

Application of High-Performance Computing to the
Reconstruction, Analysis, and Optimization of Genome-Scale
Metabolic Models

Christopher S. Henry,1* Fangfang Xia,2* Rick Stevens1,2
1Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, USA

2Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

*These authors contributed equally to this work.

Email: chenry@mcs.anl.gov

Abstract. Over the past decade, genome-scale metabolic models have gained widespread
acceptance in biology and bioengineering as a means of quantitatively predicting organism
behavior based on the stoichiometry of the biochemical reactions constituting the organism
metabolism. The list of applications for these models is rapidly growing; they have been used
to identify essential genes, determine growth conditions, predict phenotypes, predict response
to mutation, and study the impact of transcriptional regulation on organism phenotypes. This
growing field of applications, combined with the rapidly growing number of available genome-
scale models, is producing a significant demand for computation to analyze these models. Here
we discuss how high-performance computing may be applied with various algorithms for the
reconstruction, analysis, and optimization of genome-scale metabolic models. We also
performed a case study to demonstrate how the algorithm for simulating gene knockouts scales
when run on up to 65,536 processors on Blue Gene/P. In this case study, the knockout of every
possible combination of one, two, three, and four genes was simulated in the iBsu1103
genome-scale model of B. subtilis. In 162 minutes, 18,243,776,054 knockouts were simulated
on 65,536 processors, revealing 288 essential single knockouts, 78 essential double knockouts,
99 essential triple knockouts, and only 28 essential quadruple knockouts.

Introduction
Genome-scale metabolic models represent one important end product of the genome annotation
process. These models provide a means of rapidly translating detailed knowledge of thousands of
enzymatic processes into quantitative predictions of whole-cell behavior. They have been applied
extensively to identify essential genes and genes sets, predict organism phenotypes and growth
conditions, design metabolic engineering strategies, and simulate the effects of transcriptional
regulation on organism behavior [1-4].

A genome-scale metabolic model of an organism consists of three primary components: (1) a list of
the reactions that take part in the organism metabolism including data on reaction stoichiometry and
reversibility, (2) a set of gene-protein-reaction (GPR) mappings that capture how genes in the

organism encode enzymes and how these enzymes catalyze metabolic reactions, and (3) a biomass
objective function that indicates which small molecules must be produced for an organism to grow and
divide [1]. All of these components are used in a method called flux balance analysis (FBA) to
simulate organism metabolism in a set of specified environmental conditions.

FBA involves the use of linear optimization to define the limits on the metabolic capabilities of a
model organism by assuming that the interior of the cell exists in a quasi-steady state [2-5]. This quasi-
steady-state assumption is enforced by a set of linear mass balance constraints written for each
metabolite included in the model.

 N·v = 0 (1)
In the mass balance constraints (Eq. 1), N is the m x r matrix of the stoichiometric coefficients for the
r reactions and m metabolites in the genome-scale metabolic model, and v is the r x 1 vector of the
steady-state fluxes through the r reactions in the model. Bounds are placed on the reaction fluxes (v)
depending on the reversibility of the reactions.

 -100 mMol/gm CDW hr ≤ vi,reversible ≤ 100 mMol/gm CDW hr (2)
 0.0 mMol/gm CDW hr ≤ vi,irreversible ≤ 100 mMol/gm CDW hr (3)
These mass balance constraints and reaction flux bounds form a set of underdetermined linear

equations with many possible solutions. Because these equations are underdetermined, an optimization
criterion is used to capture the most physiologically relevant region of the solution space. The
optimization criteria vary depending on the application, but the most common criterion is the
maximization of growth yield [5, 6]. Maximum growth yield is simulated by maximizing the flux
through the biomass reaction in the model while the uptake of nutrients is fixed at a specific ratio. This
is a meaningful optimization criterion because organisms have been observed to grow at the maximum
predicted yield when nutrients are plentiful [7].

