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Abstract. This paper constructs extrapolated implicit-explicit time stepping methods that allow one
to efficiently solve problems with both stiff and nonstiff components. The proposed methods are based
on Euler steps and can provide very high order discretizations of ODEs, index-1 DAEs, and PDEs in
the method of lines framework. Implicit-explicit schemes based on extrapolation are simple to construct,
easy to implement, and straightforward to parallelize. This work establishes the existence of perturbed
asymptotic expansions of global errors, explains the convergence orders of these methods, and studies their
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theoretical findings and illustrate the potential of these methods to solve multiphysics multiscale problems.
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1. Introduction. Several areas of science and engineering require numerical simu-
lations of multiphysics multiscale systems. Examples include mechanical, aerospace, envi-
ronmental, and chemical engineering; astrophysics; biology; meteorology and oceanography
[3, 9]. Multiphysics multiscale systems are characterized by multiple simultaneous physical
processes evolving at very different time scales. Processes can be informally categorized
according to their dynamics into fast (stiff) and slow (nonstiff). For example consider
advection-diffusion-reaction systems where the advection is slow while the diffusion and
chemistry are typically fast [14, 27, 30].

The dynamics of a process determines the best numerical solution strategy. Explicit
time discretizations are effective for slow processes because their computational cost per step
is relatively low. On the other hand, implicit methods are more efficient for fast processes
because their step sizes are typically not limited by stability considerations [16, 17]. Time
integration of multiscale processes is challenging because neither purely explicit nor purely
implicit methods are adequate. Explicit methods require prohibitively small time steps
(limited by the fastest time scale in the system). Implicit methods require the solution of
(non)linear systems of equations that involve all the processes in the model; this is both
computationally expensive and difficult to implement [18, 23].

The implicit-explicit (IMEX) approach has been developed to alleviate these difficulties.
The IMEX idea is to combine an implicit scheme for the stiff components with an explicit
scheme for the nonstiff components such that the overall discretization method has the
desired stability and accuracy. IMEX linear multistep (LM) methods have been proposed
in [3, 13, 20], and IMEX Runge-Kutta (RK) schemes have been developed in [2, 5, 25, 31].
These methods are generally limited to low orders of consistency (typically, lower than
five). High-order IMEX RK methods are difficult to construct because of the large number
of order conditions. IMEX LM methods have increasing stability restrictions with increasing
order.

In this study we construct a new family of IMEX methods using extrapolation. We are
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concerned with solving the following problem,

y′(x) = F (x, y) , F (x, y) = f(x, y) + g(x, y) , x ≥ x0 , y(x0) = y0 , (1.1)

where f and g represent the nonstiff and the stiff processes, respectively. Our approach is
to apply an explicit time discretization to f and an implicit time discretization to g and
to achieve high orders of consistency by extrapolation [11, 18, 19]. This paper extends the
pioneering work of Deuflhard et al. [11, 12] on extrapolated linearly implicit and mid-point
rule to extrapolated IMEX methods.

This work brings the following contributions. We propose a new family of implicit-
explicit methods that are simple to implement, can attain very high orders of convergence,
and are parallelizable. We investigate their linear stability properties and prove the exis-
tence of perturbed asymptotic expansions for the global discretization errors. We illustrate
the theoretical findings on ODE, DAE, and PDE test problems.

The paper is organized as follows. Section 2 offers a review of the extrapolation methods
along with their consistency and linear stability properties. The existence of an asymptotic
error expansion for the extrapolated IMEX methods applied to index-1 DAEs is established
in Section 3 and is illustrated in Section 4. The global error expansion results are extended
to stiff ODEs in Section 5, and in Section 6 we show numerical evidence that supports
the theory. Section 7 presents numerical results for a PDE system. We discuss practical
implementation aspects in Section 8 and draw conclusions in Section 9.

2. Extrapolation Methods. Consider a sequence of positive integers {nj}1≤j≤M ,
with nj < nj+1, and define a sequence of step sizes h1, h2, h3, . . . by hj = H/nj. Fur-
ther, consider a “base” numerical method to solve (1.1), and denote by yh(x) the numer-
ical approximation of y(x) obtained with the step size h. Different numerical solutions
{Tj,1}1≤j≤M at x0 + H are obtained by applying nj steps of the base method with step
size hj :

Tj,1 := yhj
(x0 + H) , 1 ≤ j ≤ M . [Base method ] (2.1)

Assume that the global error of the pth-order base method employed in (2.1) has an asymp-
totic expansion of the form

y(x) − yh(x) = ep(x)hp + · · · + eN(x)hN + Eh(x)hN+1 , (2.2)

where ei(x) are errors that do not depend on h, and Eh is bounded for x0 ≤ x ≤ xend. This
holds for the methods discussed in this paper (see Sec. 2.1). Using the M approximations
(2.1) obtained with different hj ’s, one can eliminate the error terms in the global error
asymptotic expansion (2.2) by Richardson extrapolation (see [18, Ch. II.9]). High-order
numerical approximations of the solution of (1.1) can thus be constructed [18, Ch. II, Thm.
9.1]. The most economical approach is given by the Aitken-Neville formula [1, 24]:

Tj,k+1 = Tj,k +
Tj,k − Tj−1,k

(nj/nj−1) − 1
, j ≤ M , k < j. (2.3)

The numerical scheme (2.1)–(2.3) is called the extrapolation method. It is customary to
represent the solutions Tj,k in a tableau; see, for example, Table 2.1.a. We remark that the
extrapolation approach provides a sequence of lower-order embedded methods as illustrated
in Table 2.1.b. This fact can be used for step size (H) and order control. The most efficient
choice for nj is the harmonic sequence [10]: nj = 1, 2, 3, . . . .
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Table 2.1
Tableaux with the Tj,k solutions and their corresponding classical orders for a pth-order base method.

a) Tj,k tableau b) Classical orders

T11

T21 T22

T31 T32 T33

p
p p + 1
p p + 1 p + 2

2.1. Base Methods. Typical base methods used to compute (2.1) include the forward
Euler method yn+1 = yn + h (f(yn) + g(yn)) and the linearly implicit Euler method [19]:

yn+1 = yn +
[
I − h (f + g)′(yn)

]−1 (
h f(yn) + h g(yn)

)
. [Linearly implicit ] (2.4a)

Method (2.4a) has been used in [11, 12] as the extrapolation base method for solving stiff
ODEs of type (1.1). Explicit Euler and the symmetric base methods are possible but not
addressed in this study.

In this paper we extend the work of Deuflhard et al. [12] to problems that have both
fast and slow components, such as in (1.1). We treat implicitly the fast components and
explicitly the slow ones, and we build implicit-explicit extrapolation schemes. To this end
we propose three IMEX base methods. W-IMEX, Pure-IMEX, and Split-IMEX are defined
as follows:

yn+1 = yn +
[
I − h g′(yn)

]−1 (
h f(yn) + h g(yn)

)
, [W-IMEX ] (2.4b)

yn+1 = yn + h f(yn) +
[
I − h g′(yn)

]−1 (
h g(yn)

)
, [Pure-IMEX ] (2.4c)

yn+1 = y∗ +
[
I − h g′(yn)

]−1 (
h g(y∗)

)
; y∗ = yn + h f(yn) . [Split-IMEX ] (2.4d)

The W-IMEX scheme is essentially the same as the linearly implicit method except for
the Jacobian, which is approximated by the Jacobian of the stiff component; this is typi-
cally sufficient for the stability of the numerical algorithm and makes the W-IMEX method
computationally cheaper. The Pure-IMEX and the Split-IMEX schemes use the same ap-
proximation of the Jacobian; however, the explicit and implicit parts are treated separately,
making them truly IMEX schemes.

The extrapolation of methods (2.4b)-(2.4d) can be shown to be consistent for nonstiff
problems by following [18, Ch. II.8]; more details can be found in [8]. Their consistency
for problems with both stiff and nonstiff components is further analyzed in later sections.

2.2. Linear Stability Analysis of the Extrapolated IMEX Methods. In this
section we investigate the linear stability properties of the proposed extrapolated IMEX
methods. A similar analysis can be found in [13]. Consider the linear scalar test problem

y′(t) = λy(t) + µy(t) , (2.5)

where λ, µ ∈ C represent the eigenvalues of the nonstiff (f) and stiff (g) components,
respectively. The test problem corresponds to the case where the nonstiff and stiff Jacobians
can be simultaneously diagonalized, but it also provides useful insight into the general case
where they do not [13].

One step of (2.4) applied to (2.5) gives the solution yn+1 = R(z, w) yn, where z = λh,
w = µh, and R(z, w) is the stability function of the method. The stability functions of the
base methods (2.4) are as follows.
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R(z, w) =
1 + z

1 − w

[
W-IMEX,

Split-IMEX

]
(2.6a) R(z, w) = z +

1

1 − w
[Pure-IMEX ] (2.6b)

The W-IMEX and the Split-IMEX methods have the same stability function.

The stability functions of the extrapolated methods are calculated from the extrapola-
tion formula (2.3) as [19, Ch. IV]

Rj,1(z, w) = Rnj

(
z

nj
,

w

nj

)
, Rj,k+1(z, w) = Rj,k(z, w) +

Rj,k(z, w) − Rj−1,k(z, w)

(nj/nj−k) − 1
,

where z = λH , w = µH , and R(z, w) is the one-step stability function for the specific base
method. The subscripts denote the position in the extrapolation tableau.

The stability region S of the IMEX method is defined by

S = {z ∈ C, w ∈ C : |R(z, w)| ≤ 1} ⊂ C × C .

