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Abstract. Over the past decade, genome-scale metabolic models have gained widespread 
acceptance in biology and bioengineering as a means of quantitatively predicting organism 
behavior based on the stoichiometry of the biochemical reactions constituting the organism 
metabolism. The list of applications for these models is rapidly growing; they have been used 
to identify essential genes, determine growth conditions, predict phenotypes, predict response 
to mutation, and study the impact of transcriptional regulation on organism phenotypes. This 
growing field of applications, combined with the rapidly growing number of available genome-
scale models, is producing a significant demand for computation to analyze these models. Here 
we discuss how high-performance computing may be applied with various algorithms for the 
reconstruction, analysis, and optimization of genome-scale metabolic models. We also 
performed a case study to demonstrate how the algorithm for simulating gene knockouts scales 
when run on up to 65,536 processors on Blue Gene/P. In this case study, the knockout of every 
possible combination of one, two, three, and four genes was simulated in the iBsu1103 
genome-scale model of B. subtilis. In 162 minutes, 18,243,776,054 knockouts were simulated 
on 65,536 processors, revealing 288 essential single knockouts, 78 essential double knockouts, 
99 essential triple knockouts, and only 28 essential quadruple knockouts.  

Introduction 
Genome-scale metabolic models represent one important end product of the genome annotation 
process. These models provide a means of rapidly translating detailed knowledge of thousands of 
enzymatic processes into quantitative predictions of whole-cell behavior. They have been applied 
extensively to identify essential genes and genes sets, predict organism phenotypes and growth 
conditions, design metabolic engineering strategies, and simulate the effects of transcriptional 
regulation on organism behavior [1-4].  

A genome-scale metabolic model of an organism consists of three primary components: (1) a list of 
the reactions that take part in the organism metabolism including data on reaction stoichiometry and 
reversibility, (2) a set of gene-protein-reaction (GPR) mappings that capture how genes in the 



 
 
 
 
 
 

organism encode enzymes and how these enzymes catalyze metabolic reactions, and (3) a biomass 
objective function that indicates which small molecules must be produced for an organism to grow and 
divide [1]. All of these components are used in a method called flux balance analysis (FBA) to 
simulate organism metabolism in a set of specified environmental conditions. 

FBA involves the use of linear optimization to define the limits on the metabolic capabilities of a 
model organism by assuming that the interior of the cell exists in a quasi-steady state [2-5]. This quasi-
steady-state assumption is enforced by a set of linear mass balance constraints written for each 
metabolite included in the model. 

 N·v = 0 (1) 
In the mass balance constraints (Eq. 1), N is the m x r matrix of the stoichiometric coefficients for the 
r reactions and m metabolites in the genome-scale metabolic model, and v is the r x 1 vector of the 
steady-state fluxes through the r reactions in the model. Bounds are placed on the reaction fluxes (v) 
depending on the reversibility of the reactions. 

 -100 mMol/gm CDW hr ≤ vi,reversible ≤ 100 mMol/gm CDW hr  (2) 
 0.0 mMol/gm CDW hr ≤ vi,irreversible ≤ 100 mMol/gm CDW hr  (3) 
These mass balance constraints and reaction flux bounds form a set of underdetermined linear 

equations with many possible solutions. Because these equations are underdetermined, an optimization 
criterion is used to capture the most physiologically relevant region of the solution space. The 
optimization criteria vary depending on the application, but the most common criterion is the 
maximization of growth yield [5, 6]. Maximum growth yield is simulated by maximizing the flux 
through the biomass reaction in the model while the uptake of nutrients is fixed at a specific ratio. This 
is a meaningful optimization criterion because organisms have been observed to grow at the maximum 
predicted yield when nutrients are plentiful [7]. 

The FBA formulation described here forms the core of many different algorithms for the 
reconstruction, analysis, and optimization of genome-scale metabolic models. For this reason, 
software developed to run FBA in a high-performance computing (HPC) environment may be directly 
applied to solving many different problems. FBA is also an attractive algorithm to run with HPC 
because only a small amount of data is required to fully define the variables, constraints, and objective 
necessary to simulate even the largest genome-scale models, and once FBA has been run, the only 
result that must be returned is the objective and the list of reaction fluxes. Thus FBA requires minimal 
input and output, thereby improving scalability. Additionally, once the constraints and variables 
defining the FBA mass balances for a single genome-scale metabolic model have been initially loaded, 
many different simulations can be performed simply by adjusting the bounds on the loaded variables 
and repeating the optimizations. Thus, much work can be done without loading additional data, further 
improving scalability.  