The FBA formulation described here forms the core of many different algorithms for the
reconstruction, analysis, and optimization of genome-scale metabolic models. For this reason,
software developed to run FBA in a high-performance computing (HPC) environment may be directly
applied to solving many different problems. FBA is also an attractive algorithm to run with HPC
because only a small amount of data is required to fully define the variables, constraints, and objective
necessary to simulate even the largest genome-scale models, and once FBA has been run, the only
result that must be returned is the objective and the list of reaction fluxes. Thus FBA requires minimal
input and output, thereby improving scalability. Additionally, once the constraints and variables
defining the FBA mass balances for a single genome-scale metabolic model have been initially loaded,
many different simulations can be performed simply by adjusting the bounds on the loaded variables
and repeating the optimizations. Thus, much work can be done without loading additional data, further
improving scalability.

Here we describe the various FBA-based algorithms that currently exist for the reconstruction,
analysis, and optimization of genome-scale metabolic models. We focus in particular on algorithms
that are good candidates for processing in HPC, and we discuss the implications of running these
algorithms in parallel. As a case study, we implemented the FBA algorithm for gene knockout
simulation using MPI on Blue Gene/P, and we used this algorithm to simulate the 1010 possible
quadruple gene knockouts for the iBsu1103 genome-scale model of B. subtilis. This represents the first
time that the essential combinations of up to four genes have been identified in B. subtilis.

1. Model reconstruction algorithms
In order to run FBA simulations in HPC for a large variety of different organism, genome-scale
metabolic models must first be created for those organisms. Fortunately opportunities now exist for
the use of HPC to accelerate this process. Reconstruction is the word used to describe the process of
producing a functioning genome-scale model of an organism starting from the sequence of nucleotides
in the organism’s genome. This process includes gene calling, annotation, literature data mining,
reaction mapping, biomass objective function assembly, error correction, and gap filling. Until
recently, this process required years of manual effort to complete, and as a result, the rate of

development of new genome-scale models lagged far behind the rate at which new genomes were
being sequenced (figure 1) [8]. Fortunately, methods have recently emerged that expedite many of the
steps involved in the reconstruction process [9-16], and these methods may now be combined into a
high-throughput, genome-scale reconstruction pipeline. With this high-throughput reconstruction
pipeline, it will be possible to build up-to-date genome-scale models of every sequenced prokaryote on
a monthly basis (figure 1). However, this lofty goal will require significant computational power to
accomplish.

The rate limiting computational step in the high-throughput reconstruction process is an FBA-
based algorithm called auto completion. Initial genome-scale metabolic models consisting only of
reactions associated with genes, spontaneous reactions, and a biomass objective function always
contain gaps that prevent them from producing all of the building blocks necessary for growth. As a
result, these models are incapable of simulating growth using FBA. In auto completion, a mixed
integer linear optimization problem (MILP) is solved to identify the minimal set of reactions that must
be added to the initial model in order for every biomass component to be produced [16]. Often,
multiple equally optimal minimal reaction sets satisfy these criteria. Recursive MILP [17] may be used
to identify each of these solutions, and every solution identified can be preserved until the most
physiologically realistic solution has been manually selected. Depending on the number of gaps in the
initial model, run time for this algorithm can range from one minute to 24 hours. The long run time
combined with the minimal input and output data size (table 1) means that scalability will not be an
issue for the auto completion algorithm. The auto completion algorithm could be run in parallel to
produce functioning genome-scale models for all ~800 prokaryotes with completely sequenced
genomes today. Use of a parallel MILP solver [18] will make it possible to spread the work involved
in producing each model across up to eight processors while retaining scalability. In this manner, the
auto completion algorithm could be run on a maximum of 6,400 processors. Additionally, we
anticipate the number of complete genome sequences to continue growing rapidly over the next
decade (figure 1), meaning number of processors that could be consumed by the auto completion
algorithm will also grow rapidly.

We note that the genome annotation and literature data-mining steps of the reconstruction process
will probably always require significant manual effort to complete. However, the Rapid Annotation
using Subsystems Technology (RAST) method developed within the SEED annotation framework [11,
19, 20] makes it possible for these steps to be performed for every known genome simultaneously and
to be extended to new genomes with minimal effort. In RAST, most well studied biological functions
have been divided into a set of subsystems (e.g., glycolysis) that are assigned to an expert annotator.
That annotator performs the genome annotation and literature data-mining steps of the reconstruction
process for that subsystem using a set of comparative genomics tools to project curations and
annotations across all known genomes simultaneously. Whenever a new genome sequence (or set of