This definition is of little practical consequence, however, as the set in C × C is difficult
to visualize. Therefore, to assess the linear stability, we explore a nonstiff stability region
Sz ⊂ C and a stiff stability region Sw ⊂ C such that Sz × Sw ⊂ S. The method is stable
whenever λh ∈ Sz for the nonstiff component and µh ∈ Sw for the stiff one. The choice of
Sz and Sw is not unique. The two sets can be interpreted as “regular” stability regions of
the explicit and of the implicit parts of the IMEX method, respectively.

Desirable stability properties for implicit methods are A-stability or A(α)-stability
[19]. To assess the stability of the IMEX method, we consider the stiff stability regions
Sw(α) = {w = ρeiθ : π − α ≤ θ ≤ π + α , ρ ≥ 0} (i.e., the α-wedge in the negative half
plane characteristic for A(α) stability) and determine the maximal nonstiff stability regions
Sz such that Sz × Sw ⊂ S. To be specific, we consider two stiff stability regions for angle
values α = 90◦, 30◦ as shown in Fig. 2.1(left column). For each of them the (maximal)
nonstiff stability regions are computed for several entries Tjk in the extrapolation tableau.
These nonstiff stability regions are reported in Fig. 2.1(middle column) for the W-IMEX
and Split-IMEX schemes and in Fig. 2.1(right column) for the Pure-IMEX scheme. In each
case the nonstiff stability regions are nontrivial. They contain a segment of the imaginary
axis, which is a desirable property when solving certain PDEs by the method of lines [21].
The explicit stability regions grow for methods Tjk farther down the extrapolation tableau
(i.e., grow with increasing j and k).

Decreasing the stiff stability requirement Sw(α) by decreasing α leads to an increase
in the nonstiff stability region and relaxes the step-size restriction for the entire IMEX
method. In many important applications the fast process (diffusion, chemistry) has large
eigenvalues µ on or close to the negative real axis; this property allows relatively large time
steps for the entire IMEX method.

Next we turn our attention to the accuracy of the extrapolated IMEX methods.

3. Global Error Expansion for Extrapolated IMEX Methods Applied to

DAEs. Consider problems (1.1) with the following special structure. A change of variables
exists that splits the solution vector into a purely slow component y (driven by slow process
f) and a purely fast component z (driven by the fast process g). We have

(
y
ε z

)′

=

(
f(y, z)

0

)
+

(
0

g(y, z)

)
=

(
f(y, z)
g(y, z)

)
. (3.1)

The constant ε represents the ratio of the fast to slow timescales, determines the stiffness,
and provides an appropriate problem scaling. The system (3.1) is a singular perturbation
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Fig. 2.1. Stiff stability regions Sw(α) for α = 90◦ and 30◦ and the corresponding nonstiff stability
regions Sz for several extrapolated IMEX terms with the base methods (2.4). The horizontal and vertical
axes represent the real and imaginary components, respectively. We note that a different scaling is used
for the third column.

problem (SPP) with the reduced differential algebraic form obtained by taking ε → 0:

(
y
0

)′

=

(
f(y, z)

0

)
+

(
0

g(y, z)

)
=

(
f(y, z)
g(y, z)

)
. (3.2)

Under the assumption that gz is invertible the system (3.2) is an index-1 DAE.
We first analyze the accuracy of the extrapolated IMEX methods applied to the reduced

system (3.2) and then address the discretization of the full problem (3.1). The discussion
starts with W-IMEX in Sec. 3.1, continues with Pure-IMEX in Sec. 3.2, and focus on
Split-IMEX in Sec. 3.3.

3.1. W-IMEX. Applying the W-IMEX method (2.4b) to (3.1) yields
(

I 0
−hgy(0) εI − hgz(0)

) (
yi+1 − yi

zi+1 − zi

)
= h

(
f (yi, zi)
g (yi, zi)

)
, (3.3)

where g{y, z}(0) = g{y, z}(y0, z0). Then the reduced form of (3.3) given by ε → 0 is
(

I 0
−hgy(0) −hgz(0)

) (
yi+1 − yi

zi+1 − zi

)
= h

(
f (yi, zi)
g (yi, zi)

)
. (3.4)

To assess the accuracy of the W-IMEX scheme, we first analyze the reduced system (3.4)
and then address the full problem (3.3) in Section 5.1. Similar work for the extrapolated
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linearly implicit Euler method can be found in [12] and [19, Ch. VI.5]. We start with the
reduced problem (DAE) and give the following result.

Theorem 3.1 (Global error expansion of the extrapolated W-IMEX method applied to
DAEs). Consider the problem (3.2) with gz invertible and consistent initial values (y0, z0).
The global error of the IMEX scheme (3.4) has an asymptotic h-expansion of the form

yi − y(xi) =

M∑

j=1

hj
(
a(j)(xi) + α

(j)
i

)
+ O

(
hM+1

)
,

zi − z(xi) =
M∑

j=1

hj
(
b(j)(xi) + β

(j)
i

)
+ O

(
hM+1

)
,

(3.5)

where a(j)(x) and b(j)(x) are smooth functions and the perturbations satisfy

α
(1)
i = 0 , α

(2)
i = 0 , β

(1)
i = 0 , ∀i ≥ 0 ; (3.6a)

α
(3)
i = 0 , α

(4)
i = 0 , β

(2)
i = 0 , ∀i ≥ 1 ; (3.6b)

α
(j)
i = 0 , ∀i ≥ j − 3 , j ≥ 5 ; (3.6c)

β
(j)
i = 0 , ∀i ≥ j − 2 , j ≥ 3 . (3.6d)

The error terms in (3.5) are uniformly bounded for xi = ih ≤ H if H is sufficiently small.
Proof. Following Deuflhard et al. [12], the proof consists of two parts: in the first

part (a) truncated expansions are constructed, and in the second one (b) an error bound
is obtained from a stability estimate.
a) Consider the truncated expansions of the numerical solution

ŷi = y(xi) +
M∑

j=1

hj
(
a(j)(xi) + α

(j)
i

)
; ẑi = z(xi) +

M∑

j=1

hj
(
b(j)(xi) + β

(j)
i

)
, (3.7)

such that the defect of ŷi, ẑi inserted in (3.4) is small (see [15]):
(

I 0
−hgy(0) −hgz(0)

) (
ŷi+1 − ŷi

ẑi+1 − ẑi

)
= h

(
f(ŷi, ẑi)
g(ŷi, ẑi)

)
+ O

(
hM+2

)
. (3.8)

The initial values are the exact solution (ŷ0 = y0, ẑ0 = z0), and the perturbation terms (α,
β) are assumed to satisfy

a(j)(0) + α
(j)
0 = 0 , b(j)(0) + β

(j)
0 = 0 , (3.9a)

α
(j)
i → 0 , β

(j)
i → 0 , for i → ∞ . (3.9b)

Consider the Taylor expansion for f(ŷi, ẑi) and g(ŷi, ẑi) about (y(xi), z(xi)). Replacing
them together with the expansion of their numerical solutions ŷi+1 − ŷi and ẑi+1 − ẑi in
(3.8) and equating the terms in h, we get

y′(xi) +
(
α

(1)
i+1 − α

(1)
i

)
= f (y(xi), z(xi)) , 0 = g (y(xi), z(xi)) . (3.10)

Using the consistency requirement (3.9b) gives α
(1)
i+1 = α

(1)
i , which verifies (3.2). Thus one

has α
(1)
i = 0, ∀i ≥ 0. Next we consider the coefficients of h2 and obtain

1

2
y′′(x) +

(
a(1)

)′

(x) = fy (x) a(1)(x) + fz (x) b(1)(x), (3.11a)

− gy(0) y′(x) − gz(0) z′(x) = gy (x) a(1)(x) + gz (x) b(1)(x), (3.11b)
(
α

(2)
i+1 − α

(2)
i

)
= fz (0)β

(1)
i , −gz(0)

(
β

(1)
i+1 −�

�β
(1)
i

)
= �����

gz (0)β
(1)
i . (3.11c)
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System (3.11a)-(3.11b) can be solved by substituting b(1)(x) from (3.11b) in (3.11a), which

leads to an ODE in a(1), and together with (3.9a) and α
(1)
0 = 0 gives a(1)(0) = 0. Therefore

a(1)(x) and b(1)(x) are uniquely determined by (3.11a)-(3.11b).
Relations (3.11c) and 0 = g(y, z) for x = 0 are used to eliminate the left-hand side of

(3.11b): gy (0) a(1)(0) + gz (0) b(1)(0) = 0 ⇒ gz (0) b(1)(0) = 0 ⇒ b(1)(0) = 0 .

By (3.9a) one has β
(1)
0 = 0. In general β

(1)
i = 0, ∀i ≥ 0, from (3.11c), that gives

α
(2)
i = 0, ∀i ≥ 0.

The coefficients of h3 lead to
(
a(2)

)′

(x) = fy(x) a(2)(x) + fz(x) b(2)(x) + r(2)(x) , (3.12a)

0 = gy(x) a(2)(x) + gz(x) b(2)(x) + s(2)(x) , (3.12b)

where r(2)(x) and s(2)(x) are known functions that depend on the derivatives of y(x), z(x),
a(1)(x), b(1)(x). The perturbations with the additional cancellations of terms that have

coefficients α
(1)
i = 0 and β

(1)
i = 0, ∀i, and using α

(2)
i = 0, ∀i, lead to

α
(3)
i+1 − α

(3)
i = fz(0)β

(2)
i , (3.13a) 0 = gz(0)β

(2)
i+1 . (3.13b)

Terms a(2)(x) and b(2)(x) are determined in the same way as a(1)(x) and b(1)(x). One has

a(2)(0) = 0 from α
(2)
i = 0. However, b(2)(0) 6= 0, and by (3.9a) one has β

(2)
0 6= 0. From

(3.13b) one obtains β
(2)
i = 0, ∀i ≥ 1, and with (3.13a) one has α

(3)
i = 0, ∀i ≥ 1.

