
ADEM: An Automation Tool for Application Software Deployment and
Management on OSG

Zhengxiong Hou*, Mike Wilde+, Xingshe Zhou*, Ian Foster+#, Jing Tie#

*Center for High Performance Computing, Northwestern Polytechnic University, Xi’an, China
+Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA

#Department of Computer Science, University of Chicago, Chicago, IL, USA
houzhx@hotmail.com, zhouxs@nwpu.edu.cn, {wilde, foster}@mcs.anl.gov, tiejing@gmail.com

Abstract

In the grid environment, the problem of application
software deployment and management is a major
practical challenge for the end-users. Manual
operation is error-prone and not scalable to large
grids. In this work, we propose an automation tool for
Application software DEployment and Management on
Open Science Grid: ADEM. On the basis of the grid
middleware Globus, it is integrated with pacman.
Currently, it can be adaptive to pre-build and dynamic
build approaches. NMI B&T system is adopted for the
pre-build function. After the application software
packaging, ADEM is mainly for automatic deployment,
update or removing. The automatic workflow includes
automatically getting the available grid sites with their
signatures, site signature based automatic deployment
or management on a set of grid sites in parallel,
automatic dependencies check and integration,
automatically preventing some possible errors,
automatically getting the results. And the provenance
tracking is helpful for the troubleshooting of potential
exceptions. Some experiment results on Open Science
Grid (OSG) show that ADEM is easy to use, more
successful and efficient than manual operation.

1. Introduction

Production grids have emerged as a new generation
computational infrastructure, with resource sharing and
cooperative work for federated distributed high
performance computing. An application is said to be
grid enabled when it is able to run on multiple
heterogeneous resources comprising a grid. [1] Grid
enabled application usually has a coarser level of
granularity, needs to have minimal inter-node
communication. [2] Most of the grid application needs
the support of application software, especially for
science and engineering computing. There are many
kinds of application software for different disciplines,

such as astronomy, astrophysics, cosmology,
computational chemistry, computational biology,
computational fluid dynamics, computational structural
or solid mechanics, materials science,
electromagnetism computing, etc. In fact, grid
resources are mainly the aggregation of all kinds of
traditional computing resources. So, almost all kinds of
application software (including the traditional intra-
machine or intra-cluster) can be deployed, managed
and executed in the grid environment.

Whether open source or commercial application
software, the software engineering for the grid usually
includes: development, deployment, test and debug,
execution. [3] In these phases, execution has attracted
the most attention, which usually means scheduling
and coordinating execution, using a variety of
resources concurrently. But, the application software
needs deployment before execution.

The lack of middleware support for application
deployment presents a challenge to scientists utilizing
computational grid infrastructure. [4] Because, in the
grid environment, operating systems, grid middleware
and some application software are usually deployed
and managed by system administrators. But in many
cases, end-users or application administrators have to
deploy and manage their domain specific application
software on the grid by themselves. In this paper, we
define deploying an application on grid as installing
and testing the software on a range of different
platforms comprising a grid. With the intrinsic
distributing, heterogeneous, dynamic and autonomous
or across administrative domains characteristics, it is
non-trivial for the application software deployment and
management in the grid environment. The main
problems are as follows:

(1) There is a wide disparity in operating systems,
system architectures and runtime environments (CPU,
instruction set, file system, software libraries, etc.).
Application software should have the right versions
and the related dependencies to support different
platforms in the grid sites.

(2) The aggregation number of grid sites is usually
large and dynamic: dozens, hundreds or even
thousands. The grid sites properties are also dynamic.
And some grid sites may be uncertain.

(3) The application software has to be deployed and
managed remotely, for the machines or clusters are
geographically distributed among the different grid
sites.

(4) The application software should be deployed
and managed by end-users or application
administrators with limited resource authority (not a
super-user with root permission) in different
autonomous administrative domains.

(5) Without an account and permission for a Virtual
Organization (VO), the grid sites are unavailable at all.

Manual deployment and management of the
application software usually require expertise both
about the underlying system platforms and the
application. However, to date, this phase is often
performed manually, which is both error-prone and
does not scale to large grids. For example, in order to
deploy an application across 20 grid sites, a user would
typically need to login each of the 20 sites sequentially,
compiling, linking, installing and testing the software
or just do it by batch. [3] And the deployment may
raise some licensing and maintenance issues at each
site.