Figure 1. Past and projected rates of
release of new genome sequences and
new genome-scale metabolic models.
Using manual reconstruction, the
number of available models (blue bars)
lags far behind the number of
sequenced genomes (red line).
However, with the introduction high-
throughput reconstruction and the
application of HPC to high-throughput
reconstruction, model reconstruction
can rapidly catch up to and keep pace
with genome sequencing (red bars).

sequences) is integrated into the SEED, annotators will curate the addition of those genomes to each of
their subsystems to ensure that the subsystem is correctly propagated into the new genome. Similarly,
as new literature emerges, annotators study this literature to determine how the reported results will
impact the annotations in their subsystems. In this manner, annotation and literature data-mining
efforts are able to keep pace with the sequencing of new genomes, making high-throughput
reconstruction possible despite the need for some manual curation.

2. Model analysis algorithms
High-throughput implementation of the auto completion algorithm will enable the AGRO pipeline to
produce thousands of new genome-scale metabolic models, paving the way for the use of HPC in the
analysis of these models as well. Numerous FBA-based algorithms exist for analyzing genome-scale
models to produce predictions of growth conditions, essential genes, metabolite concentration ranges,
and metabolic engineering strategies. Application of HPC to these algorithms will produce a wealth of
valuable new data.

2.1. Growth simulation
All published genome-scale metabolic models include one or more intracellular compartments
separated from an extracellular compartment by a cell membrane. Only nutrients with explicit
transport reactions in the model are allowed to pass into the intracellular compartment(s) from the
extracellular compartment. While mass balances are maintained in the intracellular compartments,
metabolites in the extracellular compartment may have a net consumption or production by the cell.
This compartmental structure makes it possible to use FBA to simulate growth in a variety of
environments by adjusting the set of compounds that are allowed to be consumed by the cell from the
extracellular compartment. For example, when modeling rich media, all amino acids, nucleotides, and
many cofactors may be consumed from the environment. When modelling minimal media, only
glucose, ammonia, phosphate, sulphate, and various ions may be consumed from the environment.

The simplicity of the linear optimization algorithm means that the growth of a single model may be
simulated in many different media conditions on a single processor with great speed (~70 media
conditions/second). The slow step of the algorithm is the initial loading of the model into the
optimization solver, so it is essential for efficiency that simulation software interacts with the
optimization software through an API as this allows variable bounds and problem objectives to be
adjusted on the fly without reloading the model. This simulation speed indicates that a very large
number of simulations must be performed in order to justify the application of HPC.

The 324 media conditions included in the Biolog phenotyping arrays currently represent the most
significant large set of media conditions that would be informative to run growth simulations on with a
large set of models. Biolog phenotyping arrays are experimental devices that measure the ability of an
organism to respire in hundreds of distinct media environments [21]. Each media environment in the
phenotyping array contains a different nutrient, making the Biolog array useful as a means of
determining whether an organism has a transporter and a catabolic pathway for many different carbon,
nitrogen, phosphate, and sulphate sources. Even with thousands of models and hundreds of media
conditions, growth simulation alone generates insufficient computational demand to require HPC.
However, growth simulation is still a feasible application for HPC when combined with other
algorithms. For example, gene knockout simulations must often be performed in a variety of media
conditions.

2.2. Gene knockout simulation
Gene essentiality prediction is one of the primary uses for genome-scale metabolic models.
Knowledge of essential or coessential genes in pathogenic organisms is valuable for identifying target
proteins for the development of new antibacterial agents. Knowledge of essential and coessential
genes in industrial organisms is also useful for ensuring that proposed metabolic engineering strategies
avoid disruption of these genes.

To identify essential and coessential genes, gene knockouts are simulated in the models by using
the GPR associations to identify reactions exclusively encoded by knocked out genes, setting the
bounds on the flux through these reactions to zero, and maximizing the flux through the biomass
reaction. If the maximum flux through the biomass reaction is zero, the knocked out gene(s) are
predicted to be essential (for a single gene) or coessential (for multiple genes). The nutrients present in
the environment during the knockout have a significant effect on gene essentiality, and for this reason
knockouts often must be simulated in multiple media conditions. Like the growth simulation,
knockout simulations can be performed very rapidly (~50 knockouts/sec), meaning any application of
HPC to gene knockout simulation must involve billions of distinct simulations on thousands of
processors. For example, HPC could be applied to the simulation of every possible single, double, and
triple gene knockout in every sequenced pathogen on a hundred different media conditions
representing distinct physiological environments for infection. With 102 pathogens, 102 media
conditions, and 106 double knockouts, this scenario involves 1010 distinct simulations. With perfect
scalability on 100,000 processors, the run time would be approximately 24 minutes.