A recurrence formula can be constructed for the coefficients of hj+1, ∀j ≥ 4:

(
a(j)

)′

(x) = fy(x) a(j)(x) + fz(x) b(j)(x) + r(j)(x) , (3.14a)

0 = gy(x) a(j)(x) + gz(x) b(j)(x) + s(j)(x) , (3.14b)

α
(j+1)
i+1 − α

(j+1)
i = fz(0)β

(j)
i + ̺

(j)
i , (3.14c)

0 = gz(0)β
(j)
i+1 + σ

(j)
i , (3.14d)

where ̺
(j)
i and σ

(j)
i are linear combinations of expressions that contain as factors α

(ℓ)
i+1,

α
(ℓ−1)
i+1 , β

(ℓ−1)
i+1 , ℓ ≤ j. By induction on j with ̺

(j)
i = 0 and σ

(j)
i = 0, i ≥ j−3, one can show

that equation (3.14d) implies that β
(j)
i+1 = 0, i ≥ j − 3. Then relations (3.9b) and (3.14c)

give α
(j+1)
i+1 = 0, i ≥ j − 3. This concludes the proof for (3.6c)-(3.6d).

b) The second part of this proof consists in estimating a bound on the reminder term;
that is, differences ∆yi = yi − ŷi and ∆zi = zi − ẑi. Subtracting (3.8) from (3.4) and
eliminating ∆yi and ∆zi, we have

(
∆yi+1

∆zi+1

)
=

(
∆yi

∆zi

)
+

(
I 0

−gy(0) −gz(0)

)−1 (
h (f (yi, zi) − f (ŷi, ẑi))

g (yi, zi) − g (ŷi, ẑi)

)
+

+

(
I 0

−gy(0) −gz(0)

)−1 (
O

(
hM+2

)

O
(
hM+1

)
)

=

(
∆yi

∆zi

)
+

+

(
I 0

O(1) −gz(0)
−1

) (
h (f (yi, zi) − f (ŷi, ẑi))

g (yi, zi) − g (ŷi, ẑi)

)
+

(
O

(
hM+2

)

O
(
hM+1

)
)

.

The application of the Lipschitz condition on f(y, z) and g(y, z), |ζ| < 1 gives
(

‖∆yi+1‖
‖∆zi+1‖

)
≤

(
I 0

O(1) ζ

) (
‖∆yi‖
‖∆zi‖

)
+

(
O

(
hM+2

)

O
(
hM+1

)
)

, (3.15)
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with H is sufficiently small. Using [8, Lemma C1] gives ‖∆yi‖ + ‖∆zi‖ = O
(
hM+1

)
.

Next we investigate the extrapolation orders using the base method (3.4) and define

Yjk = yhj
(x0 + H) , Zjk = zhj

(x0 + H) (3.16)

to be the numerical solution of (3.2) after j steps with step size hj = H/nj, extrapolated
with (2.3); in other words, on the kth column of the extrapolation tableau. We note that
each extrapolation step (2.3) cancels one smooth term ({a, b}(j)) from the error expansion
(3.5); however, perturbations α and β propagate through the extrapolation steps (2.3).
Furthermore, we note that the accuracy of the solution on the extrapolation tableau di-

agonal is affected by terms {α, β}
(j)
1 , and nonzero smooth terms a(0) and b(0) affect the

perturbations α0 and β0 through (3.9a); for example, b(2)(0) 6= 0 ⇒ β
(2)
0 6= 0.

We prove the following result. Similar approaches are found in [19, Ch. VI, Thm. 5.4]
and [12].

Theorem 3.2 (Consistency of the extrapolated W-IMEX applied to DAEs). For the
harmonic sequence {1, 2, 3, . . . } the extrapolated values Yjk and Zjk satisfy

Yjk − y(x0 + h) = O (Hrjk) , Zjk − z(x0 + h) = O (Hsjk ) , (3.17)

where the differential and algebraic orders rjk and sjk are given in Table 9.1 up to j = 12,
k = 12.

Proof. We use the expansion (3.5). It follows from (3.6a) and from (3.9a) that a(x0) = 0
and b(x0) = 0. Since a(j)(x) and b(j)(x) are smooth functions, one obtains a(1)(x0 + H) =
O(H), and b(1)(x0 + H) = O(H) and thus the errors in Yj1 and Zj1 are of O(H2), which
gives the first column entries in Table 9.1 for the W-IMEX scheme. In the same way

one can deduce that a(2)(x0 + h) = O(H); however, since β
(2)
0 6= 0, by (3.9a) one obtains

b(2)(0) 6= 0 (in general) and b(2)(x0+h) = O(1). One extrapolation of the numerical method
eliminates the terms with j = 1 in (3.5). The error is thus O(H3) for Yj2 and O(H2) for
Zj2. Equivalently, one can expand (3.5) to





y1 − y(x1) = h1

(
a(1)(x1) + α

(1)
1

)
+ h2

(
a(2)(x1) + α

(2)
1

)
+ · · · = O

(
H2

)

z1 − z(x1) = h1
(
b(1)(x1) + β

(1)
1

)
+ h2

(
b(2)(x1) + β

(2)
1

)
+ · · · = O

(
H2

) .

However, for j = 2 one has a(2)(x0 + h) = O(H) and b(2)(x0 + h) = O(1), and thus

y1 − y(x1) = h2 (O(H)) + · · · = O
(
H3

)
; z1 − z(x1) = h2 (O(1)) + · · · = O

(
H2

)
.

The smooth parts of (3.5) are eliminated one by one; however, the perturbations are not,
and the orders are reduced as follows. One order is “lost” on columns yj3 and zj2 because
of O(1) smooth part expansion; however, thereafter the orders are increasing by using the
extrapolation formula (2.3) that cancels the smooth terms. The nonzero perturbation terms
affect the orders of the extrapolation method by propagating through (2.3).Specifically, for

yjk components one has α
(5)
1 6= 0, which limits the order on the diagonal for yjj , j ≥ 6

to 4. Using the same argument, one can show that the first subdiagonal yj j−1, j ≥ 8 is

limited to 5 and the second one yj j−2, j ≥ 10, is limited to 6 from α
(6)
2 6= 0 and α

(7)
3 6= 0,

respectively, and so on. Similarly, for zjk components one has zjj , j ≥ 5 to 3; zj j−1, j ≥ 7

to 4; and zj j−2, j ≥ 9 to 5, because of β
(4)
1 6= 0, β

(5)
2 6= 0, and β

(6)
3 6= 0, respectively. This

process can be continued to find all the entries in Table 9.1.
Of particular interest is the location of the maximum accuracy term in the extrapolation

tableau for a given number of steps j. A quick inspection of Table 9.1 reveals that the best
choice is Tj,j for j ≤ 4; Tj, (j−1)/2+3 for j ≥ 5 and odd; and Tj, j/2+2 for j ≥ 6 and even.
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Boldface fonts are used to identify the location of the most accurate yielding extrapolation
tableau term. The theoretical orders for the extrapolated linearly implicit Euler method
(2.4a) are also shown [19, 12]. The “best” terms are selected by first identifying the most
accurate stiff components and then matching them with the best nonstiff counterparts.

3.2. Pure-IMEX Method. Applying the Pure-IMEX method (2.4c) to (3.1) yields

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi

zi+1 − zi

)
= h

(
f (yi, zi)

g (yi, zi) − hgy(0)f (yi, zi)

)
. (3.18)

The reduced form given by ε → 0 is

(
I 0

−hgy(0) −hgz(0)

) (
yi+1 − yi

zi+1 − zi

)
= h

(
f (yi, zi)

g (yi, zi) − hgy(0)f (yi, zi)

)
. (3.19)

We next formulate a similar pair of theorems (i.e., error expansions and extrapolated
orders) for the extrapolated Pure-IMEX method.

Theorem 3.3 (Global error expansion of the extrapolated Pure-IMEX method applied
to DAEs). Consider the problem (3.2) with with gz invertible and consistent initial values
(y0, z0). The global error of the Pure-IMEX scheme (3.19) has an asymptotic h-expansion
of the form (3.5) where a(j)(x) and b(j)(x) are smooth functions and the perturbations
satisfy

α
(1)
i = 0 , ∀i ≥ 0 ; α

(2)
i = 0 , β

(1)
i = 0 , ∀i ≥ 1 , α

(3)
i = 0 , β

(2)
i = 0 , ∀i ≥ 2 ; (3.20a)

α
(j)
i = 0 , ∀i ≥ j − 1 , j ≥ 4 ; β

(j)
i = 0 , ∀i ≥ j , j ≥ 3 . (3.20b)

The error terms in (3.5) are uniformly bounded for xi = ih ≤ H if H is sufficiently small.

Proof. This proof follows the same ideas used in the proof of Thm. 3.1. We begin with
part (a) in which the truncated expansions are constructed. The second part follows the
same steps as in the W-IMEX method. We focus on the first part only.