Here we describe the various FBA-based algorithms that currently exist for the reconstruction, 
analysis, and optimization of genome-scale metabolic models. We focus in particular on algorithms 
that are good candidates for processing in HPC, and we discuss the implications of running these 
algorithms in parallel. As a case study, we implemented the FBA algorithm for gene knockout 
simulation using MPI on Blue Gene/P, and we used this algorithm to simulate the 1010 possible 
quadruple gene knockouts for the iBsu1103 genome-scale model of B. subtilis. This represents the first 
time that the essential combinations of up to four genes have been identified in B. subtilis. 

1.  Model reconstruction algorithms 
In order to run FBA simulations in HPC for a large variety of different organism, genome-scale 
metabolic models must first be created for those organisms. Fortunately opportunities now exist for 
the use of HPC to accelerate this process. Reconstruction is the word used to describe the process of 
producing a functioning genome-scale model of an organism starting from the sequence of nucleotides 
in the organism’s genome. This process includes gene calling, annotation, literature data mining, 
reaction mapping, biomass objective function assembly, error correction, and gap filling. Until 
recently, this process required years of manual effort to complete, and as a result, the rate of 



 
 
 
 
 
 

development of new genome-scale models lagged far behind the rate at which new genomes were 
being sequenced (figure 1) [8]. Fortunately, methods have recently emerged that expedite many of the 
steps involved in the reconstruction process [9-16], and these methods may now be combined into a 
high-throughput, genome-scale reconstruction pipeline. With this high-throughput reconstruction 
pipeline, it will be possible to build up-to-date genome-scale models of every sequenced prokaryote on 
a monthly basis (figure 1). However, this lofty goal will require significant computational power to 
accomplish. 

The rate limiting computational step in the high-throughput reconstruction process is an FBA-
based algorithm called auto completion. Initial genome-scale metabolic models consisting only of 
reactions associated with genes, spontaneous reactions, and a biomass objective function always 
contain gaps that prevent them from producing all of the building blocks necessary for growth. As a 
result, these models are incapable of simulating growth using FBA. In auto completion, a mixed 
integer linear optimization problem (MILP) is solved to identify the minimal set of reactions that must 
be added to the initial model in order for every biomass component to be produced [16]. Often, 
multiple equally optimal minimal reaction sets satisfy these criteria. Recursive MILP [17] may be used 
to identify each of these solutions, and every solution identified can be preserved until the most 
physiologically realistic solution has been manually selected. Depending on the number of gaps in the 
initial model, run time for this algorithm can range from one minute to 24 hours. The long run time 
combined with the minimal input and output data size (table 1) means that scalability will not be an 
issue for the auto completion algorithm. The auto completion algorithm could be run in parallel to 
produce functioning genome-scale models for all ~800 prokaryotes with completely sequenced 
genomes today. Use of a parallel MILP solver [18] will make it possible to spread the work involved 
in producing each model across up to eight processors while retaining scalability. In this manner, the 
auto completion algorithm could be run on a maximum of 6,400 processors. Additionally, we 
anticipate the number of complete genome sequences to continue growing rapidly over the next 
decade (figure 1), meaning number of processors that could be consumed by the auto completion 
algorithm will also grow rapidly. 

We note that the genome annotation and literature data-mining steps of the reconstruction process 
will probably always require significant manual effort to complete. However, the Rapid Annotation 
using Subsystems Technology (RAST) method developed within the SEED annotation framework [11, 
19, 20] makes it possible for these steps to be performed for every known genome simultaneously and 
to be extended to new genomes with minimal effort. In RAST, most well studied biological functions 
have been divided into a set of subsystems (e.g., glycolysis) that are assigned to an expert annotator. 
That annotator performs the genome annotation and literature data-mining steps of the reconstruction 
process for that subsystem using a set of comparative genomics tools to project curations and 
annotations across all known genomes simultaneously. Whenever a new genome sequence (or set of 

Figure 1. Past and projected rates of 
release of new genome sequences and 
new genome-scale metabolic models. 
Using manual reconstruction, the 
number of available models (blue bars) 
lags far behind the number of 
sequenced genomes (red line). 
However, with the introduction high-
throughput reconstruction and the 
application of HPC to high-throughput 
reconstruction, model reconstruction 
can rapidly catch up to and keep pace 
with genome sequencing (red bars). 