So, it is important to conduct the research on how to
enable the application software automatic deployment
and management for the grid.

In this paper, we propose an automation tool for
Application software DEployment and Management on
OSG [5]: ADEM. The users can trigger an automatic
workflow by ADEM. Currently, it can be adaptive to
pre-build and dynamic build approaches. The
automatic workflow includes automatically getting the
available grid sites with their signatures, site signature
based automatic deployment or management on a set
of grid sites in parallel, automatic dependencies check
and integration, automatically preventing some
possible errors, automatically getting the results. And
the provenance tracking is helpful for the
troubleshooting of potential exceptions.

The rest of this paper is organized as follows: In
section2, we introduce the related work in this area.
Section 3 is the design and architecture of ADEM for
OSG. Section 4 is the implementation for the
automatic workflow of ADEM. Then, in section 5,
some experiment results on OSG are presented.
Section 6 concludes this paper.
2. Related work

Some tools are specifically designed for the
installation and management of linux clusters, such as

Rocks [8, 6], Cfengine [6], OSCAR [6], LCFGng [6],
etc. And there are also some research works about the
application software installation, deployment, or
management in the distributed or grid computing
environment.

On the LHC computing grid, Tank&Spark [7] is a
server-client solution that extends the LHC grid
application software system. It allows for centrally
triggering and controlling software installations at
many remote sites within a virtual organization. And
gLite Packman [9] can be an alternative to
Tank&Spark. But it does not tackle the problem of
automatic installation on a farm of grid sites.

For the ATLAS experiment, [10] the main work
was to interface CMT [11] and pacman [12] with
ATLAS software. Additional tools were developed to
extract files in common package formats and write the
pacman files.

Quattor [6] is a system administration toolkit for the
installation, configuration and management of
operating systems and application software for
computing fabrics. The configuration management
modules are responsible for describing the desired
configuration of all the nodes, and the installation
management modules are responsible for changing the
actual configuration of nodes to the desired state. It
mainly supports unix derivatives, such as linux and
solaris.

Distributed ant [4] is a system to support application
deployment in the grid. It extends the ant build file
environment to provide a flexible procedural
deployment description and implements a set of
deployment services.

Adage [13] is claimed for the automatic application
deployment on grids, the main steps include: general
application description, deployment planner and
deployment plan execution, and application
configuration. Currently, the following programming
models are supported: MPI, JXTA, CCM (CORBA
Component Model) applications.

In the work of gabor kecskemeti and peter kacsuk
[14], based on virtual machine, they extended the
globus workspace service, including creating virtual
appliances for grid services, service deployment from a
repository, and influencing the service schedules by
altering execution planning services, candidate set
generators or information systems.

From industry, rBuilder [15] enables application
vendors to combine their application with just enough
operating system to create a software or virtual
appliance. The electric cloud [16] company provides a
distributed build system that re-factors an application’s
makefiles into parallel workloads executed on
dedicated clusters.

Unlike the related work, our work is focused on the
automatic workflow for real domain specific
application software deployment and management on
OSG. It can be adaptive to different build approaches,
such as pre-build and dynamic build. With the pre-
build function, it is unnecessary to compile the source
code on every grid site. There is no additional daemon
program. And it can support the execution of grid
workflow application by swift [17].

3. The design of ADEM

To solve the above problems for the application
software deployment and management in the grid
environment, the design of ADEM is described as
follows.

On OSG, the automatic deployment and
management of application software are based on
globus [18] and pacman [12]. They are suitable for the
remote task execution and data transfer in the
distributed grid environment.

Heterogeneity is a main concern in the grid
environment. In ADEM, grid site signature is used for
the identification of heterogeneous platforms. Here, we
define grid site signature as the configuration features
of a platform, which are usually important for the
successful installation and running of application
software, such as CPU architecture, operating system
and its kernel version, glibc, gcc version, and MPI.
“Linux-2.6.9-i686-glibc2.3.4-gcc3.4.6-mpich1.2.7” is
an example. This is important for choosing the right
pre-built application binary packages for the various
grid sites. In some cases, the pre-built application
software on a given machine can not be migrated to
other machines, although they have the same signature.
So, we also support the dynamic build approach. For
the dynamic build, it is also important for choosing the
right version of source codes for the various grid sites.
On the basis of pacman and the software repository
(including dependency software, library, etc.), the
dependencies can be checked and deployed
automatically if they are unavailable.