We consider the truncated expansions (3.7) with small defects

(
I 0

−hgy(0) −hgz(0)

) (
ŷi+1 − ŷi

ẑi+1 − ẑi

)
= h

(
f(ŷi, ẑi)

g(ŷi, ẑi) − hgy(0)f(ŷi, ẑi)

)
+ O

(
hM+1

)
.

The initial values are exact, with perturbation terms satisfying (3.9). By expanding the
equation above, one obtains (3.10) for the coefficients of h. Using the consistency require-

ments (3.9b) yields (3.2), and hence α
(1)
i = 0, ∀i ≥ 0. The coefficients of h2 give

1

2
y′′(x) +

(
a(1)

)′

(x) = fy (x) a(1)(x) + fz (x) b(1)(x) , (3.21a)

− gy(0) y′(x) − gz(0) z′(x) + f(x)gy(0) = gy (x) a(1)(x) + gz (x) b(1)(x) , (3.21b)
(
α

(2)
i+1 − α

(2)
i

)
= fz (0)β

(1)
i , −gz(0)

(
β

(1)
i+1 −�

�β
(1)
i

)
= �����

gz (0)β
(1)
i . (3.21c)

This system can be solved by computing b(1)(x) in (3.21b) and then replacing it in (3.21a)

to yield an ODE in a(1). Using (3.9a) and α
(1)
0 = 0, one has a(1)(0) = 0. Therefore a(1)(x)

and b(1)(x) are uniquely determined by (3.21a)-(3.21b). In contrast with the W-IMEX
method (3.11b), the left-hand side of (3.21b) does not vanish, and hence b(1)(0) 6= 0. By

(3.9a) one also has β
(1)
0 6= 0. In general β

(1)
i = 0, ∀i ≥ 1 from (3.21c), and together with

(3.9b) one obtains α
(2)
i = 0, ∀i ≥ 1.
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The coefficients of h3 for the smooth part give

(
a(2)

)′

(x) = fy(x) a(2)(x) + fz(x) b(2)(x) + r(2)(x) , (3.22a)

0 = gy(x) a(2)(x) + gz(x) b(2)(x) + s(2)(x) , (3.22b)

where r(2)(x) and s(2)(x) are known functions that depend on derivatives of y(x), z(x),
a(1)(x), b(1)(x). The perturbations can be expressed as

α
(3)
i+1 − α

(3)
i = fy(0)α

(2)
i + β

(1)
i (. . . ) + fz(0)β

(2)
i , (3.23a)

0 = gz(0)β
(2)
i+1 + β

(1)
i (. . . ) + α

(2)
i (. . . ) . (3.23b)

From (3.23), β
(2)
i = 0, ∀i ≥ 2 and α

(3)
i = 0, ∀i ≥ 2. This concludes the proof for hypotheses

(3.20a). The general recurrence (3.14) follows. Hypothesis (3.20b) can be easily verified by
following the same type of induction on (3.14a)-(3.14b) as in the proof of Theorem 3.1.

Theorem 3.4 (Consistency of the extrapolated Pure-IMEX method applied to DAEs).
For the harmonic sequence {1, 2, 3, . . . } the extrapolated values Yjk and Zjk satisfy

Yjk − y(x0 + h) = O (Hrjk) , Zjk − z(x0 + h) = O (Hsjk ) , (3.24)

where the differential and algebraic orders rjk and sjk are given in Table 9.1.
Proof. The orders in Table 9.1 for the Pure-IMEX method can be recovered by using

the same procedure as in the proof of Thm. 3.2 with the error expansion given in Thm.

3.3. The major difference is that now α
(2)
0 is nonzero, and thus one order is “lost” on the

second column of the y component. Then α
(3)
1 gives the third order on the diagonal. For

the z component, β
(1)
0 is nonzero, and hence the first column of the z component is 1.

Furthermore, β
(2)
1 does not vanish, and thus Tkk has order two for k ≥ 2. The rest follows

from the propagation of the error terms through the extrapolation procedure.

3.3. Split-IMEX Method. The Split-IMEX method (2.4d) applied to (3.1) yields

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi

zi+1 − zi

)
= h

(
f (yi, zi)

g (y∗, zi) − hgy(0)f (yi, zi)

)
, (3.25)

where y∗ = yi + hf(yi, zi) and the DAE reduced form given by ε → 0 is

(
I 0

−hgy(0) −hgz(0)

) (
yi+1 − yi

zi+1 − zi

)
= h

(
f (yi, zi)

g (y∗, zi) − hgy(0)f (yi, zi)

)
. (3.26)

Theorem 3.5 (Global error expansion of the extrapolated Split-IMEX method ap-
plied to DAEs). Consider the problem (3.2) with gz invertible and consistent initial values
(y0, z0). The global error of the Split-IMEX scheme (3.26) has an asymptotic h-expansion of
the form (3.5) where a(j)(x) and b(j)(x) are smooth functions and the perturbations satisfy

α
(1)
i = 0, α

(2)
i = 0, β

(1)
i = 0, ∀i ≥ 0; (3.27a)

α
(3)
i = 0 , β

(2)
i = 0 , ∀i ≥ 1 ; (3.27b)

α
(j)
i = 0 , ∀i ≥ j − 2 , j ≥ 4 ; (3.27c)

β
(j)
i = 0 , ∀i ≥ j − 1 , j ≥ 3 . (3.27d)

The error terms in (3.5) are uniformly bounded for xi = ih ≤ H if H is sufficiently small.
Proof. This proof follows the same ideas used in Thm. 3.1. We begin with part (a) in

which the truncated expansions are constructed. The second part follows the same steps
as in the W-IMEX case.
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Truncated expansions (3.7) are considered with defects

(
I 0

−hgy(0) −hgz(0)

) (
ŷi+1 − ŷi

ẑi+1 − ẑi

)
= h

(
f(ŷi, ẑi)

g (ŷ∗, ẑi) − hgy(0)f(ŷi, ẑi)

)
+ O

(
hM+1

)
,

where ŷ∗ = ŷi + hf(ŷi, ẑi). The initial values are exact, and the perturbation terms satisfy
(3.9). One obtains (3.10) for the coefficients of h. Using the consistency requirements (3.9b)

gives (3.2), and hence α
(1)
i = 0, ∀i ≥ 0. The coefficients of h2 yield

1

2
y′′(x) +

(
a(1)

)′

(x) = fy (x) a(1)(x) + fz (x) b(1)(x) , (3.28a)

− gy(0)y′(x) − gz(0)z′(x) − f(x) (gy(x) − gy(0)) = gy (x) a(1)(x) + gz (x) b(1)(x), (3.28b)
(
α

(2)
i+1 − α

(2)
i

)
= fz (0)β

(1)
i , −gz(0)

(
β

(1)
i+1 −�

�β
(1)
i

)
= �����

gz (0)β
(1)
i . (3.28c)

The differential equation (3.28a)-(3.28b) can be solved by computing b(1)(x) in (3.28b)

and then by replacing it in (3.28a) to yield an ODE in a(1). Using (3.9a) and α
(1)
0 = 0,

one has again that a(1)(0) = 0. Therefore a(1)(x) and b(1)(x) are uniquely determined by
(3.28a)-(3.28b). The left-hand side of (3.28b) at x = 0 gives

gy (0) a(1)(0) + gz (0) b(1)(0) + f(0)gy(0) − f(0)gy(0) = 0 ⇒ gz (0) b(1)(0) = 0 ⇒ b(1)(0) = 0 .

By (3.9a) and (3.28c) one also has β
(1)
0 = 0, and in general β

(1)
i = 0, ∀i ≥ 0. Further, by

using (3.9b) one obtains α
(2)
i = 0, ∀i ≥ 0.

The coefficients of h3 give for the smooth part

(
a(2)

)′

(x) = fy(x) a(2)(x) + fz(x) b(2)(x) + r(2)(x) , (3.29a)

0 = gy(x) a(2)(x) + gz(x) b(2)(x) + s(2)(x) , (3.29b)

where r(2)(x) and s(2)(x) are known functions that depend on derivatives of y(x), z(x),

a(1)(x), b(1)(x). The perturbations can be expressed as α
(3)
i+1 − α

(3)
i = fz(0)β

(2)
i and 0 =

gz(0)β
(2)
i+1. Then β

(2)
i = 0, ∀i ≥ 1, and α

(3)
i = 0, ∀i ≥ 1. The coefficients of h4 reveal that

the perturbations satisfy

α
(4)
i+1 − α

(4)
i = fy(0)α

(3)
i + fz(0)β

(3)
i , (3.30a)

0 = gz(0)β
(3)
i+1 + gy(0)α

(3)
i+1 + f(0)gyz(0)β

(2)
i . (3.30b)

From (3.30) one has β
(3)
i = 0, ∀i ≥ 2 and α

(4)
i = 0, ∀i ≥ 2. The general recurrence formula

(3.14) is obtained, and the same procedure as in Thm. 3.1 can be followed.
Theorem 3.6 (Consistency of the extrapolated Split-IMEX method applied to DAEs).

For the harmonic sequence {1, 2, 3, . . . } the extrapolated values Yjk and Zjk satisfy

Yjk − y(x0 + h) = O (Hrjk) , Zjk − z(x0 + h) = O (Hsjk ) , (3.31)

where the differential and algebraic orders rjk and sjk are given in Table 9.1.
Proof. The orders in Table 9.1 for the Split-IMEX method can be recovered by using

the same procedure as in the proof of Thm. 3.2 with the error expansion given by Thm.

3.5. In contrast with the proof of Thm. 3.4, α
(3)
0 is nonzero, and thus one order is “lost”

on the third column of the y component. Then α
(4)
1 gives the fourth order on the diagonal.

