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Abstract Upcoming exascale capable systems are expected to com-

prise more than a million processing elements. As researchers continue

to work toward architecting these systems, it is becoming increasingly

clear that these systems will utilize a significant amount of shared

hardware between processing units; this includes shared caches, mem-

ory and network components. Thus, understanding how effective cur-

rent message passing and communication infrastructure is in tying

these processing elements together, is critical to making educated guesses

on what we can expect from such future machines. Thus, in this paper,

we characterize the communication performance of the message pass-

ing interface (MPI) implementation on 32 racks (131,072 cores) of the

largest Blue Gene/P (BG/P) system in the world (80% of the total sys-

tem size) and reveal various interesting insights into it.

1 Introduction

Modern HEC systems no longer exclusively rely on the per-

formance of single processing units, but rather try to extract

parallelism out of a massive number of processing elements.

Today, large systems such as the IBMBlue Gene/L and Blue

Gene/P (BG/P) [5] already scale to hundreds of thousands

of processing elements. With plans underway for exascale

systems to emerge within the next decade, it is expected that

we will soon have systems that comprise more than a mil-

lion processing elements. As researchers work toward archi-

tecting these enormous systems, it is becoming increasingly

clear that these systems will utilize a significant amount of

shared hardware. This includes shared caches, shared mem-

ory and memory management devices, and shared network

infrastructure.

One of the primary challenges in such architectures, that use

a massive quantity of modestly powerful processing units

instead of a few very powerful processing units, is their ca-
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Fig. 1 BG/P Architecture [5]

pability to tie these units together into a tightly coupled net-

work fabric that allows them to appear as one fast supercom-

puter. This challenge is even more formidable given the in-

creasing amount of shared hardware in such systems. Thus,

understanding how effective the current message passing

and communication infrastructure is in tying these process-

ing elements together is critical to making educated guesses

on what we should expect from future exascale machines

that follow a similar architecture.

In this paper, we characterize the communication perfor-

mance of the Message Passing Interface (MPI) on 32 racks

(131,072 cores) of the largest BG/P system in the world

(80% of the total system size). Our studies include tests that

stress the shared hardware in the system. The paper docu-

ments several interesting observations including the impact

of swap-free memory, impact of multiple network hops and

network congestion behavior. We also demonstrate the ag-

gregate effect of all these observations using the communi-

cation kernel of the NRL LayeredOceanmodel (NLOM) [2]—

a simulation model that studies semi-enclosed seas, major

ocean basins and the global ocean.

2 BG/P Hardware Stack

As shown in Figure 1, the BG/P uses a 4-core architec-

ture with each core having a separate L2 cache and a semi-

distributed L3 cache (shared between two cores). Each node

is connected to five different networks [6]. Two of them,



10-Gigabit Ethernet and 1-Gigabit Ethernet with JTAG in-

terface1, are used for file I/O and system management. The

other three are used for MPI communication.

3-D Torus Network: This network is used for MPI point-

to-point and multicast operations and connects all compute

nodes to form a 3-D torus (each node has six neighbors).

Each link provides a bandwidth of 425 MB/s per direction,

for a total bidirectional bandwidth of 5.1 GB/s. As shown

in Figure 1, though each node has six bidirectional links on

each node, there is only one shared DMA engine.

Global Collective Network: This is a one-to-all network

for compute and I/O nodes used for MPI collective commu-

nication (for regular collectives with small amounts of data)

and I/O services. Each node has three links to this network

(total of 5.1 GB/s bidirectional bandwidth).

Global Interrupt Network: This is an extremely scalable

network specifically used for global barriers and interrupts.

For example, the global barrier latency of a 72K-node parti-

tion is approximately 1.3µs.

The compute cores in the nodes do not handle packets on the

torus network; the DMA engine offloads most of the net-

work packet injecting and receiving work, which enables

better overlap of computation and communication. How-

ever, the cores directly handle sending/receiving packets from

the collective network.