2.3. Reaction classification
The gene knockout simulation algorithm provides a means of classifying the genes included in a
genome-scale model. A similar FBA-based algorithm exists to classify the reactions in the model. This
algorithm, called flux variability analysis (FVA), involves minimizing and maximizing the flux
through each individual reaction in the model; model reactions are then classified based on the
minimum and maximum fluxes calculated [22]. If the min and max are both positive or both negative,
the reaction is essential; if they are both zero, the reaction is nonactive; if one is zero and the other is
nonzero, the reaction is nonessential but active; and if one is positive and the other is negative, the
reaction is nonessential but reversibly active.

The HPC scenario for the FVA algorithm is essentially identical to the scenario for single gene
knockout simulation. Both algorithms have the same run time and require approximately the same
number of simulations. However, it is sometimes useful to combine FVA with gene knockout
simulation to study how reaction behavior is affected by gene knockout, which involves O(106)
simulations per model studied.

2.4. Thermodynamics-based metabolic flux analysis
One issue with standard FBA that can significantly impact the accuracy of the predictions generated is
that thermodynamically infeasible flux profiles still satisfy the mass balance constraints and flux
bounds in FBA. In thermodynamics-based metabolic flux analysis (TMFA), the mass balance
constraints of FBA are supplemented by a set of thermodynamic constraints (Eq. 4) in order to
eliminate thermodynamically infeasible fluxes from the feasible solution space [23]. With some
additional modifications, these constraints also allow for the exploration of feasible ranges for
metabolic concentrations [23].

 (4)

In the thermodynamic constraints, Uj
’ is the chemical potential of metabolite j, ni,j is the stoichiometric

coefficient for compound j in reaction i, and vi is the flux through reaction i. Because compounds
shared by multiple reactants must have the same potential, these constraints prevent
thermodynamically infeasible reaction sets from carrying flux. Unfortunately, these constraints are
also nonlinear, forcing the problem to be formulated as either a mixed integer linear program or a
quadratic program. While the algorithms for growth simulation, gene knockout, and FVA may all be
supplemented with thermodynamic constraints to improve accuracy, the nonlinear formulation of
TMFA decreases the rate at which simulations may be run, from 70 simulations per second to 0.25
simulations per second. Of course, this also improves the parallel scalability of these algorithms and
increases the need for HPC.

2.5. Metabolic engineering
One of the major industrial applications for genome-scale metabolic models is the design of metabolic
engineering strategies for inducing the production of organic chemicals such as ethanol, 1,3-PDO, and
3HP by microorganisms [24]. Often the natural metabolic network of an organism will be missing one
or more of the enzymatic steps required to produce a desired product. The pathway addition algorithm
involves identifying the minimal number of new reactions that would have to be engineered into an
organism to allow for the production of a desired product from a specified raw material with a
minimum yield. Mathematically this algorithm is identical to the automated completion algorithm;
uptake of the selected raw material is fixed at one; production of the desired product is constrained to
be greater than the minimum yield; and the number of nonnative reactions allowed to carry flux in the
final solution is minimized. In the HPC scenario for this algorithm, the pathway addition algorithm
could be run for 102 different raw materials, 102 different potential products, and 103 different
organisms. In total, 107 simulations would be required, each with a run time ranging from one minute
to one hour. Completion of this HPC run would provide the following insights: the ideal host organism
to produce each desired product, the ideal raw material to produce each desired product from, the
maximum yield attainable for each product from each raw material in each organism, and the number
of new enzymes that would have to be added to produce each product in each organism.

The OptStrain [25] and OptKnock [26] algorithms are also used extensively to design metabolic
engineering strategies. The algorithms take the problem a step further by determining how the existing
metabolism of an organism must be modified to drive flux from a specified raw material towards a
desired product. These algorithms are also MILP optimizations that require one minute to one hour to
complete.