Dynamicity is another main concern in the grid
environment. The dynamic grid sites information is
fetched on the basis of VORS (Virtual Organization
Resource Selector) [19] or ReSS [20]. We adopt a grid
sites cache file for the grid sites information. For the
old grid sites in the grid sites cache file, ADEM detects
them for the detailed information, updates it if it is
changed. If an old grid site can not be used, it will be
removed from the grid sites cache file. On the contrary,
once a new grid site is found, the new information
about site name, gateway, application work directory,
the path of pacman, site signature, data directory, local

resource manager, the path of MPI and available disk
space will be automatically fetched and added into the
grid sites cache file. Especially, if there is no available
pacman or MPI on the new grid site, it will be
automatically installed during the updating process.
Usually, there is enough disk space for these kinds of
application software.

Security or trust model is of particular concern. On
OSG, we use the standard globus grid services, there is
no additional daemon, no additional port for a user's
globus container or opening a host based firewall.
Each grid site has a delegated account for each VO,
which it belongs to. When executing deployment or
management scripts by globus GRAM on the OSG grid
sites, an end-user is mapped as the delegated user for
the particular VO, which the end-user’s certificate
belongs to. As described in Figure 1, if some end-users
are belonged to the same VO X, we create an
individual work directory for every end-user under the
same delegated user account on each grid site. The
work directories for application deployment and
execution are also separated.

Figure1.The mapping from end-users to the delegated

user for a Virtual Organization

According to the design concepts, the logical

architecture of ADEM is described in Figure 2.
(a) NMI B&T System [21]. It is for the pre-build

function, including the compilation, linking,
installation, test and packaging of application software
for the heterogeneous platforms. For a new application,
it needs to prepare the software source code tarball,
and the description about how to obtain, compile, link,
install and test it on the NMI B&T system. The end-
users or application administrators login the submitting
machines of NMI B&T system to submit the software
build and test jobs. To improve the efficiency, the
users can just prepare the application software for the
specific heterogeneous platforms representing the
available OSG grid sites which are to be used.

Figure2. Logic architecture of ADEM for OSG

(b) A repository for application software and the

possible dependencies packages. The application
software package can be source code tarball or pre-
built binary package from NMI B&T system. So, there
is a matched package for each grid site signature in this
repository. A pacman cache can also be placed in it,
which contains pacman files describing how to
download and install the application software for
different grid sites signatures. It is decided by the
pacman file to choose the pre-build or dynamic build
approach. With the pre-built binary package, the
installation of application software just needs an
unpacking to the defined work directory in the grid
sites.

(c) An invoke site to trigger application software
automatic deployment or management to the available
grid sites in parallel. Globus toolkit 4+ should be
installed on it. It can be any machine with a certificated
user for the VOs. The ADEM script tools are
downloaded and executed on the invoke site. Then, the
automatic workflow for application software
deployment or management is triggered on a set of
available grid sites within a given VO.

(d) VORS [19] (Virtual Organization Resource
Selector). It is the source for the dynamic grid sites
information. ReSS [20] can be another option.

(e) The grid sites. Globus toolkit 4+ should be
installed on them. GSI is used for the common grid
user’s certification and security. GridFTP is adopted to
transfer the automatic scripts for the deployment and
management. GRAM is used for the execution of the
scripts on the distributed remote grid sites. If there is
no available pacman, it will be automatically prepared
by ADEM. The automatic scripts for the deployment
or management are generated and transfered from the

invoke site to the grid sites in run-time. As described
above, besides a specific delegated user's home
directory for each VO, there is an individual user space
as a work directory for each end-user in the grid sites.
And each application has an individual space.

4. Implementation for the automatic
workflow of ADEM

Based on globus, ADEM is integrated with pacman

for the application software automatic deployment and
management on OSG. Currently, it mainly supports
unix derivatives. We provide a few commands for the
automatic deployment and management functions,
mainly including automatic deployment, update and
removing. They were implemented by scripting
languages, such as Bash and Perl.

We propose a site signature based application
software packaging with binary codes or source codes.
Only application administrators or a subset of end-
users should be entitled to prepare the application
software packaging and manage the default application
software repository and pacman cache, including
adding, removing, modifying or updating application
software packages and pacman files. The users can also
create their own repositories for application software
and pacman cache. If it is not setup while installing the
ADEM tool, the default application repository will be
used.