For the z component, β
(2)
1 is nonzero, and hence the second column of the z component is
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2. Furthermore, β
(3)
1 does not vanish, and thus the diagonal Tkk is 3 for k ≥ 3. The rest

follows from the propagation of the error terms through the extrapolation procedure.
The previous theorem concludes the set of theoretical results for the proposed extrap-

olation IMEX methods applied to DAEs. The results point to the W-IMEX scheme as
being the most accurate; the Split-IMEX scheme is computationally cheaper yet remains
reasonably accurate.

4. Numerical Results for Extrapolated IMEX Applied to DAEs. We illustrate
the theoretical findings using two DAE examples: the reduced van der Pol equation and
a trigonometric problem for which we have an analytical solution. The reduced van der
Pol equation is a typical example for index-1 DAEs. In this case the numerical results
using Split-IMEX have a slightly higher convergence order than what is predicted by the
theory. We explain this phenomenon and propose the trigonometric example to illustrate
the theoretical results.

The numerical experiments are implemented in MatlabR© using variable-precision arith-
metic with 64 digits of accuracy. For van der Pol a numerical reference solution is computed
with very high accuracy.

4.1. Experiments with the Reduced van der Pol Equation. The reduced van
der Pol equation is

y′ = f(y, z) = −z ; 0 = g(y, z) = y −

(
z3

3
− z

)
. (4.1)

We take the initial conditions y(0) = −2 and z(0) = −2.3553013976081 . . . that satisfy
g(y(0), z(0)) = 0. The values of H range from 10−1 to 10−4.5.

The orders of the local errors for linearly implicit, W-IMEX, and Pure-IMEX methods
are given in Table 9.2. These experimental orders match the theoretical ones given in Table
9.1. The experimental orders for the Split-IMEX method, not shown, are higher than the
orders predicted by the theory. We can explain this disagreement by closely inspecting (4.1)

and noting that gyz is zero. If we consider this in (3.30), we find that β
(3)
2 is zero and thus

α
(4)
2 = 0. This effectively increases the order by one for the diagonal terms corresponding

to the y and z components. Next we explore an example where gyz is nonzero in order to
illustrate the theoretical findings for the Split-IMEX method.

4.2. Experiments with a Trigonometric Equation. We consider the following
DAE discretized using the Split-IMEX method:

y′ =
y2

z
√

y2

z2 − 1
; 0 = z2 −

1

1 + y2
− y2

(
1

z2
− 1

)
. (4.2)

The exact solution is y(t) = sinh(t), z(t) = tanh(t). We start at t0 = 0.5, where gyz

is nonzero. The experimental orders for Split-IMEX shown in Table 9.2 now match the
theoretical ones given in Table 9.1.

5. Global Error Expansion for Extrapolated IMEX Methods Applied to Stiff

ODEs. In this section we extend the theoretical results for the global error expansion of
the proposed methods applied to stiff ODEs. We consider the singular perturbation system
(3.1 ) with initial conditions (y0, z0) and 0 < ε ≪ 1 [16, 4], which is solved by using
the W-IMEX (3.3), Pure-IMEX (3.18), and Split-IMEX (3.25) schemes. The favorable
convergence results obtained for DAEs in the previous sections do not extend directly to
the stiff ODEs (0 < ε ≤ H). In this case the asymptotic expansion of the global error is
more complicated, especially for “small” values of H . Different convergence regimes can
be identified for the numerical approximations in the extrapolation tableau that depend on
H/ε.
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5.1. W-IMEX. We start with the W-IMEX method and consider equations of the
following form (in line with (3.12)):

a′ = fy(x)a + fz(x)b + c(x, ε) ; εb′ = gy(x)a + gz(x)b + d(x, ε) . (5.1)

Their solution described by Lemma 5.5 in [19, Ch. IV] will be the basis for proving the
next theorems.

Theorem 5.1 (Global error expansion for the extrapolated W-IMEX applied to stiff
ODEs). Assume that the solution of (3.1) is smooth. Under the condition

∥∥∥∥
(
I − γgz(0)

)−1
∥∥∥∥ ≤

1

1 + γ
for γ ≥ 1 , (5.2)

the numerical solution of (3.3) possesses for ε ≤ h a perturbed asymptotic expansion of the
form

yi = y(xi) + ha(1)(xi) + h2a(2)(xi) + O(h3)− (5.3a)

− εfz(0)g−1
z (0)

(
I −

h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,

zi = z(xi) + hb(1)(xi) + h2b(2)(xi) + O(h3)− (5.3b)

−

(
I −

h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,

where xi = ih ≤ H with H sufficiently small independent of ε. The smooth functions satisfy
a(1)(0) = O(εh), a(2)(0) = O(h), b(1)(0) = O(ε), b(2)(0) = O(1).

Proof. The proof goes along the lines of Theorem 3.1 also [19, Ch. VI, Thm. 5.6]
and [16]. See also a similar approach for implicit Euler [4]. Truncated expansions are
considered:

ŷi = y(xi) +

M∑

j=1

hj
(
a(j)(xi) + α

(j)
i

)
; ẑi = z(xi) +

M∑

j=1

hj
(
b(j)(xi) + β

(j)
i

)
, (5.4)

such that
(

I 0
−hgy(0) εI − hgz(0)

) (
ŷi+1 − ŷi

ẑi+1 − ẑi

)
= h

(
f (ŷi, ẑi)
g (ŷi, ẑi)

)
+ O

(
hM+2

)
(5.5)

is satisfied.
a) The smooth functions a(x) and b(x) depend on ε but are independent of h. The pertur-

bation terms α
(j)
i and β

(j)
i , ∀i ≥ 1, depend smoothly on ε and ε/h. Equations (3.9a) and

(3.9b) are considered satisfied.
M = 0. This case is easily verified.
M = 1. Relation (5.4) is inserted in (5.5), and comparing the smooth coefficients of h2

yields
(
a(1)

)′

(x) +
1

2
y′′(x) = fy (x) a(1)(x) + fz (x) b(1)(x) , (5.6a)

1

2
εz′′(x) − gy(0)y′(x) − gz(0)z′(x) + ε

(
b(1)

)′

(x) = gy (x) a(1)(x) + gz (x) b(1)(x), (5.6b)

By [19, Ch. IV, Lem. 5.5], the initial value b(1)(0) is uniquely determined by a(1)(0).
Differentiating εz′(x) = g(y(x), z(x)) and inserting it in (5.6b) at x = 0, we get

gy (0)a(1)(0) + gz (0) b(1)(0) = −
1

2
(gy (0) y′ (0) + gz (0) z′(0)) + ε

(
b(1)

)′

(0) = O(ε) (5.7)
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with known right-hand side. The perturbation terms up to O(h2) give

α
(1)
i+1 − α

(1)
i = hfy(xi)α

(1)
i + hfz(xi)β

(1)
i , (5.8a)

ε
(
β

(1)
i+1 − β

(1)
i

)
− hgy(0)

(
α

(1)
i+1 − α

(1)
i

)
− hgz(0)

(
β

(1)
i+1 − β

(1)
i

)
= (5.8b)

= hgy(xi)α
(1)
i + hgz(xi)β

(1)
i .

Next we eliminate as many terms in (5.8) as possible by replacing fy(xi) with fy(0), gy(xi)
with gy(0), and so on. With xi = ih, the following substitution is of order h: fy(xi)−fy(0) =
O(h), since i ≤ 1. Then one is left with

{
α

(1)
i+1 − α

(1)
i = hfy(0)α

(1)
i + hfz(0)β

(1)
i + O(h2)

ε
(
β

(1)
i+1 − β

(1)
i

)
− hgy(0)α

(1)
i+1 − hgz(0)β

(1)
i+1 = O(h2)

. (5.9)

In the second expression of (5.9), we note that β
(1)
i+1 is multiplied by ε whereas α

(1)
i+1 is not

and thus can be ignored (for ε ≪ h). Then one gets

α
(1)
i+1 − α

(1)
i = hfz(0)β

(1)
i , (5.10a) ε

(
β

(1)
i+1 − β

(1)
i

)
= hgz(0)β

(1)
i+1 . (5.10b)

The solutions of (5.6), (5.10) when substituted in (5.5) are analyzed next. From (5.10b)

β
(1)
i =

(
I −

h

ε
gz(0)

)−i

β
(1)
0 . (5.11)

Substituting (5.11) in (5.10a) and using (3.9b), we have

α
(1)
i = εfz(0)g−1

z (0)

(
I −

h

ε
gz(0)

)−i+1

β
(1)
0 . (5.12)

Expression (5.12) at i = 0 with ε ≤ h yields

α
(1)
0 = εfz(0)g−1

z (0)

(
I −

h

ε
gz(0)

)
β

(1)
0 = O(h)β

(1)
0 = O(εh) . (5.13)

In the previous relation we used (5.7) and (3.9a) to bound β
(1)
0 . The consistency assump-

tions (3.9a) with (5.7) and (5.13) and by using Lemma 5.5 in [19, Ch. IV] guarantees

that the coefficients a(1)(0), b(1)(0), α
(1)
0 , β

(1)
0 are uniquely determined; moreover, one has

a(1)(0) = O(εh) and b(1)(0) = O(ε) (α
(1)
i = O(εh), β

(1)
i = O(ε) ). Now the relation (5.5)

can be verified for M = 1, ε ≤ h.
M = 2. Relation (5.4) is inserted in (5.5), and comparing the smooth coefficients of

h3 we obtain the same form as in (5.1),
(
a(2)