3 Experimental Analysis

In this section, we perform several experiments to under-

stand the communication characteristics of MPI on BG/P.

3.1 Inter-node Point-to-point Performance

Figure 2(a) illustrates the one-way ping-pong latency be-

tween two nodes separated by a single network hop. Two

legends are shown: in-cache and out-of-cache. For “in-cache”,

the same buffer is used for each communication iteration,

so the buffer is always in cache; for “out-of-cache”, a dif-

ferent buffer is used for each iteration, causing the buffer

to be out-of-cache each time. We notice no performance

difference between in-cache and out-of-cache, both achiev-

ing about 2.8 µs small message latency. This is because of

the memory management functionality of BG/P which does

not maintain any virtual address swap space; all its virtual

address space is always pinned to physical memory pages.

Therefore, unlike other cluster network interconnects such

as InfiniBand [1] and Quadrics [11], BG/P does not have to

perform any separate memory pinning before communica-

tion and the DMA engine can directly communicate from

1 JTAG is the IEEE 1149.1 standard for system diagnosis and man-

agement

any buffer in a zero-copy manner. Consequently, the pro-

cessor does not have to touch the data for any processing,

thus causing no degradation in performance irrespective of

whether the data being communicated is in cache or not.

Figure 2(b) shows a similar trend for unidirectional band-

width with both forms achieving a performance of about 3

Gb/s for large messages.

3.2 Intra-node Point-to-point Performance

Figures 3(a) and 3(b) show MPI ping-pong latency and uni-

directional bandwidth between cores on the same node. Com-

munication performance is measured between core 0 and

one other core as indicated by the legend. We make several

observations in these two experiments. First, for ping-pong

latency, we notice no performance difference irrespective

of which two cores communicate. Second, the intra-node

and inter-node latencies (Figures 3(a) and 2(a)) are identical

(about 2.8 µs) for small messages. These two observations

have the same underlying reason: the processing power of

each core on the BG/P is only a modest 850 MHz; so unlike

fast Intel and AMD processors, the time taken for memory

copies is much higher on such processors. Accordingly, in-

stead of using the processor for shared-memory communi-

cation, BG/P uses the hardware DMA engine for both intra-

node and inter-node communication. Thus, there is no dif-

ference in performance in the two. Due to the same reason,

it does not matter, with respect to performance, which two

cores perform communication.

For the unidirectional bandwidth, we again notice no perfor-

mance difference based on which two cores communicate

due to the same reason as above. We also notice that the

intra-node communication bandwidth (Figure 3(b)) is about

six-fold higher than the inter-node bandwidth (Figure 2(b)).

This difference is due to the capability of the DMA engine.

As mentioned in Section 2, the DMA engine is shared be-

tween all the six torus links of the node. Thus, in order to

be able to drive all six bidirectional links, it has to be capa-

ble of six times the single-link communication bandwidth

for data going out as well as for data coming in. In an intra-

node communication test, the data from one process’ ad-

dress space has to go down to the DMA engine and come

back up to the second process’ address space, which the en-

gine can perform six times faster than what an inter-node

link can support.

3.3 Impact of Hops on an Idle Network

Figure 4 shows the inter-node latency between the two far-

thest nodes in the system. As the system size increases, the

number of hops the message has to traverse also increases.

As shown in the figure, the system size has a large impact on

2
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Fig. 2 Inter-node Performance: (a) One-way Latency; (b) Unidirectional bandwidth
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Fig. 3 Intra-node Performance: (a) One-way Latency; (b) Unidirectional Bandwidth

communication latency, especially for small and medium-

sized messages. For a zero-byte message, the performance

degradation is close to 100% when the system size changes

from 4 to 131,072 cores. Even for medium-sized messages

of up to 1 KB, the impact is still 40%, which is signifi-

cant. This illustrates that for latency-sensitive applications,

the placement of the processes can play a significant role in

performance as how far apart they are can determine their

communication performance. For large messages, however,

the impact of number of hops is minimal.