 Figure3. dock-linux_2.6.9-x86_64.pacman file

The instructions on how to fetch and install

software are described in a pacman file, i.e. dock-
linux_2.6.9-x86_64.pacman is an example for dock
application with a binary codes package (Figure 3).
The operating system and CPU features are taken from
the grid sites signature to name the pacman file. When
necessary, the glibc or gcc can be dealt with as
dependencies.

On the invoke site, after the application software
packaging, any certificated common user can trigger an
automatic workflow to deploy or manage a given
application software to the available grid sites in
parallel, and get the results automatically. The specific

commands include “auto-deploy-app”, “auto-update-
app” and “auto-rm-app”. They need some parameters,
such as VO, sites file, application software name. The
VO and sites file can be automatically fetched. And
ADEM will automatically check the repository to show
the packaged application software.

The general automatic workflow for the application
software deployment and management on OSG is
described in Figure 4.

For example, the key steps of the automatic
workflow for application software deployment are as
follows:

Step1: Get the available grid sites automatically and
dynamically.
 Based on the dynamic grid sites information from
VORS [19] or ReSS [20], it can discover the available
grid sites and automatically generate the available grid
sites file for a given VO, which the end-user belongs
to. A cache file for the grid sites information is adopted
to improve the performance. And it will be updated
after every usage. If it’s the first time to get the
available grid sites for an end-user, an individual work
directory for application deployment and execution
will be created respectively. To support the execution
of grid workflow by swift [17], a sites.xml file will be
automatically generated for the specific users.

Step2: Execute the application software automatic
deployment on the selected grid sites in parallel.
 With a loop for launching deployment, it
automatically generates the deployment script for each
grid site and transfers them to the grid sites by
GridFTP. Then they are executed in parallel in the
background. Pacman is integrated in the automatic
deployment script, which is used to transport, and
install application software to the grid sites. With the
grid sites signatures, ADEM can choose the right
application software packages for different grid sites
platforms from the repository. For the pre-build
approach, it just needs to unpack the binary codes
package for the installation. For the described
dependencies in the pacman file, they will be
automatically checked in the grid sites. If there are no
available dependencies, they will be installed
automatically. The experiences of dealing with some
errors can also be added into the pacman file. So, it can
automatically prevent some possible errors. And the
standard output and standard error information for the
deployment on each grid site will be returned to the
invoke site.

Step3: Check the results automatically.
 The deployment results on all of the available grid
sites will be automatically fetched. If there are some
errors on some grid sites, the specific sites can be
automatically cleaned and re-deployed from scratch for
one time.

To support the execution of grid workflow by swift
[17], a tc.data file will be automatically created to
record the successfully deployed application software
and the path of the executables.

Figure 4.The automatic workflow of ADEM

The automatic workflow for application software

management is similar with the deployment. In the
invoke site, a common certificated user can use the
script tools “auto-rm-app” and “auto-update-app” to
trigger automatic removing and update for a given
application software on a set of grid sites. And they are
also executed in parallel in the background. The
management results can also be checked and fetched
automatically.

After the completion of automatic deployment or
management for the application software, all of the
executed commands will be automatically recorded in
a log file. All of the results of the dynamic available
grid sites, application deployment or management will
be automatically recorded in related log files. And all
of the standard output, standard error information will
also be automatically recorded. So, the logs can be
used for the provenance tracking and are helpful for the
troubleshooting of some potential exceptions in the
grid environment.

5. Experiments

 Open Science Grid [5] is a distributed computing
grid for data-intensive research in US and beyond.

Altogether, there are more than 70 grid sites and 30
Virtual Organizations. We did the experiments mainly
within the osg and osgedu VO.

In the experiments, more than 10 applications were
tested to be automatically deployed and managed on
about 20 available grid sites. Almost all of the grid
sites adopt linux as the operating system. And the main
two CPU architectures are i686 and x86-64. The
application domains included molecular dynamics,
biology, computer science, and so on. Dock [22], Nab
[23], Blast [24], etc. were our typical application
software. In the invoke site, the application software
automatic deployment and management on a set of grid
sites were triggered by a certificated common grid
user. The machine for the invoke site provided dual
core Intel Pentium® CPU 2.80GHz with 3GB of
RAM.

5.1 Success rate and Scalability

Manual deployment of the application software is

error-prone and not scalable to large grids. In fact, if
the application software has to be built on each grid
site, there are some errors with different extent for
most of the application software. Most of the
installation failures are due to the dependencies or
compiling errors.