 
 
 
 
 
 

sequences) is integrated into the SEED, annotators will curate the addition of those genomes to each of 
their subsystems to ensure that the subsystem is correctly propagated into the new genome. Similarly, 
as new literature emerges, annotators study this literature to determine how the reported results will 
impact the annotations in their subsystems. In this manner, annotation and literature data-mining 
efforts are able to keep pace with the sequencing of new genomes, making high-throughput 
reconstruction possible despite the need for some manual curation. 

2.  Model analysis algorithms 
High-throughput implementation of the auto completion algorithm will enable the AGRO pipeline to 
produce thousands of new genome-scale metabolic models, paving the way for the use of HPC in the 
analysis of these models as well. Numerous FBA-based algorithms exist for analyzing genome-scale 
models to produce predictions of growth conditions, essential genes, metabolite concentration ranges, 
and metabolic engineering strategies. Application of HPC to these algorithms will produce a wealth of 
valuable new data. 

2.1.  Growth simulation 
All published genome-scale metabolic models include one or more intracellular compartments 
separated from an extracellular compartment by a cell membrane. Only nutrients with explicit 
transport reactions in the model are allowed to pass into the intracellular compartment(s) from the 
extracellular compartment. While mass balances are maintained in the intracellular compartments, 
metabolites in the extracellular compartment may have a net consumption or production by the cell. 
This compartmental structure makes it possible to use FBA to simulate growth in a variety of 
environments by adjusting the set of compounds that are allowed to be consumed by the cell from the 
extracellular compartment. For example, when modeling rich media, all amino acids, nucleotides, and 
many cofactors may be consumed from the environment. When modelling minimal media, only 
glucose, ammonia, phosphate, sulphate, and various ions may be consumed from the environment.  

The simplicity of the linear optimization algorithm means that the growth of a single model may be 
simulated in many different media conditions on a single processor with great speed (~70 media 
conditions/second). The slow step of the algorithm is the initial loading of the model into the 
optimization solver, so it is essential for efficiency that simulation software interacts with the 
optimization software through an API as this allows variable bounds and problem objectives to be 
adjusted on the fly without reloading the model. This simulation speed indicates that a very large 
number of simulations must be performed in order to justify the application of HPC. 

The 324 media conditions included in the Biolog phenotyping arrays currently represent the most 
significant large set of media conditions that would be informative to run growth simulations on with a 
large set of models. Biolog phenotyping arrays are experimental devices that measure the ability of an 
organism to respire in hundreds of distinct media environments [21]. Each media environment in the 
phenotyping array contains a different nutrient, making the Biolog array useful as a means of 
determining whether an organism has a transporter and a catabolic pathway for many different carbon, 
nitrogen, phosphate, and sulphate sources. Even with thousands of models and hundreds of media 
conditions, growth simulation alone generates insufficient computational demand to require HPC. 
However, growth simulation is still a feasible application for HPC when combined with other 
algorithms. For example, gene knockout simulations must often be performed in a variety of media 
conditions. 

2.2.  Gene knockout simulation 
Gene essentiality prediction is one of the primary uses for genome-scale metabolic models. 
Knowledge of essential or coessential genes in pathogenic organisms is valuable for identifying target 
proteins for the development of new antibacterial agents. Knowledge of essential and coessential 
genes in industrial organisms is also useful for ensuring that proposed metabolic engineering strategies 
avoid disruption of these genes.  