We performed a similar experiment with the bandwidth test,

but did not notice any impact on performance (less than 3%)

as expected (packets are pipelined across network hops).

We also analyzed the impact of network hardware sharing

at each hop. This experiment was designed to analyze to

what extent flow-through data (i.e., data that passes through

a particular node on the torus, but is neither sourced at or

destined to this node) utilizes the network hardware on each

hop. Specifically, while a heavy amount of traffic is flow-

ing through a node, we performed an intra-node bandwidth

test on the same node. Since intra-node communication uti-

lizes the DMA engine (as described in Section 3.2), if there

is sharing of the DMA engine with the flow-through data,

bandwidth performance should suffer. Our experiments re-

vealed no such impact showing that flow-through data has
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Fig. 4 Impact of Number of Hops on the performance degradation of

One-way Latency. The X-axis of the graph is linearly increasing in the

number of hops but is labeled by the corresponding system size.

other dedicated hardware and does not use the node’s DMA

engine. A similar test was done for inter-node bandwidth as

well, but utilizing a different torus link for the bandwidth

test than the one used for the flow-through data; no perfor-

mance impact was noticed for that either.

3.4 Network Congestion Behavior

In this section, we study communication behavior in the

presence of network congestion by pushingmultiple streams

of data on the same link and measuring the performance

achieved by each data stream. We pick four processes on

3
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Fig. 5 Network Congestion Behavior

a full torus system partition that are contiguously located

along a single dimension (say P0, P1, P2 and P3). These

four processes form two pairs, with each pair performing

the bandwidth test.

In the first experiment (Figure 5), P0 sends data to P3 (which

takes the route P0–P1–P2–P3) and P1 sends data to P2 (which

takes a direct one hop route, P1–P2). Thus, the link connect-

ing P1 and P2 is shared for both communication streams. As

shown in the figure, we see that the communication between

P0 and P3 (legend “P0-P3”) achieves the same bandwidth

as an uncongested link (legend “No overlap”) illustrating

that the link congestion has no performance impact on this

stream. However, for the communication between P1 and P2

(legend “P1-P2”), there is a significant performance impact.

The reason for this asymmetric performance for these two

streams is related to the congestionmanagementmechanism

of BG/P. Like most other networks, BG/P uses a sender

driven data-rate throttling mechanism to manage network

congestion. Specifically, when the sender is trying to send

data, if the immediate link on which data needs to be trans-

mitted is busy, the sender throttles the sending rate. On the

other hand, for flow-through data the sender is not directly

connected to the congested link and hence cannot “see” that

the link is busy. Thus, there is no throttling for flow-through

data causing it to achieve high-performance, but at the ex-

pense of other flows.

Another observation we make is that there are several paths

between the pairs P0-P3 and P1-P2 that do not overlap with

each other. However, the loss in performance for the P1-P2

pair illustrates that none of these additional paths are uti-

lized and data is always sent on the shortest path.

The second experiment we performed is similar to the pre-

vious one, but using P0-P2 (routed as P0–P1–P2) and P1-P3

(routed as P1–P2–P3) as the process pairs. Thus, both flows

have P1–P2 as the common link, and both flows are partially

overlapping with each other. The performance observations

are similar to the previous experiment, with the P0–P1–P2

achieving peak bandwidth, and P1–P2–P3 achieving a throt-

tled bandwidth.

3.5 Multistream Bandwidth

The multistream bandwidth test is similar to the unidirec-

tional bandwidth test, except that instead of just two pro-

cesses performing the test, multiple pairs of processes per-

form the same test. Specifically, since each node is equipped

with four cores, the test allows multiple cores on the node

to participate in the communication. Thus, for the case of

N cores, there are N streams of communication between the

same two nodes. The aggregate bandwidth of all flows is

reported in Figure 6(a). As shown in the figure, the peak

bandwidth achieved in all cases is the same. This is ex-

pected, as irrespective of the number of flows, the perfor-

mance will eventually be limited by the link bandwidth.