)′
(x) = a(2)(x)fy (x) + fz (x) b(2)(x) + c(x, ε)

with known c(x, ε). Using εz′(x) = g(y(x), z(x)), and evaluating at x = 0, one obtains

ε
(
b(2)

)′
(0) = gy (0)a(2)(0) + gz (0) b(2)(0) + d(0, ε) with known d(0, ε). It follows again

from Lemma 5.5 in [19, Ch. IV] and d(0, ε) = O(1) that

gy (0)a(2)(0) + gz (0) b(2)(0) = O(1) . (5.14)

Just as in the M = 1 case, for the perturbations we require α
(2)
i+1 − α

(2)
i = hfz(0)β

(2)
i and

ε
(
β

(2)
i+1 − β

(2)
i

)
= hgz(0)β

(2)
i+1, and

β
(2)
i =

(
I −

h

ε
gz(0)

)−i

β
(2)
0 , α

(2)
i = εfz(0)g−1

z (0)

(
I −

h

ε
gz(0)

)−i+1

β
(2)
0 , (5.15a)

α
(2)
0 = εfz(0)g−1

z (0)

(
I −

h

ε
gz(0)

)
β

(2)
0 (5.15b)
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are obtained just as for (5.11), (5.12), and (5.13), respectively. The values a(1)(0), b(1)(0),

α
(1)
0 , β

(1)
0 are uniquely determined by (3.9a), (5.14), and (5.15). By using Lemma 5.5 in

[19, Ch. IV], one has that a(2)(0) = O(h) and b(1)(0) = O(1); moreover, by using (3.9a)

one obtains α
(2)
i = O(h) for ε ≤ h. The verification of (5.5) for M = 2 is tedious, but it can

be shown to be satisfied in general by using the following remarks. The coefficients of h1

can be ignored since they vanish for large i’s. The assumption (5.2) gives β
(1)
i = O

(
ε2−i

)

and β
(2)
i = O

(
2−i

)
. These terms can also be neglected; however, in practice, they can give

additional convergence regimes that quickly vanish. The convergence (H → 0, H/ε → ∞)
will have different slopes that are determined by the ratio of H and ε.

This analysis gets complicated for M ≥ 3; however, the behavior of the error in practical
applications can be understood from the discussion above.
b) The second part of the proof consists in estimating a bound on the reminder term just
as we did for the proof of Theorem 3.1; that is, differences ∆yi = yi − ŷi and ∆zi = zi − ẑi.
Subtracting (5.5) from (3.3) and eliminating ∆yi, ∆zi, and using (5.2) with ε ≤ h, we have

∥∥∥∥I +
( ε

h
I − gz(0)

)−1

gz(0)

∥∥∥∥ =

∥∥∥∥∥

(
I −

h

ε
gz(0)

)−1
∥∥∥∥∥ ≤

ε

ε + h
≤

1

2
. (5.16)

We therefore obtain (3.15) with |ζ| < 1 and H sufficiently small. Using the same procedure
as in the proof of Theorem 3.1, one obtains ‖∆yi‖ + ‖∆zi‖ = O

(
hM+1

)
.

A close inspection of (5.3) reveals that the global error has different convergence regimes
when ε ≤ h. We now focus on the global error expansion of the stiff component (5.3), which
gives the following leading term:

Zj1 =

(
I −

h

ε
gz(0)

)−nj+1 (
hb(1)(0) + h2b(2)(0)

)
= h2

(
I −

h

ε
gz(0)

)−nj+1

b(2)(0) .

We further consider gz(0) ∝ −1. With H = h/nj, one has

Tj1 =

(
H

εnj

)2 (
1 +

H

εnj

)−nj+1

b(2)(0) and Zj1 = ε2Tj1b
(2)(0) .

The error propagates through the extrapolation tableau through (2.3). Similar to the
behavior of the global error for the linearly implicit method [19, p. 438], the first sub-

diagonal (Tj j−1) with n1 = 1 gives Tj j−1 = const. (H/ε)
2−n2 +O

(
(H/ε)

2−n2

)
, where the

constant is determined by (2.3). This suggests a superposition of the convergence slopes
predicted for DAEs and a factor O

(
ε2

)
as discussed in [19].

5.2. Pure-IMEX Method. We now consider the Pure-IMEX method.
Theorem 5.2 (Global error expansion for the extrapolated Pure-IMEX method ap-

plied to stiff ODEs). Assume that the solution of (3.1) is smooth. Under the condition (5.2)
the numerical solution of (3.18) possesses for ε ≤ h a perturbed asymptotic expansion of
form (5.3) with xi = ih ≤ H, H sufficiently small independent of ε. The smooth functions
satisfy a(1)(0) = O(h), a(2)(0) = O(h), b(1)(0) = O(1), b(2)(0) = O(1).

Proof. The proof goes along the same lines as for Theorem 5.1. Assumptions (5.1) and
(5.4) are considered, and thus (5.5) becomes

(
I 0

−hgy(0) εI − hgz(0)

) (
ŷi+1 − ŷi

ẑi+1 − ẑi

)
= (5.17)

h

(
f (ŷi, ẑi)

g (ŷi, ẑi) − hgy(0)f (ŷi, ẑi)

)
+ O

(
hM+1

)
.
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For M = 1 one obtains (a(1))′(x) + 1
2y′′(x) = fy (x) a(1)(x) + fz (x) b(1)(x) and

1

2
εz′′(x) − gy(0)y′(x) − gz(0)z′(x) + ε(b(1))′(x) = gy (x) a(1)(x) + gz (x) b(1)(x) − f(x)gy(0).

This leads to

gy (0) a(1)(0) + gz (0) b(1)(0) = −
1

2
(gy (0) y′ (0) + gz (0) z′(0)) + f(0)gy(0) + ε

(
b(1)

)′

(0)

with known right-hand side of O(1). The perturbation terms up to O(h2) give the same
expression as in the W-IMEX case (5.8) that yields (5.9) and eventually (5.10). The values

for α
(1)
i and β

(1)
i are given by (5.12) and (5.11), respectively. By using the consistency

assumptions (3.9a) and (5.11) one obtains

α
(1)
0 = εfz(0)g−1

z (0)

(
I −

h

ε
gz(0)

)
β

(1)
0 = O(h)β

(1)
0 = O(h) , (5.19)

which yields a(1)(0) = O(h) and b(1)(0) = O(1) (α
(1)
i = O(h), β

(1)
i = O(1)). With these

assumptions (5.17) can be verified.
For M = 2 one obtains the same form as (5.1) and again (5.14)-(5.15). Using b(2)(0) =

O(1) yields a(2)(0) = O(h) and b(1)(0) = O(1). The rest is similar to Thm. 5.1.
The convergence behavior of this method is similar to the one for the W-IMEX scheme

(Sec. 5.1); however, in this case the superposition of the error has a factor of O (ε).

5.3. Split-IMEX Method. We next consider the Split-IMEX method.
Theorem 5.3 (Global error expansion for the extrapolated Split-IMEX method ap-

plied to stiff ODEs). Assume that the solution of (3.1) is smooth. Under the condition
(5.2) the numerical solution of (3.25) possesses for ε ≤ h a perturbed asymptotic expansion
of the form (5.3) with xi = ih ≤ H, H sufficiently small independent of ε. The smooth
functions satisfy a(1)(0) = O(εh), a(2)(0) = O(h), b(1)(0) = O(ε), b(2)(0) = O(1).

Proof. The proof goes along the same lines as for Theorem 5.1. Assumptions (5.1),
(5.4) are considered, and (5.5) (with ŷ∗ = ŷi + hf (ŷi, ẑi)) becomes
(

I 0
−hgy(0) εI − hgz(0)

) (
ŷi+1 − ŷi

ẑi+1 − ẑi

)
= h

(
f (ŷi, ẑi)

g (ŷ∗, ẑi) − hgy(0)f (ŷi, ẑi)

)
+ O

(
hM+2

)
.

For M = 1 one obtains (a(1))′(x) + 1
2y′′(x) = fy (x) a(1)(x) + fz (x) b(1)(x) and

1

2
εz′′(x) − gy(0)y′(x) − gz(0)z′(x) + ε(b(1))′(x) =

gy(x)a(1)(x) + gz(x)b(1)(x) + f(x)(gy(x) − gy(0)),

which leads to gy(0)a(1)(0) + gz(0)b(1)(0) = − 1
2 (gy(0) y′(0) + gz(0)z′(0)) + ε (b(1))′(0) with

known right-hand side of O(ε). The perturbation terms up to O(h2) give the same ex-
pression as in the W-IMEX case (5.8) that yields (5.9) and eventually (5.10). The values

for α
(1)
i and β

(1)
i are given by (5.12) and (5.11), respectively. By using the consistency

assumptions (3.9a) and (5.11) one obtains

α
(1)
i = εfz(0)g−1

z (0)

(
I −

h

ε
gz(0)

)−i+1

β
(1)
0 and α

(1)
0 = O(h)β

(1)
0 = O(εh) ,

which yields a(1)(0) = O(εh) and b(1)(0) = O(ε) (α
(1)
i = O(εh), β

(1)
i = O(ε)). With these

assumptions (5.17) can be verified.
For M = 2 one obtains the same form as (5.1) and then (5.14)-(5.15). Using b(2)(0) =

O(1) yields a(2)(0) = O(h) and b(1)(0) = O(1). The rest is similar to Thm. 5.1.
The convergence behavior is similar to the W-IMEX scheme (see Sec. 5.1).
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6. Numerical Results for Extrapolated IMEX Applied to Stiff ODEs. We
investigate the numerical properties of the extrapolated IMEX methods applied to stiff
ODEs. We consider van der Pol’s equation, the prototypical stiff ODE example. For
comparison we include the Kennedy and Carpenter schemes proposed in [22], denoted
here by “ARK(order(embedded order)stages).” All IMEX RK methods require solving a
(non)linear system of equations. A simplification occurs if the implicit part is linear and
RK methods are of ESDIRK type, which is the case for the ARK methods used here.

