plot and image were all automatically
generated by our scripting mechanism, and the table is presented
by a simple CGI script at our web site [2].

5.4.5 Automatic Timing Runs
To effectively utilize computational resources for Monte Carlo
simulations, it is important to know how your algorithm scales
with the amount of sampling that you wish to have done. With this
framework, we can easily run loops over various parameters and
test the scaling of our algorithm. We performed a simple test on the
TeraGrid site Ranger, using three different ST values (25,50,100)
and 4 different TUIs (50,100,200,500). A sample output can be
seen in Figure 7.

Figure 7 – Sample result of a timing run on Ranger for varying
values of Temperature Update Interval with Starting Temperature
of 100.

6 RELATED WORK
We discuss related work in both protein structure prediction and
computing.

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

#!" $!!" %!!" #!!"

!
"
#
$%
&'

(
)$
*)
+$

%,-$

%&'&#.$!"#)$/#$!0#.(1$*2%3455+$

'$()*"

'$+*%"

'$,-."

'$/,0"

'$/1%"

'$234"

'$567"

'$-8)"

'$9)"

Revision 27: 6/17/09 10:31 AM

6.1 Structure prediction approach
Most folding algorithms rely heavily on known structures or
fragments (homology- or template-based) and can be extremely
successful [8, 31]. Their success, however, rapidly decreases as the
amount of known information decreases [26]. Other methods take a
physics-based approach [22], but are limited in their ability to
predict large targets on short time scales.

Uniquely among known approaches to structure prediction, OOPS
operates with minimal use of information derived from sequence
similarity to proteins in the Protein Data Bank (PDB) [7]. OOPS
derives its speed and accuracy from the use of a “Cβ” model [10],
an accurate statistical potential [16], and a search strategy involving
iterative fixing of structure in multiple “rounds” of folding [13].
Since OOPS uses minimal homology information and a reduced
representation, its success depends crucially on describing the
protein physics correctly. Great effort has been devoted to the
energy function, e.g., interactions are conditional on backbone
geometry and the relative orientation of side chains. In 2007, its
accuracy exceeded available all-atom potentials [16] by utilizing
secondary structure dependence, and it has been significantly
improved since then by including orientation-dependence [13]. Its
homology-free secondary and tertiary structure predictions for small
proteins rival or exceed homology-based methods with (expensive)
explicit side chains, engendering optimism for continued progress.
It also employs sequence homology for additional accuracy when
appropriate.

Our algorithm can predict the structures of two sets of proteins with
comparable accuracy for α, α/β, and β proteins (DeBartolo et. al ,
[13] Table 2). These predictions are comparable in accuracy to the
successful Rosetta fragment-based insertion algorithm, described in
the papers from which the test sets are obtained [8, 19].

6.2 Computing approach
Our computing approach builds on two related layers: the Swift
parallel scripting system, and two-level scheduling, as implemented
in Falkon and via the Swift “coaster” mechanism.

Other approaches to high-level specification of loosely coupled
scientific computations include MapReduce, DAGMan, Pegasus,
BPEL,Taverna. Triana, Kepler, and Karajan.

MapReduce [12] supports the processing of key-value based data,
using the Google File System. Swift targets various scientific
applications that process heterogeneous data formats, and can
schedule computations in a location-independent way.

Pegasus [15] and DAGMan [4] can also schedule large scale
computations in Grid environments. DAGMan provides a workflow
engine that manages Condor jobs organized as directed acyclic
graphs (DAGs) in which each edge corresponds to an explicit task
precedence. It has no knowledge of data flow, and in distributed
environments works best with a higher-level, data-cognizant layer.
DAGMan also lacks dynamic features such as iteration (which can
result in large DAGs) and conditional execution. Pegasus is
primarily a set of DAG transformers that can translate a workflow
graph into a location-specific DAGMan input file; prune tasks for
files that exist; select sites for jobs; and cluster jobs based on
various criteria. A weakness is that planners must operate on an
entire workflow statically, and execution sites cannot be changed
after Pegasus processes a workflow, which can be long before a job
runs, a strategy that may not work well in dynamic environments.

BPEL [1] has primarily been applied in service composition and
orchestration. A lack of support for iteration means that programs
can be larger, although the problem is being addressed in its latest
2.0 specification. In addition, the complex XML specification is
cumbersome to write compared with our compact scripting
language.

Taverna [21], Triana [27], and Kepler [5] have also been applied in
science problems. However, they do not abstract dataset types or
provide location transparency. Data movement and Grid job
submission all need to be explicitly specified and organized. Their
support for multi-site Grid execution is also of limited scale.