With the site signature based pre-build approach,
we do not need to compile the source code on the grid
sites. The error-prone problem was solved almost
perfectly. The success rate was greatly improved
because we could get the right version of the
application’s binary code package for the specific
platform, which was pre-built on the well prepared
machine with the same signature from NMI B&T
system [21].

For the available 20 grid sites within OSG VO,
Figure 5 shows the comparison of success rate between
pre-build based application software automatic
deployment with ADEM and manual deployment.
Several failures were due to the problem of pacman.
Especially, because Blast application package was
already a binary package, it did not need a pre-build.
So, the success rates were the same with ADEM and
manual deployment, which were both 100%.

Figure5. Comparison of success rate between ADEM and

manual deployment for 20 grid sites

For a set of available grid sites, no matter what size

it is, the automatic deployment or management for
application software is launched one by one by a loop
and executed in the grid sites in parallel in the
background. In theory, it is easily scalable to large
scale grid sites. But, it will be overloaded if there are
hundreds or even thousands of grid sites accessing the
application software repository concurrently. So, to
ensure the scalability, we tend to use repository mirrors
and caches to share the workloads, if there are very
large scale grid sites.

5.2 Time Cost

 The automatic deployment of application software
to a set of grid sites includes a launching and an
execution process. In the launching process, it
generates the automatic deployment scripts for each
grid site. Then the automatic deployment scripts are
transported to the remote grid sites and executed in
parallel in the background.
 Figure 6 is the average launching time for
application automatic deployment on 20 grid sites. It
was just about 2 seconds. For the launching time, there
was a very little difference for different application
software. Due to the execution loop for a set of grid
sites, the launching time of automatic deployment for
application software to a set of grid sites usually
increases with the number of grid sites. But it is
relatively very fast, i.e. for the simulated 100 grid sites
it was just about 8 seconds.

Figure6. Application automatic deployment average

launching time for 20 grid sites

Figure7. Pre-build based application automatic deployment

average completion time statistics

For the deployment completion time to a set of grid
sites, it includes the launching time, the time for the
execution of installation and tests. The average
completion time of the pre-build approach is shown in
Figure7. For the pre-build approach, it usually just
needs to unpack the binary package for installation.
Sometimes, it needs to install dependencies when
necessary. There was an obvious variation among
different grid sites. Although we could deploy the
application on all of the available grid sites in parallel,
the whole deployment completion time was decided by
the slowest grid site. So, the average deployment
completion time increased with the grid sites number
to some different extent. For different application
software, the average deployment completion time is
usually different. It is mainly dependent on the
unpacking time and the network performance.

 However, compared to the manual deployment or
dynamic build on each grid site, the pre-build based
automatic deployment gains a much better
performance. For example, if a user login each grid site
to deploy DOCK, it costs about 292.8 minutes for the
16 grid sites, provided that there was no error. With
the dynamic build on each grid site, for the successful
deployment of DOCK application to 16 grid sites, the
average time cost was about 45 minutes. With the pre-
build approach, the average pre-build time was 15
minutes, and the average successful deployment to 16
grid sites was 3.5 minutes, so the whole time cost was
just about 18.5 minutes.

For the application software automatic management
functions, such as removing and update, the launching
process is similar with that of the deployment. The
completion time for removing is also very fast if
compared with the deployment completion time. And
the completion time for update is about the sum of
removing and deployment. For example, the time cost
statistics on 16 grid sites is revealed in Figure 8. It took
a comparatively long time for the pre-build of octave
application, which generated a binary package with the

size of more than 200MB. While blast did not need a
pre-build, because it was already a binary package.

Figure8. Pre-build based time cost statistics on 16 grid sites

After the deployment, the application software is

utilized for the real grid applications. We have
executed large scale parameters sweep applications on
the basis of the deployed applications, such as DOCK,
and Blast.

6. Conclusion

We proposed an automatic workflow schema for
Application software DEployment and Management on
OSG: ADEM. Although we prefer to use the pre-build
approach, in some cases, the dynamic build approach is
also necessary. The pre-build function is implemented
on the basis of NMI B&T system. The globus grid
middleware provides the basic grid services, and we
integrate ADEM with pacman. It can get the grid sites
automatically and dynamically, trigger automatic
deployment or management of a given application
software on a set of available grid sites in parallel. And
the results are automatically fetched. Our experiment
results on OSG show that ADEM is feasible and has
good effect. It significantly reduces manual efforts for
the deployment and management of application
software. It is easy to use, much more successful and
faster than manual operation. And it can be easily
scalable to large grid sites.