3. Model optimization algorithms
One of the major uses for the gene knockout and growth simulation algorithms is the validation of
genome-scale metabolic models against experimentally determined gene essentiality data [27] and
Biolog phenotyping array data [21]. Large-scale gene knockout and phenotyping experiments have
produced a tremendous amount of experimental data that may be compared with the model
predictions, and the validation that this comparison provides is important not only for assessing model
accuracy but also for assessing the accuracy of the annotations on which the models are based.

Inconsistencies between model predictions and experimental data indicate that the model and
possibly the underlying annotations contain an error that must be identified and fixed. The large size
of genome-scale models, however, makes the manual identification of errors a monumental task. In
order to assist in this task, the GrowMatch algorithm was introduced [9]. This algorithm attempts to
automatically repair model errors that cause prediction inconsistencies by adding or removing
reactions from the model. The GrowMatch algorithm consists of two stages, each representing a
potential application for HPC: gap filling, and gap generation.

3.1. Gap filling
The gap-filling stage of GrowMatch attempts to correct prediction errors for conditions where growth
is not predicted to occur in silico while growth is observed in vivo (called false negative predictions).
This type of inconsistency is corrected by either adding one or more new reactions to the model or
converting existing irreversible reactions into reversible reactions. The gap-filling algorithm is an
MILP identical to the automated completion algorithm, but the run time is typically shorter (one
minute to one hour) because of the smaller size of the gaps being filled. Also, like the auto completion
algorithm, the gap-filling algorithm often produces multiple equally optimal solutions for filling each
gap in the model that causes an incorrect prediction. Once the gap filling has been completed for every
false negative prediction condition in the model, a reconciliation optimization must be performed [12]
to select the optimal combination of all solutions that corrects as many errors as possible with minimal
additions to the model. In the HPC scenario, the gap-filling algorithm would be run in parallel for all
conditions with false negative predictions in all models with available data. Unoptimized models have

102 false negative predictions on average, and currently experimental gene essentiality or Biolog
phenotyping array data exists for 10 models. Thus, up to 103 simultaneous simulations can be running
for one minute to one hour. However, the number of organisms with available experimental data is
likely to grow rapidly over time, which will result in a similar growth in the number of gap-filling
simulations required by the GrowMatch process.

3.2. Gap generation
The gap generation stage of GrowMatch attempts to correct prediction errors for conditions where
growth is predicted to occur in silico while growth is not observed in vivo (called false positive
predictions). This type of inconsistency is corrected by either removing one or more reactions from the
model or converting existing reversible reactions into irreversible reactions. Like the gap-filling
algorithm, the gap generation algorithm is an MILP, but the problem formulation (which is described
in detail elsewhere [9, 12]) is much more complex. As a result, the run time is longer, ranging from
one to four hours. Like the gap-filling algorithm, the gap generation algorithm often produces multiple
equally optimal solutions, and a reconciliation optimization is necessary [12] to identify the optimal
combination of all alternative solutions that corrects as many errors as possible. Also like gap filling,
the HPC scenario for gap generation involves running in parallel for all conditions with false positive
predictions in all models with available data, adding up to a total of 103 required simulations.

Table 1. HPC considerations model reconstruction, analysis, and optimization algorithms

Algorithm

Input

Output

Run Time per
Simulation

Approximate
Thread Count

Reconstruction algorithms
Automated completion ~2 MB/thread 1 KB/thread 1-24 hours O(103) genomes
Optimization algorithms
Gap filling ~2 MB/thread 1 KB/thread 1-60 min O(10) models

O(102) errors
Gap generation ~2 MB/thread 1 KB/thread 1-4 hours O(10) models

O(102) errors
Analysis algorithms
Growth simulation ~1 MB

broadcast
8 B/thread ~0.01 sec O(103) models

O(102) media
Gene knockout ~1 MB

broadcast
8 KB/thread ~0.01 sec O(103) models

O(102) media
O(103k) knockouts

Gene knockout with
thermodynamic
constraints

~2 MB
broadcast

8 KB/thread ~3 hours O(103) models
O(102) media
O(103k) knockouts

Reaction classification ~2 MB
broadcast

16 KB/thread ~2 minutes O(103) models
O(102) media

Reaction classification
with thermodynamic
constraints

~2 MB
broadcast

16 KB/thread ~6 hours O(103) models
O(102) media

Metabolic engineering ~2 MB /thread 1 KB/thread 1-4 hours O(103) models
O(102) media
O(102) products
O(102) raw materials