 
 
 
 
 
 

To identify essential and coessential genes, gene knockouts are simulated in the models by using 
the GPR associations to identify reactions exclusively encoded by knocked out genes, setting the 
bounds on the flux through these reactions to zero, and maximizing the flux through the biomass 
reaction. If the maximum flux through the biomass reaction is zero, the knocked out gene(s) are 
predicted to be essential (for a single gene) or coessential (for multiple genes). The nutrients present in 
the environment during the knockout have a significant effect on gene essentiality, and for this reason 
knockouts often must be simulated in multiple media conditions. Like the growth simulation, 
knockout simulations can be performed very rapidly (~50 knockouts/sec), meaning any application of 
HPC to gene knockout simulation must involve billions of distinct simulations on thousands of 
processors. For example, HPC could be applied to the simulation of every possible single, double, and 
triple gene knockout in every sequenced pathogen on a hundred different media conditions 
representing distinct physiological environments for infection. With 102 pathogens, 102 media 
conditions, and 106 double knockouts, this scenario involves 1010 distinct simulations. With perfect 
scalability on 100,000 processors, the run time would be approximately 24 minutes. 

2.3.  Reaction classification 
The gene knockout simulation algorithm provides a means of classifying the genes included in a 
genome-scale model. A similar FBA-based algorithm exists to classify the reactions in the model. This 
algorithm, called flux variability analysis (FVA), involves minimizing and maximizing the flux 
through each individual reaction in the model; model reactions are then classified based on the 
minimum and maximum fluxes calculated [22]. If the min and max are both positive or both negative, 
the reaction is essential; if they are both zero, the reaction is nonactive; if one is zero and the other is 
nonzero, the reaction is nonessential but active; and if one is positive and the other is negative, the 
reaction is nonessential but reversibly active.  

The HPC scenario for the FVA algorithm is essentially identical to the scenario for single gene 
knockout simulation. Both algorithms have the same run time and require approximately the same 
number of simulations. However, it is sometimes useful to combine FVA with gene knockout 
simulation to study how reaction behavior is affected by gene knockout, which involves O(106) 
simulations per model studied.  

2.4.  Thermodynamics-based metabolic flux analysis  
One issue with standard FBA that can significantly impact the accuracy of the predictions generated is 
that thermodynamically infeasible flux profiles still satisfy the mass balance constraints and flux 
bounds in FBA. In thermodynamics-based metabolic flux analysis (TMFA), the mass balance 
constraints of FBA are supplemented by a set of thermodynamic constraints (Eq. 4) in order to 
eliminate thermodynamically infeasible fluxes from the feasible solution space [23]. With some 
additional modifications, these constraints also allow for the exploration of feasible ranges for 
metabolic concentrations [23]. 

 (4) 

In the thermodynamic constraints, Uj
’ is the chemical potential of metabolite j, ni,j is the stoichiometric 

coefficient for compound j in reaction i, and vi is the flux through reaction i. Because compounds 
shared by multiple reactants must have the same potential, these constraints prevent 
thermodynamically infeasible reaction sets from carrying flux. Unfortunately, these constraints are 
also nonlinear, forcing the problem to be formulated as either a mixed integer linear program or a 
quadratic program. While the algorithms for growth simulation, gene knockout, and FVA may all be 
supplemented with thermodynamic constraints to improve accuracy, the nonlinear formulation of 
TMFA decreases the rate at which simulations may be run, from 70 simulations per second to 0.25 
simulations per second. Of course, this also improves the parallel scalability of these algorithms and 
increases the need for HPC. 



 
 
 
 
 
 

2.5.  Metabolic engineering 
One of the major industrial applications for genome-scale metabolic models is the design of metabolic 
engineering strategies for inducing the production of organic chemicals such as ethanol, 1,3-PDO, and 
3HP by microorganisms [24]. Often the natural metabolic network of an organism will be missing one 
or more of the enzymatic steps required to produce a desired product. The pathway addition algorithm 
involves identifying the minimal number of new reactions that would have to be engineered into an 
organism to allow for the production of a desired product from a specified raw material with a 
minimum yield. Mathematically this algorithm is identical to the automated completion algorithm; 
uptake of the selected raw material is fixed at one; production of the desired product is constrained to 
be greater than the minimum yield; and the number of nonnative reactions allowed to carry flux in the 
final solution is minimized. In the HPC scenario for this algorithm, the pathway addition algorithm 
could be run for 102 different raw materials, 102 different potential products, and 103 different 
organisms. In total, 107 simulations would be required, each with a run time ranging from one minute 
to one hour. Completion of this HPC run would provide the following insights: the ideal host organism 
to produce each desired product, the ideal raw material to produce each desired product from, the 
maximum yield attainable for each product from each raw material in each organism, and the number 
of new enzymes that would have to be added to produce each product in each organism. 