However, for medium-sized messages, the performance dif-

ference between just one core performing communication

vs. multiple cores, is nearly twofold in some cases. Since

the communication message sizes for many applications are

in this range, this experiment gives a strong indication to

application developers that utilizing multiple cores for com-

munication can be helpful on such systems.

3.6 Hot-spot Communication

In this section, we measure the performance of hot-spot com-

munication, where a single “master” process performs a la-

tency test with a group of “worker” processes, thus forming

a communication hot-spot. This test is designed to emulate

master-worker kind of communication models. Figure 6(b)

illustrates the average latency noticed by each worker pro-

cesses for different message sizes over a range of system

sizes (log-log plot). For all message sizes, we see an ex-

ponential increase in the hot-spot latency with increasing

system size. This is attributed to the congestion that oc-

curs when multiple messages arrive via the limited number

of links surrounding a single master process. As the sys-

tem size increases, more and more messages are pushed to

the same process, further increasing congestion and causing

significant performance loss.

In summary, the flat network topology of BG/P is not well

suited for master-worker kind of communication, especially

when themessages being communicated are large. Our mea-

surements reveal that the system size at which performance

begins to degrade is very small. For applications using such

a communication pattern, hierarchical master-worker com-

munication can alleviate bottlenecks in some cases, but can

have serious performance constraints when scaled to very

large systems.

3.7 Fan Communication

In this section, we measure the performance of fan-based

communication where a node communicates with its six

4
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Fig. 6 (a) Multi-stream Communication; (b) Hot-spot Communication
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Fig. 7 Fan Tests: (a) Fan-in; (b) Fan-out

physical neighbors that are directly connected along the links

of the 3D torus. The fan-in test measures the process’ capa-

bility to receive data from its neighbors and the fan-out test

measures the process’ capability to send data to its neigh-

bors. Figures 7(a) and 7(b) show the fan-in and fan-out per-

formancemeasurements, respectively, with increasing num-

ber of neighbors communicatedwith. As the number of neigh-

bors increase, the overall performance increases in general.

For the fan-out test, the peak performance achieved is about

18,000 Mb/s, which is close to the maximum performance

capability of the DMA engine, as illustrated in Section 3.2.

However, for the fan-in test, the peak performance saturates

at only 13,000Mb/s. This shows that the data-receiving path

of the stack has more overhead compared with the sending

path. Thus, one process sending data to multiple processes

is expected to achieve better performance as compared to

one process receiving data from multiple processes.

3.8 Collective Communication

In this section, we evaluate MPI collective communication.

3.8.1 MPI Barrier

Figure 8(a) shows the performance of MPI Barrier with

increasing system size for three different communicators:

MPI COMM WORLD, a sub-communicator containing all pro-

cesses in MPI COMM WORLD except the last process, and

a dup of MPI COMM WORLD. As shown in the figure, both

MPI COMM WORLD and a direct dup of MPI COMM WORLD

perform identically. However, for a sub-communicator such

as MPI COMM WORLD without the last process, the perfor-

mance is significantly worse. This is because communica-

tion for MPI COMM WORLD (and its dup) is handled in hard-

ware using the global interrupt network described in Sec-

tion 2. For sub-communicators, however, the barrier takes

place in software, which has significantly higher overhead.

We also notice a large variation in the barrier time based

on the system size. Some of this is attributed to the system

topology as different system sizes use different torus topolo-

gies. The rest is attributed to the software stack itself.

Figure 8(b) shows the performance of multiple parallel bar-

riers2 happening on the same set of nodes. Specifically, the

processes on core 0 of all nodes perform a barrier while

the processes on core 1 of all nodes perform another par-

allel barrier, and so on. Since all the barriers share the same

physical network, they might interfere with each other caus-

ing performance loss. We notice that for small system sizes,

this interference is minimal. However, as the system size

increases, we notice a counter-intuitive behavior—the aver-

age barrier time decreases with increasing number of paral-

2 Parallel collective operations are performed through split sub-

communicators whose size is 1/4 the size of MPI COMM WORLD.