4. Case study: application of HPC to gene knockout simulation
As a case study for the application of HPC to an FBA algorithm, we implemented the gene knockout
simulation algorithm using MPI on the Blue Gene/P supercomputer located at Argonne National
Laboratory. The Blue Gene/P consists of 40 racks each containing of 1,024 chips with four 850 MHz
PowerPC 450 processors on each chip, for a total of 163,840 processors. Blue Gene/P was selected for
our case study because the massive number of available processors presents a unique opportunity to
demonstrate the scalability characteristics of an FBA algorithm on a truly large scale.

B. subtilis was selected for this study because it is one of the most well studied prokaryotes (second
only to E. coli) and because knowledge of essential combinations of genes will be beneficial to
continuing efforts to produce a minimal strain of B. subtilis [28, 29]. The knockout simulations were
performed by using the largest and most up-to-date model of B. subtilis available, iBsu1103[12]. This
model captures 1,103 of the 4,105 genes in the B. subtilis genome, meaning that the total pool of genes
considered in our gene knockout analysis will be 1,103.

The gene knockout simulations were carried out in multiple stages, with the single gene knockouts
performed first, followed by the double, triple, and quadruple gene knockouts. This multistage strategy
was necessary because essential gene combinations identified in earlier stages had to be filtered out of
the combinations explored in later stages (table 2). For example, it is unnecessary to simulate double
gene knockout combinations that include genes found to be essential during the single knockout study
because double knockouts involving essential genes will always be essential as well.

Table 2. Gene knockout combinations considered at each stage of the knockout algorithm
 Single KOs Double KOs Triple KOs Quadruple KO
Naïve estimate 1,103 607,753 223,045,351 61,337,471,525
Estimate based on single KO 331,705 89,892,055 18,248,087,165
Estimate based on double KO 89,870,917 18,243,796,151
Estimate based on triple KO 18,243,776,054
Lethal knockouts identified 288 78 99 28

The parallel FBA algorithm was implemented in two versions that exploit two levels of parallelism
respectively: fine-grained loop-level parallelism (v1) and coarse-grained embarrassing parallelism
(v2). In both approaches, a master node is used to load input files from the file system and broadcast
the buffers to every slave node. In the fine-grained approach, the master node loops over the whole set
of gene knockout combinations and dispatches a subset to a slave node whenever it becomes available.
The granularity (G) is decided based on the total number of processors to strike a balance between
minimizing interprocessor communication and balancing slave workload. The actual job sizes are
randomly drawn from Uniform (G/2, 3G/2) to avoid clashes of communication. In the coarse-grained
approach, instead of getting their jobs from the master node, each slave determines the work that must
be performed on based on the slave’s rank; the slaves skip through the universal list of genes knockout
combinations to find the knockouts they must simulate.

When applied to the simulation of every possible triple gene knockout, the fine-grained loop-level
parallelism (v1) approach yielded a high peak performance in moderate parallel settings but scaled
poorly beyond 1,024 processors because of the significant interprocessor communication involved in
this approach. The coarse-grained embarrassing parallelism (v2) approach initially took a slight
performance hit compared with the v1 algorithm because of the overhead involved in generating the
complete knockout list on every node. However, this algorithm gave near linear scalability up to 4,096
nodes (figure 2). Because every possible combination of single, double, and triple gene knockout
could be simulated in under 10 minutes on 4,096 nodes (one rack of Blue Gene/P running in virtual
node mode), it is not unreasonable to expect the coarse-grained approach to scale well beyond 4,096
nodes since at this run time overhead begins to rival computation. We confirmed this hypothesis by
simulating quadruple gene knockouts on 65,536 in 162 minutes. The throughput from the quadruple
knockout run scaled almost linearly with all of the triple knockout runs (figure 2).