The OptStrain [25] and OptKnock [26] algorithms are also used extensively to design metabolic 
engineering strategies. The algorithms take the problem a step further by determining how the existing 
metabolism of an organism must be modified to drive flux from a specified raw material towards a 
desired product. These algorithms are also MILP optimizations that require one minute to one hour to 
complete. 

3.  Model optimization algorithms 
One of the major uses for the gene knockout and growth simulation algorithms is the validation of 
genome-scale metabolic models against experimentally determined gene essentiality data [27] and 
Biolog phenotyping array data [21]. Large-scale gene knockout and phenotyping experiments have 
produced a tremendous amount of experimental data that may be compared with the model 
predictions, and the validation that this comparison provides is important not only for assessing model 
accuracy but also for assessing the accuracy of the annotations on which the models are based. 

Inconsistencies between model predictions and experimental data indicate that the model and 
possibly the underlying annotations contain an error that must be identified and fixed. The large size 
of genome-scale models, however, makes the manual identification of errors a monumental task. In 
order to assist in this task, the GrowMatch algorithm was introduced [9]. This algorithm attempts to 
automatically repair model errors that cause prediction inconsistencies by adding or removing 
reactions from the model. The GrowMatch algorithm consists of two stages, each representing a 
potential application for HPC: gap filling, and gap generation. 

3.1.  Gap filling 
The gap-filling stage of GrowMatch attempts to correct prediction errors for conditions where growth 
is not predicted to occur in silico while growth is observed in vivo (called false negative predictions). 
This type of inconsistency is corrected by either adding one or more new reactions to the model or 
converting existing irreversible reactions into reversible reactions. The gap-filling algorithm is an 
MILP identical to the automated completion algorithm, but the run time is typically shorter (one 
minute to one hour) because of the smaller size of the gaps being filled. Also, like the auto completion 
algorithm, the gap-filling algorithm often produces multiple equally optimal solutions for filling each 
gap in the model that causes an incorrect prediction. Once the gap filling has been completed for every 
false negative prediction condition in the model, a reconciliation optimization must be performed [12] 
to select the optimal combination of all solutions that corrects as many errors as possible with minimal 
additions to the model. In the HPC scenario, the gap-filling algorithm would be run in parallel for all 
conditions with false negative predictions in all models with available data. Unoptimized models have 



 
 
 
 
 
 

102 false negative predictions on average, and currently experimental gene essentiality or Biolog 
phenotyping array data exists for 10 models. Thus, up to 103 simultaneous simulations can be running 
for one minute to one hour. However, the number of organisms with available experimental data is 
likely to grow rapidly over time, which will result in a similar growth in the number of gap-filling 
simulations required by the GrowMatch process. 

3.2.  Gap generation 
The gap generation stage of GrowMatch attempts to correct prediction errors for conditions where 
growth is predicted to occur in silico while growth is not observed in vivo (called false positive 
predictions). This type of inconsistency is corrected by either removing one or more reactions from the 
model or converting existing reversible reactions into irreversible reactions. Like the gap-filling 
algorithm, the gap generation algorithm is an MILP, but the problem formulation (which is described 
in detail elsewhere [9, 12]) is much more complex. As a result, the run time is longer, ranging from 
one to four hours. Like the gap-filling algorithm, the gap generation algorithm often produces multiple 
equally optimal solutions, and a reconciliation optimization is necessary [12] to identify the optimal 
combination of all alternative solutions that corrects as many errors as possible. Also like gap filling, 
the HPC scenario for gap generation involves running in parallel for all conditions with false positive 
predictions in all models with available data, adding up to a total of 103 required simulations. 