As discussed earlier, Swift integrates Karajan [18]. Karajan
provides the libraries and primitives for job scheduling, data
transfer, and Grid job submission; Swift adds support for high-level
abstract specification of large parallel computations, data
abstraction, and workflow restart, and also (via Falkon) fast, reliable
execution over multiple Grid sites.

Work related to Swift’s use of Falkon and coasters for lightweight
scheduling includes IBM’s Kittyhawk project [6], Cope et al.’s
work [11] on integrating lightweight scheduling in the Cobalt
scheduling system, using the HTC-mode support in Cobalt. We
have compared the performance of Falkon on the Blue Gene/P with
those of Cope at al. and Peters et al. [23], and found at least one
order of magnitude better performance, and several orders of
magnitude better scalability. This improved performance and
scalability of the middleware can translate into direct improvements
in scalability and performance for applications, with finer grained
task parallelism and reduced end-to-end application execution
times.

7 FUTURE WORK
The work described here has come together over a fairly short
period in Feb-April 2009. Its success has enabled us to chart the
following enhancements, which our experience to date suggests are
readily achievable.

While it was straightforward to code ItFix in Swift, the language
and its runtime semantics are still young and evolving. We were
eager to learn more about the language’s completeness and usability
through the experience of the kinds of real production usage as this
project. Three aspects of language enhancement seem desirable
from our OOPS scripting experience: 1) the need for polymorphism,
so a superset data structure can receive the results of several similar
but non-identical application program signatures; 2) the desirability
of providing global variables so that, for example, all functions can
be aware of application command line variables; and 3) an
alternative to the Swift construct called “external” variables, used to
circumvent the systems inability to pass a very long list of data
objects as a command line argument. All of these are now being
considered for near-term enhancements to the language.

Scaling through hybrid parallelization. To improve the scaling of
OOPS on systems such as the BG/P, with massive numbers of low-
speed processors, we will turn OOPS into a hybrid HPC/MTC
application—what we may term “MPTC,” for many parallel-task
computing—by parallelizing the MCSA energy-computing
function, in which profiling has shown that over 85% of the time in
OOPS is spent. We have designed a data structuring approach that
will make this straightforward, opening the door to much greater
scaling by using up to 1024 cores for a single MCSA prediction
operation.

Revision 27: 6/17/09 10:31 AM

We can thus estimate the speeds we expect to achieve on our target
petascale platforms. Folding 10 proteins with a fold size of 10
rounds and a round size of 1,000 MCSA simulations can utilize
100,000 CPUs working in parallel with no data dependencies and
hence near-perfect scaling. If we devote between 4 and 16 cores to
each Mcsa() function for the parallel computation of the energy of
each configuration, we can effectively utilize 40,000 to 160,000
compute cores for this task, or 4,000 to 16,000 cores per protein.
Realistically, even on petascale systems with 50K to 300K cores,
most user jobs will run with allocations far less than the full system.
Thus, this scale fits well for today’s usage, and can expand to
greater utilization, even for single proteins, as the parallelization of
the energy computation increases.

Many-task data management. Loosely coupled parallel scripting,
while productive for the developer, imposes a high performance
burden on large scale systems. We address this issue with a
collective I/O model for file-based many-task computing [28] that
we have prototyped on the BG/P and which enables efficient
distribution of input data files to computing nodes and gathering of
output results from them. This approach broadcasts common input
data, and uses efficient scatter/gather and caching techniques for
input and output.

Comprehensive user environment. An OOPS “run configurator”
mechanism packaged for use both from a web-form-based interface
as well as via a simple textual command specification will enable
users to specify OOPS runs with no programming. The web
interface will be runable locally by any user or community as a
service of the OOPS workflow framework.

The collaboration environment will leverage the Computation
Institute’s Petascale Active Data Server (PADS): a 0.5PB storage
system integrated with a 384-node cluster, with another 0.3PB of
storage and ample RAM on the cluster nodes (NSF grant OCI-
0821678). This facility will be ideal for “stage-2” analysis (where
stage-1 analysis is done on the target petascale systems themselves
as part of the OOPS workflow, as described above).

Tools such as R, Octave, and MatLab can be readily integrated into
analysis scripts (as many Swift users do today). Such analysis
scripts can utilize the same parallel scripting language as the OOPS
run-time framework, and can run both on the target petascale
systems as well as the backend “stage-2 analysis” environments
such as PADS, clusters, and workstations.