The implementation is done in MatlabR© using high-precision (64-digit) arithmetic.
The experiments consist in integrating the problem with successively smaller steps H and
computing the L1 error norm for each step size. We compare the results of the proposed
IMEX methods and the above mentioned IMEX RK schemes with a third order reference
solution computed with the stiff solver RODAS-3 [28] and a step size of 10−9. The nonlinear
solver used in the computation of the reference solution and in the IMEX RK methods is
based on classical Newton iterations. The process is stopped when the difference between
successive iterates is below 10−25.

We consider van der Pol’s equation (see [19, 5])

y′ = z
ε z′ =

(
1 − y2

)
z − y

=

(
z
0

)
+

(
0(

1 − y2
)
z − y

)
(6.1)

with y(0) = 2, z(0) = − 2
3 + 10

81ε − 292
2187ε2 − 1814

19683ε3 + O
(
ε4

)
, and ε = 10−5 [5]. Figure

6.1 presents the error for the stiff solution component (z) calculated by using extrapolated
linearly implicit and IMEX methods (2.4) with 3, 6, 9, and 12 extrapolation steps. For
each extrapolated IMEX scheme the tableau entry Tj,k with optimal convergence order is
selected from Table 9.1. The observed convergence rates match the theoretical predictions.
The error decreases until it reaches O(ε) for Pure-IMEX and O(ε2) for the others.

We compare the extrapolated IMEX methods with several IMEX RK methods. Figure
6.2.a shows the local errors (L1) of the stiff component versus the step size for the third-
to fifth-order ARK methods. The order reduction phenomenon can be clearly noticed. A
detailed explanation of the convergence behavior is given in [5].

The computational cost of the IMEX extrapolation methods increases linearly with
each additional extrapolation step. For Tjk one needs j(j + 1)/2 right-hand side eval-
uations. In contrast, for an si-implicit, se-explicit-stage IMEX RK scheme, one needs
≈ [(se − si) + si × # of Newton iterations] function evaluations. In this study we do not
focus on the computational cost, which can change with the implementation/application.

7. Numerical Results for PDEs. We next investigate the time discretization ac-
curacy of the advection-reaction PDE using the extrapolated W-IMEX, Pure-IMEX, and
Split-IMEX schemes. In this section we denote by x the spatial variable and by t the
temporal variable. The numerical order of convergence is estimated in the L1 error norm,
(‖Err‖1 = ∆x/m

∑m
i=1 |Erri|), where m is the total number of variables. The errors at

the final time for different step sizes (H) are considered.
In [8] we also discuss the order reduction phenomenon due to nonhomogeneous bound-

ary conditions or source terms [6], illustrate it on a typical example [29], and show how to
avoid order reduction using a strategy developed for RK methods [7]. This topic needs to
be explored further, but it falls outside the scope of this paper.

The advection-reaction PDE is described by the following system with the setting
presented in [20]:

yt + α1 yx = −k1y + k2z + s1

zt + α2 zx = k1y − k2z + s2
,

0 < x < 1
0 < t ≤ tmax

,
α1 = 1, k1 = 106, s1 = 0
α2 = 0, k2 = 2k1, s2 = 1

, (7.1)

with y(x, 0) = 1+s2x, z(x, 0) = k1

k2

y(x, 0)+ 1
k2

s2, y(0, t) = 1−sin(12t)4. The advection term
is treated explicitly and the reaction term implicitly because of its numerical stiffness. For
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Fig. 6.1. Local error vs. step size for the stiff solution component of the van der Pol equation using
extrapolated linearly implicit and IMEX methods for the optimal convergence rates with 3, 6, 9, and 12
extrapolation steps; that is, the optimal k for each method’s T3 k, T6 k, T9 k, T12 k.
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reaction equation at tmax = 1 solved with IMEX-BDF (orders 2 (green), 3 (blue), 4 (red), 5 (black)), ARK
(orders 3 (blue), 4 (red), 5 (black)), and the proposed Split-IMEX method for different extrapolation terms
(up to order 18) using a sequential (light-gray) and a straightforward OpenMP parallel implementation
(dark gray) on a 8-core processor.
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Table 7.1
Numerical orders for the advection-reaction PDE with extrapolated W-IMEX|Pure-IMEX|Split-IMEX

schemes (tmax = 1, m = 400).

1.0|1.0|1.0

1.0|1.0|1.0 2.0|1.0|2.0

1.0|1.0|1.0 2.0|1.0|2.0 3.0|1.9|3.0

1.2|1.0|1.2 2.0|1.0|2.0 3.0|2.0|3.0 4.0|2.0|4.0

1.0|1.0|1.0 2.0|1.0|2.0 3.0|2.0|3.0 4.0|3.0|4.0 5.0|2.0|5.0

the spatial discretization we use the fourth-order central finite difference scheme described
in [20]. A uniform grid is considered in space: xi = i∆x, i = 1 . . .m with ∆x = 1/m,
m = 400. The experimental orders observed at tmax = 1 are shown in Table 7.1. They
are generally in agreement with the theoretical predictions. Some components have slightly
higher convergence orders, which is expected because of the linearity of this example, which
makes W-IMEX and Split-IMEX equivalent. We also note that the experimental orders
continue to increase with the addition of more terms in the extrapolation tableau.

In Fig. 6.2.b we show the CPU time versus the global error of the Split-IMEX method
compared to ARK orders 3–5 [22] and IMEX-BDF orders 2–5 [20] methods. The implemen-
tation is done in FORTRAN compiled with quad precision on an 8-core machine, and the
resulting linear system is solved by using LAPACK LU factorization. For the Split-IMEX
scheme we consider orders up to 18, and the errors of all terms in the extrapolation tableau
are represented as light-gray lines in Fig. 6.2.b. The superposition of various terms gives an
apparent oscillatory convergence rate; however, this is just a visual artefact. If the optimal
extrapolation term that corresponds to the smallest error is considered (see Table 9.2) then
the Split-IMEX method compares well with RK and LM methods on low accuracy and
is superior for high-accuracy results. We further considered a straightforward OpenMP
parallelization of the extrapolation row calculations. Each row is dynamically allocated on
a CPU core. The timing results show that on an 8-core machine, Split-IMEX is superior
in efficiency to the considered LM and RK methods. No effort has been made to optimize
the parallel performance, but additional improvements seem possible by optimizing the
code and by employing more CPUs. In comparison, neither the ARK nor the IMEX-BDF
can benefit from paralellization. Moreover, LM methods in general, and IMEX-BDF in
particular, may become unstable if the eigenvalues of the implicit term are relatively large
and close to the imaginary axis, whereas the proposed methods allow for A-stability on the
implicit part.

8. Implementation Considerations. In this section we make several observations
regarding the implementation of the proposed IMEX extrapolation methods.

Construction of extrapolation methods. The extrapolation procedure provides a set of
increasingly accurate results. Lower-order embedded approximations are readily available,
and thus a step size (H) control strategy is easy to implement [19]. Because each computa-
tional step in the extrapolation procedure is a consistent approximation, one can consider
an adaptive-order approach. The implementation consists in coding (2.3) and (2.4). The
Jacobian g′ is evaluated only at the beginning of the step. Therefore several computational
simplifications may occur, especially if g is linear. Very high order approximations are
easily obtained, with no limitation on the theoretical achievable convergence order.

Computational cost, memory usage, and parallelization. In the classical setting (ε ≈ h),
the extrapolation methods are considered less efficient than the established RK or LM
schemes. Depending on the problem type and its stiffness, however, traditional RK or
LM schemes require nonlinear solver iterations, whereas extrapolated IMEX schemes may
not; they are similar to W-methods but can achieve much higher orders of convergence.
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Moreover, the extrapolation methods can be easily parallelized [26] as each entry on Tj,1

can be computed independently. Furthermore, the computational cost is predetermined:
cost for Tjk ∝ j(j + 1)/2 function evaluations, and thus each entry, can be optimally
scheduled on multiprocessor or multicore architectures. This strategy could lead to more
efficient overall implementations with the total computational cost ∝ j, as illustrated in Fig.
6.2.b. In contrast, the IMEX RK methods have a cost proportional to the product of the
number of implicit stages nonlinear solver iterations and cannot benefit from parallelization.
The memory requirements for full-extrapolation tableaux are proportional to j(j + 1)/2;
however, a large number of tableau entries need not be computed, and thus the number of
registers required in practice can be reduced.

Extrapolation methods for stiff systems. For stiff nonlinear problems, the diagonal en-
tries in the extrapolation tableau are typically not the best approximations. The optimal
entries in the extrapolation tableau are emphasized in Table 9.1. This is equivalent to using
a shifted harmonic sequence nj = ℓ, ℓ+1, . . . , j = 1, 2, . . . , ℓ ≥ 1 that includes the optimal
values (see Table 9.1). If a sufficiently large number of extrapolation steps is computed,
then the diagonal and several subdiagonal entries are not necessary, and hence cost and
memory requirements are alleviated.