5



0

10

20

30

40

50

60

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

T
im

e
 (

u
s)

System Size

MPI_Barrier

Comm World

Comm World – 1

Comm Dup

System Size

0

10

20

30

40

50

60

70

80

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

T
im

e
 (

u
s)

System Size

MPI Barrier (Parallel Communicators)

1 Communicator

2 Communicators

3 Communicators

4 Communicators

System Size

Fig. 8 Barrier Performance: (a) Variance with Communicators: ”Comm World” means MPI COMM WORLD, ”Comm World - 1” means

MPI COMM WORLD without the last process; ”Comm Dup” means a dup of MPI COMM WORLD; (b) Parallel Communicators: processes

on core X of all nodes form a communicator, for a total of four parallel communicators.

0

20

40

60

80

100

120

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

T
im

e
 (

u
s)

System Size

MPI_Bcast (4 bytes)

Comm World

Comm World - 1

Comm Dup

System Size

Fig. 9 Broadcast on Different Communicators

lel communicators! This behavior is attributed to the poten-

tial for software optimizations with parallel barriers. That is,

with multiple parallel barriers occurring on the same set of

nodes, the network stack has an opportunity to performmes-

sage coalescing. This allows the average time of the barrier

to reduce as the information equivalent to multiplemessages

is carried out in a single message. In fact, for a system size

of 131,072 cores, we notice that the interference actually

causes a performance improvement of nearly 75%.

3.8.2 MPI Bcast

Like MPI Barrier, the performance of MPI Bcast also

shows a significant differencewhile using MPI COMM WORLD

as compared to the sub-communicator which does not in-

clude the last process. This difference is nearly 10-fold on a

system size of 131,072 cores (Figure 9). Such performance

difference can be critical for many application developers,

since many scalable applications do not perform operations

on MPI COMM WORLD in the performance critical path; in-

stead they break up processes into smaller communicators

(such as a Cartesian map) and perform operations on these

smaller communicators.

Figures 10(a) and 10(b) show the performance of multiple

parallel broadcasts for message sizes of 4 bytes and 16 KB,

respectively. This experiment is similar to the one described

in Section 3.8.1, but with MPI Bcast. For a 4-byte broad-

cast, we see that the trend is similar to MPI Barrier. That

is, as the number of split sub-communicators increases, the

average time taken by the broadcast reduces due to message

coalescing. However, for a 16 KB broadcast, we see a trend

reversal—performance degrades as the number of parallel

communicators increases. This is because, for large mes-

sages, there is no real possibility for message coalescing.

However, since the physical link is shared, this can result

in communication interference leading to performance loss.

As the system size increases to 16K processes, we see a

performance degradation of threefold going from one com-

municator to four.

3.8.3 MPI Allreduce and MPI Allgather

Figure 11(a) shows the performance of multiple parallel allre-

duce operations. Unlike, barrier and broadcast, we notice

that the performance of allreduce does not vary with multi-

ple parallel communicators even for a 16 KB operation. This

is because at each intermediate node,MPI Allreduce has

to process the incoming data, which is a bigger bottleneck

than data communication itself. Thus, the communication

interference is not visible in this operation.

Figure 11(b) shows the performance of multiple parallel all-

gather operations. In this test, we see that even for a 4-

byte Allgather, there is significant communication interfer-

ence as the system size increases. This is because allgather

is an accumulative operation where the total data size in-

creases with system size. Thus, even for a 4-byte allgather,

a 131,072-core system can cause very large messages, and

consequently communication interference.