The future works may include implementation for
large scale grid sites, virtual machine based application
automatic deployment and management, and a web
interface for the users.

7. Acknowledgement
This research is supported in part by NSF grant OCI-
721939 and the U.S. Dept. of Energy under Contract
DE-AC02-06CH11357. It was made possible by the
resources of the Open Science Grid, the TeraGrid, and
the Build and Test System of the National Middleware
Initiative. We thank Glen Hocky for testing and
feedback.
The following government license should be

removed before publication.
The submitted manuscript has been created in part by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is
operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display
publicly, by or on behalf of the Government.
8. References

[1] P.V. Coveney, R.S. Saksena, S.J. Zasada, et. al. The
Application Hosting Environment: Lightweight Middleware
for Grid-based Computational Science. [J] Computer Physics
Communications 176(2007) 406-418.

[2] Arun Krishanan. A Survey of Life Sciences Application
on the Grid. [J] New Generation Computing, 22(2004) 111-
126. 2004.

[3] David Abramson. Applications Development for the
Computational Grid. Frontiers of WWW Research and
Development (APWeb 2006), LNCS 3841, pp. 1-12. 2006.

[4] Wojtek Goscinski and David Abramson. Distributed Ant:
A System to Support Application Deployment in the Grid.
Proceedings of the Fifth IEEE/ACM International Workshop
on Grid Computing (GRID’04). 2004.

[5] OSG (Open Science Grid).
http://www.opensciencegrid.org/, 2009.

[6] R. Garc´ıa Leiva, M. Barroso L´opez, et al. Quattor:
Tools and Techniques for the Configuration, Installation and
Management of Large-Scale Grid Computing Fabrics. [J]
Journal of Grid Computing (2004) 2: 313–322.

[7] Roberto Santinelli, Flavia Donno. Installing and
Configuring Application Software on the LHC Computing
Grid. Proceedings of the First International Conference on e-
Science and Grid Computing (e-Science’05). 2005.

[8] Rocks. http://www.rocksclusters.org/wordpress/, 2009.

[9] Alien/gLite packman. http://glite.web.cern.ch/glite, 2009.

[10] Simon George1, Christian Arnault, Michael Gardner, et
al. Automated Software Packaging and Installation for the
ATLAS Experiment. 2003.

[11] CMT. http://www.cmtsite.org/, 2009.

[12] Pacman. http://physics.bu.edu/~youssef/pacman/, 2009.

[13] Adage. http://www.irisa.fr/paris/ADAGE/, 2009.

[14] Gabor Kecskemeti, Peter Kacsuk. Automatic Service
Deployment Using Virtualization. 16th Euromicro
Conference on Parallel, Distributed and Network-Based
Processing. 2008.

[15] rBuilder. http://www.rpath.com/corp/products, 2009.

[16] Electric cloud. http://www.electric-cloud.com, 2009.

[17] Zhao Y., Hategan, M., Clifford, B., Foster, I., Wilde, M.
et al. Swift: Fast, Reliable, Loosely Coupled Parallel
Computation. IEEE International Workshop on Scientific
Workflows 2007.

[18] Ian Foster. Globus Toolkit Version 4: Software for
Service-Oriented Systems. [J] Journal of Computer Science
and Technology, 21(2006) 513-520. 2006.

[19] VORS (Virtual Organization Resource Selector).
http://vors.grid.iu.edu/cgi-bin/index.cgi,2009.

[20] Resource Selection Service (ReSS).
http://twiki.grid.iu.edu/bin/view/ResourceSelection/WebHom
e, 2009.

[21] Andrew Pavlo, Peter Couvares, Rebekah Gietzel, et. al.
The NMI Build&Test. Laboratory: Continuous Integration
Framework for Distributed Computing Software. 20th Large
Installation System Administration Conference (LISA ’06).
2006.

[22] Dock.
http://dock.compbio.ucsf.edu/DOCK_6/index.htm, 2009.

[23] Nab.
http://www.scripps.edu/mb/case/casegr-sh-3.2.html, 2009.

[24] Blast. http://blast.ncbi.nlm.nih.gov/Blast.cgi, 2009.