9. Discussion. In this paper we construct extrapolated implicit-explicit time dis-
cretization methods for problems with both stiff and nonstiff components; for example,
multiphysics multiscale partial differential equations.

We propose three new extrapolation methods: W-IMEX, Pure-IMEX, and Split-IMEX.
The theoretical study reveals the existence of perturbed global error expansions for each of
these base methods. Theoretical predictions of the orders of convergence are made in the
DAE and SPP settings. A (scalar) linear stability analysis is performed.

The W-IMEX method resembles the linearly implicit scheme in terms of implemen-
tation and performance but is computationally more attractive because it uses only the
Jacobian of the stiff component. The closely related Pure-IMEX and Split-IMEX methods
are truly implicit-explicit methods, in that they fully decouple the explicit and the implicit
parts. The Split-IMEX method performs one explicit step with the nonstiff component,
followed by a linearly implicit step with the stiff component.

Extrapolated IMEX methods have very low implementation costs and can easily deliver
very high-orders of consistency. Thus they are well suited for high accuracy integration of
ODEs, index-1 DAEs, and PDEs via the method of lines. In this study we have not
extensively assessed the efficiency of these methods; however, the numerical tests indicate
that they compare well with existing IMEX RK and LM methods and are superior when
even a straightforward OpenMP parallelization is considered. Additional improvements
seem possible by optimizing the extrapolation code and by employing more computational
units. IMEX RK and IMEX-BDF cannot benefit from paralellization. Split-IMEX seems a
good choice at least for the problems analyzed in this study. It is easier to implement than
W-IMEX and has more favorable properties than does the Pure-IMEX method.

The proposed IMEX extrapolation methods parallelize well and can take advantage of
the emerging multicore hardware architectures. By construction they provide low order
embedded approximations, thus facilitating implementations with variable step size. More-
over, they do not require a predetermined number of stages and thus allow variable-order
strategies as well.
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[26] T. Rauber and G. Rünger, Load balancing schemes for extrapolation methods, Concurrency: Prac-

tice and Experience, 9 (1997), pp. 181–202.
[27] S. Ruuth, Implicit-explicit methods for reaction-diffusion, J. Math. Biol., 34 (1995), pp. 148–176.
[28] A. Sandu, J. Verwer, J. Blom, E. Spee, G. Carmichael, and F. Potra, Benchmarking stiff

ode solvers for atmospheric chemistry problems II: Rosenbrock solvers, Atmos. Env., 31 (1997),
pp. 3459–3472.

[29] J. Sanz-Serna, J. Verwer, and W. Hundsdorfer, Convergence and order reduction of Runge-
Kutta schemes applied to evolutionary problems in partial differential equations, Numer. Math.,
50 (1987), pp. 405–418.

[30] J. Verwer, J. Blom, and W. Hundsdorfer, An implicit-explicit approach for atmospheric transport-
chemistry problems, Appl. Numer. Math., 20 (1996), pp. 191–209.

[31] J. Verwer and B. Sommeijer, An implicit-explicit Runge-Kutta-Chebyshev scheme for diffusion-
reaction equations, SIAM J. Sci. Comput., 25 (2004), pp. 1824–1835.



22 E. M. Constantinescu and A. Sandu

The submitted manuscript has been created by the University of
Chicago as Operator of Argonne National Laboratory (“Argonne”)
under Contract No. DE-AC02-06CH11357 with the U.S. Depart-
ment of Energy. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable world-
wide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.



E
x
tra

p
o
la

ted
IM

E
X

2
3

Table 9.1
Theoretical local extrapolation orders for linearly implicit, W-IMEX, Pure-IMEX, and Split-IMEX methods for index-1 DAEs. Boldface fonts represent the “best”

or optimal choice for a given number of steps.

Orders (rjk) for component yjk for Linearly implicit|W-IMEX|Pure-IMEX|Split-IMEX

1 2|2|2|2
�

�
�

a(2)(·)
�

�
�

a(3)(·)
�

�
�

a(4)(·)
�

�
�

a(5)(·)
�

�
�

a(6)(·)
�

�
�

a(7)(·)
�

�
�

a(8)(·)
�

�
�

a(9)(·) ����a(10)(·) ����a(11)(·) ����a(12)(·)
2 2|2|2|2 3|3|2|3

3 2|2|2|2 3|3|2|3 4|3|3|3

4 2|2|2|2 3|3|2|3 4|3|3|3 5|4|3|4

5 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|3|4

6 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|4|5 6|5|3|4

7 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|4|5 6|5|3|4

8 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|5|6 7|6|4|5 6|5|3|4

9 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|6|6 7|7|5|6 7|6|4|4 6|5|3|4

10 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|6|6 7|7|6|7 8|7|5|6 7|6|4|5 6|5|3|4

11 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|6|6 7|7|7|7 8|8|6|7 8|7|5|6 7|6|4|5 6|5|3|4

12 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|6|6 7|7|7|7 8|8|7|8 9|8|6|7 8|7|5|6 7|6|4|5 6|5|3|4

1 2 3 4 5 6 7 8 9 10 11 12

Orders (sjk) for component zjk for Linearly implicit|W-IMEX|Pure-IMEX|Split-IMEX

1 2|2|1|2 �
��

b(2)(·) �
��

b(3)(·) �
��

b(4)(·) �
��

b(5)(·) �
��

b(6)(·) �
��

b(7)(·) �
��

b(8)(·) �
��

b(9)(·) ����b(10)(·) ����b(11)(·) ����b(12)(·)
2 2|2|1|2 2|2|2|2

3 2|2|1|2 2|2|2|2 3|3|2|3

4 2|2|1|2 2|2|2|2 3|3|3|3 4|4|2|3

5 2|2|1|2 2|2|2|2 3|3|3|3 4|4|3|4 4|4|2|3

6 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|3|4 4|4|2|3

7 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|4|5 5|5|3|4 4|4|2|3

8 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|4|5 5|5|3|4 4|4|2|3

9 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|5|6 6|6|4|5 5|5|3|4 4|4|2|3

10 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|6|6 7|7|5|6 6|6|4|5 5|5|3|4 4|4|2|3

11 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|6|6 7|7|6|7 7|7|5|6 6|6|4|5 5|5|3|4 4|4|2|3

12 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|6|6 7|7|7|7 8|8|6|7 7|7|5|6 6|6|4|5 5|5|3|4 4|4|2|3

1 2 3 4 5 6 7 8 9 10 11 12
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Table 9.2
Numerical local extrapolation orders for the van der Pol equation using the linearly implicit, W-IMEX, Pure-IMEX methods and for the trigonometric equation

using the Split-IMEX scheme (based on L1 error norm). These results can be compared with the theoretical ones presented in Table 9.1.

Orders component yjk (linearly implicit|W-IMEX|Pure-IMEX) for van der Pol and (|Split-IMEX) for the trigonometric example

2.0|2.0|2.0|2.0

2.0|2.0|2.0|1.9 3.0|3.0|2.0|3.0

2.0|2.0|2.0|1.9 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|2.9 5.0|4.0|3.0|4.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.1|5.0|3.0|4.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|3.9 5.1|5.0|4.0|4.9 6.1|5.1|3.0|5.1

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.1|5.0|5.0|4.9 6.2|6.0|4.0|6.0 5.9|5.0|3.0|5.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.2|5.0|5.0|4.9 6.2|6.0|5.0|6.0 8.4|5.8|4.0|5.8 5.9|5.0|3.0|5.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.2|5.0|5.0|4.9 6.2|6.0|6.0|6.0 7.3|7.0|5.0|7.0 7.0|6.0|4.0|6.0 6|4.9|2.9|4.9

1 2 3 4 5 6 7 8 9

Orders component zjk (linearly implicit|W-IMEX|Pure-IMEX) for van der Pol and (|Split-IMEX) for the trigonometric example

2.0|2.0|1.0|2.0

2.0|2.0|1.0|2.0 2.0|2.0|2.0|2.0

2.0|2.0|1.0|2.2 2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0

2.0|2.0|1.0|1.8 2.0|2.0|2.0|2.0 3.0|3.0|3.0|2.9 4.0|4.0|2.0|3.0

2.0|2.0|1.0|1.9 2.0|2.0|2.0|2.0 3.0|3.0|3.0|2.9 4.0|4.0|3.0|4.0 4.1|4.1|2.0|3.1

2.0|2.0|1.0|1.9 2.0|2.0|2.0|2.0 3.0|3.0|3.0|2.9 4.0|4.0|4.0|3.9 5.0|5.0|3.0|4.0 3.9|4.0|2.0|3.1

2.0|2.0|1.0|1.9 2.0|2.0|2.0|2.0 3.0|3.0|3.0|2.9 4.0|4.0|4.0|3.9 5.0|5.0|4.0|5.0 4.6|4.8|3.0|4.0 3.9|4.0|2.0|3.2

2.0|2.0|1.0|1.9 2.0|2.0|2.0|2.0 3.0|3.0|3.0|2.9 4.0|4.0|4.0|3.9 5.0|5.0|5.0|4.9 6.0|6.0|4.0|4.9 5.0|5.0|3.0|4.0 3.8|3.9|1.9|3

2.0|2.0|1.0|2.0 2.0|2.0|2.0|2.0 3.0|3.0|3.0|2.9 4.0|4.0|4.0|3.9 5.0|5.0|5.0|4.9 6.0|6.0|5.0|6.0 6.2|6.1|4.0|5.0 4.9|5.0|3.0|4.0 4|4|2|3

1 2 3 4 5 6 7 8 9