 
 
 
 
 
 

Table 1. HPC considerations model reconstruction, analysis, and optimization algorithms 
 
Algorithm 

 
Input 

 
Output 

Run Time per 
Simulation 

Approximate 
Thread Count 

Reconstruction algorithms 
Automated completion ~2 MB/thread 1 KB/thread 1-24 hours O(103) genomes 
Optimization algorithms 
Gap filling ~2 MB/thread 1 KB/thread 1-60 min O(10) models 

O(102) errors 
Gap generation ~2 MB/thread 1 KB/thread 1-4 hours O(10) models 

O(102) errors 
Analysis algorithms 
Growth simulation ~1 MB 

broadcast 
8 B/thread ~0.01 sec O(103) models 

O(102) media 
Gene knockout ~1 MB 

broadcast 
8 KB/thread ~0.01 sec O(103) models 

O(102) media 
O(103k) knockouts 

Gene knockout with 
thermodynamic 
constraints 

~2 MB 
broadcast 

8 KB/thread ~3 hours O(103) models 
O(102) media 
O(103k) knockouts 

Reaction classification ~2 MB 
broadcast 

16 KB/thread ~2 minutes O(103) models 
O(102) media 

Reaction classification 
with thermodynamic 
constraints 

~2 MB 
broadcast 

16 KB/thread ~6 hours O(103) models 
O(102) media 

Metabolic engineering ~2 MB /thread 1 KB/thread 1-4 hours O(103) models 
O(102) media 
O(102) products 
O(102) raw materials 

4.  Case study: application of HPC to gene knockout simulation 
As a case study for the application of HPC to an FBA algorithm, we implemented the gene knockout 
simulation algorithm using MPI on the Blue Gene/P supercomputer located at Argonne National 
Laboratory. The Blue Gene/P consists of 40 racks each containing of 1,024 chips with four 850 MHz 
PowerPC 450 processors on each chip, for a total of 163,840 processors. Blue Gene/P was selected for 
our case study because the massive number of available processors presents a unique opportunity to 
demonstrate the scalability characteristics of an FBA algorithm on a truly large scale. 

B. subtilis was selected for this study because it is one of the most well studied prokaryotes (second 
only to E. coli) and because knowledge of essential combinations of genes will be beneficial to 
continuing efforts to produce a minimal strain of B. subtilis [28, 29]. The knockout simulations were 
performed by using the largest and most up-to-date model of B. subtilis available, iBsu1103[12]. This 
model captures 1,103 of the 4,105 genes in the B. subtilis genome, meaning that the total pool of genes 
considered in our gene knockout analysis will be 1,103. 

The gene knockout simulations were carried out in multiple stages, with the single gene knockouts 
performed first, followed by the double, triple, and quadruple gene knockouts. This multistage strategy 
was necessary because essential gene combinations identified in earlier stages had to be filtered out of 
the combinations explored in later stages (table 2). For example, it is unnecessary to simulate double 
gene knockout combinations that include genes found to be essential during the single knockout study 
because double knockouts involving essential genes will always be essential as well. 



 
 
 
 
 
 

Table 2. Gene knockout combinations considered at each stage of the knockout algorithm 
 Single KOs Double KOs Triple KOs Quadruple KO 
Naïve estimate 1,103 607,753 223,045,351 61,337,471,525 
Estimate based on single KO  331,705 89,892,055 18,248,087,165 
Estimate based on double KO   89,870,917 18,243,796,151 
Estimate based on triple KO    18,243,776,054 
Lethal knockouts identified 288 78 99 28 
 

The parallel FBA algorithm was implemented in two versions that exploit two levels of parallelism 
respectively: fine-grained loop-level parallelism (v1) and coarse-grained embarrassing parallelism 
(v2). In both approaches, a master node is used to load input files from the file system and broadcast 
the buffers to every slave node. In the fine-grained approach, the master node loops over the whole set 
of gene knockout combinations and dispatches a subset to a slave node whenever it becomes available. 
The granularity (G) is decided based on the total number of processors to strike a balance between 
minimizing interprocessor communication and balancing slave workload.  The actual job sizes are 
randomly drawn from Uniform (G/2, 3G/2) to avoid clashes of communication. In the coarse-grained 
approach, instead of getting their jobs from the master node, each slave determines the work that must 
be performed on based on the slave’s rank; the slaves skip through the universal list of genes knockout 
combinations to find the knockouts they must simulate.  