In the first stage of our knockout study 1,103 single gene knockouts were simulated in B. subtilis,
resulting in the identification of 288 essential genes. In the next stage 331,705 double gene knockouts
were simulated, 78 of which were found to be lethal combinations. In the third stage 89,870,917 triple

Figure 2. Scalability plot for gene
knockout simulations. Here we show
how the total number of knockouts
simulated every second scaled with
the number of processors used in the
simulations for multiple parallel
algorithms. Algorithm v1 scaled
linearly up to 4,096 processors when
simulating all possible triple
knockouts and up to 65,536
processor when simulating all
possible quadruple knockouts.

gene knockouts were simulated with 99 combinations identified as lethal. In the final stage
18,243,776,054 quadruple knockouts were simulated with only 28 lethal combinations identified (table
2). The complete list of the essential gene sets in B. subtilis 168 identified during this case study can
be found here: http://bioseed.mcs.anl.gov/~chenry/BSubEssentials.txt.

5. Conclusions
Numerous opportunities exist for the application of HPC to the reconstruction, analysis, and
optimization of genome-scale metabolic models. The field of biology is evolving rapidly, and high-
throughput techniques for genome sequencing, gene knockout and mutation, and phenotype analysis
are producing an explosion of new experimental data. HPC has an important role to play in ensuring
that analytical techniques like FBA can keep up with this explosion. The analysis presented here
shows that only with the computational power provided by HPC will the FBA algorithms existing
today be capable of handling the explosion of biological data anticipated in the near future.

The results of the quadruple knockout simulation case study clearly show that FBA algorithms can
scale well on massively parallel architectures like Blue Gene/P. The caveat to this statement is that
sufficient work must be available to drown out the overhead involved in distributing and initializing
problem data on a large number of processors. For standard linear programming simulations like the
gene knockout algorithm, results indicate that linear scaling can be achieved if there are at least 20,000
simulations per processor. However, we expect that FBA algorithms involving MILP formulations
(like TMFA, GrowMatch, or auto completion) will scale linearly with far fewer simulations per
processor because of the longer run times involved.

The biological results of the quadruple knockout case study were surprising, as one might
intuitively expect to see more lethal double knockouts than lethal single knockouts, more lethal triple
knockouts than lethal double knockouts, and so on. Instead the simulation results indicate that B.
subtilis is remarkably robust to multiple gene knockout. There are two explanations for this
nonintuitive result: (1) a large fraction of the essential metabolic functions in B. subtilis are associated
with essential genes, meaning they have no genetic redundancy, and (2) when a metabolic function
required for growth does have genetic redundancy or biochemical redundancy, it is very redundant,
requiring three or more knockouts before functionality is lost. Apparently, the increased robustness
that is gained by preserving redundant copies of the genes encoding essential functions is not worth
the additional cost of copying and maintaining those redundant copies. Thus it is likely that when
redundancy does occur in the genome, it exists to increase flexibility in the expression of the functions
related with these redundant genes, rather than as a mechanism to enhance robustness to mutation.

Acknowledgments
This work was supported in part by the U.S. Department of Energy under contract DE-ACO2-
06CH11357. We thank the Argonne Leadership Computing Facility and INCITE program for compute
time spent on Blue Gene/P. We thank the SEED development team for advice and assistance in using
the SEED annotation system.

References
1. Edwards JS, Palsson BO: The Escherichia coli MG1655 in silico metabolic genotype: its definition,

characteristics, and capabilities. Proceedings of the National Academy of Sciences of the United
States of America 2000, 97:5528-5533.

2. Papoutsakis ET, Meyer CL: Equations and calculations of product yields and preferred pathways
for butanediol and mixed-acid fermentations. Biotechnology and Bioengineering 1985, 27:50-66.

3. Jin YS, Jeffries TW: Stoichiometric network constraints on xylose metabolism by recombinant
Saccharomyces cerevisiae. Metab Eng 2004, 6:229-238.

4. Varma A, Palsson BO: Stoichiometric flux balance models quantitatively predict growth and
metabolic by-product secretion in wild-type Escherichia-coli W3110. Applied and Environmental
Microbiology 1994, 60:3724-3731.

5. Varma A, Palsson BO: Metabolic capabilities of Escherichia-coli. 2. Optimal-growth patterns.
Journal of Theoretical Biology 1993, 165:503-522.

6. Varma A, Palsson BO: Metabolic capabilities of Escherichia-coli.1. Synthesis of biosynthetic
precursors and cofactors. Journal of Theoretical Biology 1993, 165:477-502.