8 CONCLUSION
We have described the recent, rapid success in recoding an ad-hoc
implementation of protein structure prediction by “iterative fixing”
and simulated annealing in the Swift parallel scripting language,
and report on the progress, benfits, and remaining work needed to
make this approach an even more highly-productive example of
utilizing petascale systems to achieve greater scientific insights into
important aspects of the structural and behavioral properties of large
biomolecules.

We have identified remaining deficiencies in this approach and
presented a plan for future work that addresses them.

In general, we believe our work shows, in part, the unsurprising
conclusion that easier access to a greater level of computing
resources means a larger lab in which to test more hypotheses, in
less time, with less effort, and thus few distractions for scientists
seeking to advance their science rather than to address the
complexities of computing at this scale.

We believe our work demonstrates that once a basic set of
procedures have been created, the Swift approach to parallel
scripting can be productive; what we find most exciting is that
short, compact concise scripts, which clearly show the science
logic, can be automatically executed across diverse resource types,
and can leverage large computational resources. Thus, we run much
larger problems, and explore a large scientific space. It allows us to
ask questions we could not ask before.

Another advantages of our script-based approach is that we have the
future benefit of automated data provenance tracking [9, 30] within
the workflow execution engine, as well as the ability to leverage
multiple petascale execution resources within a single computation.

From our experience with the system to date, we believe that the
new capability will accelerate the rate of discovery in the Freed and
Sosnick labs, by increasing the rate at which we can improve the
speed and accuracy of OOPS. A core science process in these labs is
the enhancement in terms of predictive accuracy, speed, and
functional capability of the Open Protein Simulator. Enabling many
more lab members to perform more simulations, with larger Monte
Carlo sample sets, and to easily test and compare the performance
of the system across a range of parameter values, has proven its
value already in terms of new insights into the behavior of our
algorithms and the degree of simulation needed to converge on
accurate predictions.

ACKNOWLEGMENTS
This work was supported in part by the National Science
Foundation under Grant OCI-0721939, by NASA Ames Research
Center GSRP Grant Number NNA06CB89H; by the Office of
Advanced Scientific Computing Research, Office of Science, U.S.
Dept. of Energy, under Contract DE-AC02-06CH11357; by NIH
research (T.R.S. and K.F.F.) and training grants, and by the
National Science Foundation through TeraGrid resources provided
by NCSA, by the ALCF, and resources of the Open Science Grid.
The authors would like to thank: The Swift Group, the Computation

Figure 8: Planned OOPS Environment

Revision 27: 6/17/09 10:31 AM

Institute, the ZeptoOS group and the Argonne Leadership
Computing Facility

REFERENCES
1. Business Process Execution Language for Web Services,

Version 1.0, http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/,
2002.

2. Open Protein Simulator computation tracking web site.
[cited 2009 April 13]; Available from:
http://freedgroup.uchicago.edu/oops.html.

3. PL protein library. [cited 2009 April 13]; Available from:
http://protlib.uchicago.edu.

4. The Condor DAGMan (Directed Acyclic Graph Manager),
2007.

5. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B.
and Mock, S., Kepler: An Extensible System for Design and
Execution of Scientific Workflows. in 16th Intl. Conference
on Scientific and Statistical Database Management, (2004).

6. Appavoo, J., Uhlig, V. and Waterland, A. Project Kittyhawk:
Building a Global-Scale Computer -- Blue Gene/P as a
Generic Computing Platform. ACM Sigops Operating System
Review.

7. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat,
T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. The
Protein Data Bank. Nucleic Acids Res, 28 (1). 235-242.

8. Bradley, P., Misura, K.M. and Baker, D. Toward high-
resolution de novo structure prediction for small proteins.
Science, 309 (5742). 1868-1871.

9. Clifford, B., Foster, I., Voeckler, J., Wilde, M. and Zhao, Y.
Tracking Provenance in a Virtual Data Grid. Journal of
Concurrency and Computation, Practice and Experience.

10. Colubri, A., Jha, A.K., Shen, M.Y., Sali, A., Berry, R.S.,
Sosnick, T.R. and Freed, K.F. Minimalist representations and
the importance of nearest neighbor effects in protein folding
simulations. J Mol Biol, 363 (4). 835-857.

11. Cope, J., Oberg, M., Tufo, H.M., Voran, T. and Woitaszek,
M. High Throughput Grid Computing with an IBM Blue
Gene/L IEEE International Conference on Cluster
Computing, Austin, TX, 2007.

12. Dean, J. and Ghemawat, S. MapReduce: Simplified Data
Processing on Large Clusters 6th Symposium on Operating
System Design and Implementation,, San Francisco, CA,
2004.