When applied to the simulation of every possible triple gene knockout, the fine-grained loop-level 
parallelism (v1) approach yielded a high peak performance in moderate parallel settings but scaled 
poorly beyond 1,024 processors because of the significant interprocessor communication involved in 
this approach. The coarse-grained embarrassing parallelism (v2) approach initially took a slight 
performance hit compared with the v1 algorithm because of the overhead involved in generating the 
complete knockout list on every node. However, this algorithm gave near linear scalability up to 4,096 
nodes (figure 2). Because every possible combination of single, double, and triple gene knockout 
could be simulated in under 10 minutes on 4,096 nodes (one rack of Blue Gene/P running in virtual 
node mode), it is not unreasonable to expect the coarse-grained approach to scale well beyond 4,096 
nodes since at this run time overhead begins to rival computation. We confirmed this hypothesis by 
simulating quadruple gene knockouts on 65,536 in 162 minutes. The throughput from the quadruple 
knockout run scaled almost linearly with all of the triple knockout runs (figure 2). 
 

 
 

In the first stage of our knockout study 1,103 single gene knockouts were simulated in B. subtilis, 
resulting in the identification of 288 essential genes. In the next stage 331,705 double gene knockouts 
were simulated, 78 of which were found to be lethal combinations. In the third stage 89,870,917 triple 

Figure 2. Scalability plot for gene 
knockout simulations. Here we show 
how the total number of knockouts 
simulated every second scaled with 
the number of processors used in the 
simulations for multiple parallel 
algorithms. Algorithm v1 scaled 
linearly up to 4,096 processors when 
simulating all possible triple 
knockouts and up to 65,536 
processor when simulating all 
possible quadruple knockouts. 



 
 
 
 
 
 

gene knockouts were simulated with 99 combinations identified as lethal. In the final stage 
18,243,776,054 quadruple knockouts were simulated with only 28 lethal combinations identified (table 
2). The complete list of the essential gene sets in B. subtilis 168 identified during this case study can 
be found here: http://bioseed.mcs.anl.gov/~chenry/BSubEssentials.txt. 

5.  Conclusions 
Numerous opportunities exist for the application of HPC to the reconstruction, analysis, and 
optimization of genome-scale metabolic models. The field of biology is evolving rapidly, and high-
throughput techniques for genome sequencing, gene knockout and mutation, and phenotype analysis 
are producing an explosion of new experimental data. HPC has an important role to play in ensuring 
that analytical techniques like FBA can keep up with this explosion. The analysis presented here 
shows that only with the computational power provided by HPC will the FBA algorithms existing 
today be capable of handling the explosion of biological data anticipated in the near future.  

The results of the quadruple knockout simulation case study clearly show that FBA algorithms can 
scale well on massively parallel architectures like Blue Gene/P. The caveat to this statement is that 
sufficient work must be available to drown out the overhead involved in distributing and initializing 
problem data on a large number of processors. For standard linear programming simulations like the 
gene knockout algorithm, results indicate that linear scaling can be achieved if there are at least 20,000 
simulations per processor. However, we expect that FBA algorithms involving MILP formulations 
(like TMFA, GrowMatch, or auto completion) will scale linearly with far fewer simulations per 
processor because of the longer run times involved. 

The biological results of the quadruple knockout case study were surprising, as one might 
intuitively expect to see more lethal double knockouts than lethal single knockouts, more lethal triple 
knockouts than lethal double knockouts, and so on. Instead the simulation results indicate that B. 
subtilis is remarkably robust to multiple gene knockout. There are two explanations for this 
nonintuitive result: (1) a large fraction of the essential metabolic functions in B. subtilis are associated 
with essential genes, meaning they have no genetic redundancy, and (2) when a metabolic function 
required for growth does have genetic redundancy or biochemical redundancy, it is very redundant, 
requiring three or more knockouts before functionality is lost. Apparently, the increased robustness 
that is gained by preserving redundant copies of the genes encoding essential functions is not worth 
the additional cost of copying and maintaining those redundant copies. Thus it is likely that when 
redundancy does occur in the genome, it exists to increase flexibility in the expression of the functions 
related with these redundant genes, rather than as a mechanism to enhance robustness to mutation. 
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