7. Edwards JS, Ibarra RU, Palsson BO: In silico predictions of Escherichia coli metabolic capabilities
are consistent with experimental data. Nature Biotechnology 2001, 19:125-130.

8. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BØ: Reconstruction of Biochemical Networks
in Microbial Organisms. Nat Rev Microbiol 2009, 7:129-143.

9. Kumar VS, Maranas CD: GrowMatch: an automated method for reconciling in silico/in vivo
growth predictions. PLoS Comput Biol 2009, 5:e1000308.

10. Kumar VS, Dasika MS, Maranas CD: Optimization based automated curation of metabolic
reconstructions. BMC Bioinformatics 2007, 8:212.

11. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass
EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann
D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A,
Zagnitko O: The RAST Server: rapid annotations using subsystems technology. BMC Genomics
2008, 9:75.

12. Henry CS, Zinner J, Cohoon M, Stevens R: iBsu1103: a new genome scale metabolic model of B.
subtilis based on SEED annotations. Genome Biol 2009:in press.

13. Kummel A, Panke S, Heinemann M: Systematic assignment of thermodynamic constraints in
metabolic network models. BMC Bioinformatics 2006, 7:512.

14. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V: Group contribution method for
thermodynamic analysis of complex metabolic networks. Biophys J 2008, 95:1487-1499.

15. DeJongh M, Formsma K, Boillot P, Gould J, Rycenga M, Best A: Toward the automated
generation of genome-scale metabolic networks in the SEED. BMC Bioinformatics 2007, 8:-.

16. Suthers PF, Dasika MS, Kumar VS, Denisov G, Glass JI, Maranas CD: A genome-scale metabolic
reconstruction of Mycoplasma genitalium, iPS189. PLoS Comput Biol 2009, 5:e1000285.

17. Lee S, Phalakornkule C, Domach MM, Grossmann IE: Recursive MILP model for finding all the
alternate optima in LP models for metabolic networks. Computers & Chemical Engineering 2000,
24:711-716.

18. Ladányi L, Ralphs TK, Saltzman MJ: Implementing Scalable Parallel Search Algorithms for Data-
intensive Applications. The Proceedings of the International Conference on Computational Science
2002:592.

19. Overbeek R, Disz T, Stevens R: The SEED: A peer-to-peer environment for genome annotation.
Communications of the Acm 2004, 47:46-51.

20. Seed Viewer - Home [http://seed-viewer.theseed.org/]
21. Bochner BR: Global phenotypic characterization of bacteria. Fems Microbiol Rev 2009, 33:191-

205.
22. Mahadevan R, Schilling CH: The effects of alternate optimal solutions in constraint-based genome-

scale metabolic models. Metab Eng 2003, 5:264-276.
23. Henry CS, Broadbelt LJ, Hatzimanikatis V: Thermodynamics-based metabolic flux analysis.

Biophys J 2007, 92:1792-1805.
24. Willke T, Vorlop KD: Industrial bioconversion of renewable resources as an alternative to

conventional chemistry. Applied Microbiology and Biotechnology 2004, 66:131-142.
25. Pharkya P, Burgard AP, Maranas CD: OptStrain: a computational framework for redesign of

microbial production systems. Genome Res 2004, 14:2367-2376.
26. Burgard AP, Pharkya P, Maranas CD: OptKnock: A bilevel programming framework for

identifying gene knockout strategies for microbial strain optimization. Biotechnology and
Bioengineering 2003, 84:647-657.

27. Gerdes S, Edwards R, Kubal M, Fonstein M, Stevens R, Osterman A: Essential genes on metabolic
maps. Curr Opin Biotechnol 2006, 17:448-456.

28. Morimoto T, Kadoya R, Endo K, Tohata M, Sawada K, Liu S, Ozawa T, Kodama T, Kakeshita H,
Kageyama Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasawara N: Enhanced Recombinant
Protein Productivity by Genome Reduction in Bacillus subtilis. DNA Res 2008, 15:73-81.

29. Fabret C, Ehrlich SD, Noirot P: A new mutation delivery system for genome-scale approaches in
Bacillus subtilis. Mol Microbiol 2002, 46:25-36.

 The following government license should be removed before publication.
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne
National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science
laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