In summary, our experiments with parallel execution of col-

lective operations show that the performance of an operation

as perceived by real applications can be significantly dif-

ferent from what usual micro-benchmarks indicate, because
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of its interference with other communication in the system.

Many applications divide processes into small groups, and

each group communicates within itself. However, because

of such communication interference, these applicationsmight

suffer from unexpected communication penalties.

3.9 Process Mapping Effects on NLOM

TheNRL LayeredOceanModel (NLOM) [2] simulates semi-

enclosed seas, major ocean basins, and the global ocean.

The current implementation of the model uses tiled data-

parallel programming style. Its general nature allows imple-

mentations in various programming models including MPI,

OpenMP, Co-Array Fortran, and shared memory. This makes

NLOM a good candidate for benchmarking both hardware

and the associated communication software. The HALO bench-

mark simulates an NLOM 2-D exchange for an NxN sub-

domain for different values of N. HALO puts a premium on

low latency, much as NLOM as a whole does. In general,

Halo exchanges are important operations whenever domain

decomposition is used, but HALO can also be treated as a

generic low-level communication benchmark.

In this section, we analyze the effect of process mapping on

the performance achieved by HALO. Several parameters af-

fect the performance of HALO; these include (a) application

specific parameters (such as whether the messages commu-

nicated are in cache or not, and how much intra-node vs.

inter-node communication it performs) and (b) where ex-

actly each application process is on the system and which

other processes it communicates with (this determines the

number of hops the messages have to traverse, how much

congestion they create in the network and how much inter-

ference they have with other parallel communication in the

system). Thus, varying the process mappings allows us to

observe the extent of the overall effect of these parameters

from an end-user’s perspective.

Figure 12 illustrates the overall performance of HALO for

different process mappings and system sizes (16K and 128K

processes). Different mappings indicate how MPI ranks are

allocated, e.g., XYZT indicates that ranks are ordered first

with respect to the X-axis on the 3D torus, then Y-axis,

and so on. T-axis refers to the cores within the node. As

shown in the figure, these mappings can have up to twofold

impact for a system size of 16K processes. As the system

size increases to 128K processes, this impact increases to

up to threefold. This indicates that, as the system sizes keep

growing, such mapping will become even more important.

In general, which mapping is the best is not a trivial question

to answer as it depends on a number of parameters includ-

ing several of those we described in this paper, as well as

many others including the characteristics of the application.
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4 Related Work and Discussion

There has been a significant amount of prior work related

to understanding the performance characteristics of MPI on

different architectures [10,9,8,7,4,3]. However, this prior

work primarily lags with respect to characterizing MPI on

the scale that we study in this paper. Specifically, as we

reach out toward exascale-capable systems in the next decade,

there is no clear understanding so far on what can be ex-

pected from the massive parallelism that is available and the

potentially huge amount of hardware sharing that is quickly

becoming commonwith multi-core architectures, SMTs and

flat networks. Our work attempts to bridge this gap.

In summary, this paper extends on existing prior work and

brings out interesting performance aspects that are already

true for current large-scale systems and will only become

more prominent and visible for larger systems. Thus, we be-

lieve this work would be an interesting and highly relevant

contribution to high-end computing research.

5 Conclusions and Future Work

In this paper, we characterized the communication perfor-

mance of MPI on 32 racks (131,072 cores) of the largest

Blue Gene/P system in the world (80% of the total sys-

tem size). Our studies included benchmarks that stressed the

shared hardware on the system. We identified various inter-

esting insights that can have significant implications on ap-

plications as well as architectural reconsiderations needed

for future larger systems following similar hardware char-

acteristics.

As future work, we plan to apply the insights gained from

our studies to specific application kernel cases such as li-

braries using Cartesian-grid communication (e.g., FFT) which

can be impacted by network congestion, or applications that

rely on master-worker models (e.g., mpiBLAST) which be

impacted from hot-spot communication. We also plan to

carry out this study on SiCortex that follows a similar ar-

chitectural model, but with a Kautz network topology.
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