13. DeBartolo, J., Colubri, A., Jha, A.K., Fitzgerald, J.E., Freed,
K.F. and Sosnick, T.R. Mimicking the folding pathway to
improve homology-free protein structure prediction. Proc
Natl Acad Sci U S A, 106 (10). 3734-3739.

14. DeBartolo, J., Hocky, G., Zhou, F., Peng, J., Augustyn, A.,
Adhikari, A., Xu, J., Freed, K.F. and Sosnick, T.R. Structure
prediction combining the template-based RAPTOR algorithm
with the ItFix ab initio method CASP8 conference,
http://predictioncenter.org/casp8/, 2008.

15. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y.,
Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B., Good,
J., Laity, A., Jacob, J.C. and Katz, D.S. Pegasus: A
Framework for Mapping Complex Scientific Workflows onto
Distributed Systems. Scientific Programming, 13 (3). 219-
237.

16. Fitzgerald, J.E., Jha, A.K., Colubri, A., Sosnick, T.R. and
Freed, K.F. Reduced C(beta) statistical potentials can
outperform all-atom potentials in decoy identification.
Protein Sci, 16 (10). 2123-2139.

17. Foster, I. Globus Toolkit Version 4: Software for Service-
Oriented Systems. Journal of Computational Science and
Technology, 21 (4). 523-530.

18. Laszewski, G.v., Hategan, M. and Kodeboyina, D. Java CoG
Kit Workflow. in Taylor, I.J., Deelman, E., Gannon, D.B.
and Shields, M. eds. Workflows for Science, 2007, 340-356.

19. Meiler, J. and Baker, D. Coupled prediction of protein
secondary and tertiary structure. Proc Natl Acad Sci U S A,
100 (21). 12105-12110.

20. Moreau, L., Zhao, Y., Foster, I., Voeckler, J. and Wilde, M.
XDTM: XML Data Type and Mapping for Specifying
Datasets European Grid Conference, 2005.

21. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M.,
Greenwood, M., Carver, T., Glover, K., Pocock, M.R.,
Wipat, A. and Li, P. Taverna: A tool for the composition and
enactment of bioinformatics workflows Bioinformatics
Journal, 20 (17). 3045-3054.

22. Ozkan, S.B., Wu, G.A., Chodera, J.D. and Dill, K.A. Protein
folding by zipping and assembly. Proc Natl Acad Sci U S A,
104 (29). 11987-11992.

23. Peters, A., King, A., Budnik, T., McCarthy, P., Michaud, P.,
Mundy, M., Sexton, J. and Stewart, G. Asynchronous Task
Dispatch for High Throughput Computing for the eServer
IBM Blue Gene® Supercomputer International Parallel and
Distributed Processing Symposium, 2008.

24. Raicu, I., Zhang, Z., Wilde, M., Foster, I., Beckman, P.,
Iskra, K. and Clifford, B. Toward loosely coupled
programming on petascale systems 2008 ACM/IEEE
Conference on Supercomputing, 2008.

25. Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I. and Wilde, M.
Falkon: a Fast and Light-weight tasK executiON framework
for Grid Environments SC'2007, 2007.

26. Service, R.F. Problem solved* (*sort of). Science, 321
(5890). 784-786.

27. Taylor, I., Shields, M., Wang, I. and Harrison, A. Visual Grid
Workflow in Triana. Journal of Grid Computing,, 3 (3-4).
153-169.

28. Zhang, Z., Espinosa, A., Iskra, K., Raicu, I., Foster, I. and
Wilde, M. Design and Evaluation of a Collective IO Model
for Loosely Coupled Petascale Programming IEEE Many-
Task Computing on Grids and Supercomputers, Austin, TX,
2008.

29. Zhao, Y., Hategan, M., Clifford, B., Foster, I., von
Laszewski, G., Nefedova, V., Raicu, I., Stef-Praun, T. and
Wilde, M. Swift: Fast, Reliable, Loosely Coupled Parallel
Computation 1st IEEE International Workshop on Scientific
Workflows, 2007, 199-206.

30. Zhao, Y., Wilde, M. and Foster, I. Applying the Virtual Data
Provenance Model International Provenance and Annotation
Workshop, 148-161, Chicago, IL, USA, 2006.

31. Zhou, H. and Skolnick, J. Protein structure prediction by pro-
Sp3-TASSER. Biophys J, 96 (6). 2119-2127.

The submitted manuscript has been created in part by UChicago Argonne,
LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a
U.S. Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

