
TITLE
PETSc - the Portable, Extensible Toolkit for Scientific computation

BYLINE
Barry Smith
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL
USA
bsmith@mcs.anl.gov

DEFINITION
The Portable, Extensible Toolkit for Scientific computation (PETSc, pronounced PET-see) is a suite of open
source software libraries for the parallel solution of linear and nonlinear algebraic equations. PETSc uses
the Message Passing Interface (MPI) for all of its parallelism.

DISCUSSION

The numerical solution of linear systems with sparse matrix representations is at the heart of many numer-
ical simulations, from brain surgery to rocket science. These linear systems arise from the replacement of
continuum partial differential equation (PDE) models with suitable discrete models by the use of the finite
element, finite volume, finite difference, collocation, or spectral methods and then possibly linearization by
Newton’s method. The resulting linear systems can range from having a few thousand unknowns to billions
of unknowns, thus requiring the largest parallel computers currently available. Large-scale linear systems
also arise directly in optimization, economics modeling, and many other non-PDE-based models. The main
focus of PETSc is in solving linear systems arising from PDE-based models, though it is applied to other
problems as well. PETSc also has limited support for dense matrix computations (through an interface to
LAPACK and PLAPACK); but if the computation involves exclusively dense matrices, then PLAPACK or
ScaLAPACK are appropriate libraries.

PETSc is a software library intended for use by mathematicians, scientists, and engineers with a solid
understanding of programming, some basic understanding of the issues in parallel computing (though they
need not have programmed in MPI), a basic understanding of numerical analysis, and an understanding
of the basics of linear algebra. It has a higher and deeper learning curve than do software packages such
as Matlab. PETSc can be used directly from Fortran 77/90, C/C++, and Python, with bindings that are
specialized to each language.

PETSc is used by a variety of parallel PDE solver libraries, including freeCFD, a general-purpose CFD
solver; OpenFVM, a finite-volume-based CFD solver; OOFEM, an object-oriented finite element library;
libMesh, an adaptive finite element library; and DEAL.II, a sophisticated C++- based finite element sim-
ulation package. For large-scale optimization and the scalable computation of eigenvalues, PETSc has two
children packages, TAO and SLEPc, that use all of the PETSc parallelism and linear solver infrastructure.

The emphasis of the PETSc solvers is on iterative methods for the solution of linear systems, but it pro-
vides its own efficient sequential direct (LU and Cholesky factorization-based) solvers as well as interfaces to
several parallel direct solvers; see Table 1. PETSc has a unique configuration system that will automatically
download and install the multitude of optional packages that it can use. In addition to the direct solvers, it
can use several parallel partitioning packages as well as preconditioners in the hypre and TRILINOS solver
packages; see Table 2. A key design feature of PETSc is the composibility of its linear solvers. Two or more
solvers may be combined in various ways: by splittings, multigrid and Schur complementing to produce
efficient, problem-specific solvers.

1

The parallelism in PETSc is usually achieved by domain decomposition. The geometry on which the
PDE is being solved is divided among the processes, and each process is assigned the unknowns and matrix
elements associated with that domain. The communication required during the solution process is then
nearest neighbor ghost (halo) point updates and global reductions (using MPI Allreduce()) over a MPI
communicator. PETSc has optimized code based on the inspector-executor model to perform the ghost point
updates.

In addition to its broad support for linear solvers, PETSc provides robust implementations of Newton’s
method for nonlinear systems of equations. These include a variety of line-search and trust-region schemes
for globalization. The solvers are extensible, allowing easy provision of user convergence tests, line-search
strategies, and damping strategies. Several variants of the Eisenstat-Walker convergence criteria for inexact
Newton solves are available. There is also support for grid sequencing to efficiently generate high-quality
initial solutions for fine grids. To compute the Jacobians commonly needed for Newton’s method, PETSc
provides coloring of sparse matrices and efficient computation of the Jacobian entries using the coloring with
finite differencing, ADIC (automatic differentiation for C programs), and ADIFOR, (automatic differentiation
for Fortran 77 programs). All of these run scalably in parallel.

PETSc also provides a family of implicit and explicit ODE integrators, including an extensive suite of
explicit Runge-Kutta methods. The implicit methods support all the functionality of the PETSc nonlinear
solvers and use of any of the Krylov methods and preconditioners. The more sophisticated adaptive time-
stepping ODE integrators of SUNDIALS can also be used with PETSc and allow use of all available PETSc
preconditioners.

Provided in PETSc is an infrastructure for profiling the parallel performance of the application and the
solvers it uses, including floating-point operations done, messages, and sizes of messages sent and received.
It provides the results in a table that indicates the percentage of time spent in the various parts of the solver
and application.

Development of PETSc was started in 1995 by Bill Gropp, Lois Curfman McInnes, and Barry Smith at
Argonne National Laboratory. They were joined shortly later by Satish Balay. Aside from a small amount
of National Science Foundation funding in the mid-1990s, the U.S. Department of Energy has provide the
funding for PETSc development and support. Since its origin, PETSc has received contributions from many
of its users.

PETSc was the winner of a 2009 R&D award. It has formed the basis of three Gordon Bell winning
application codes in 1999, 2003, and 2004 as well as several Gordon Bell finalists.

Library Design

PETSc follows the distributed-memory SPMD model of MPI, with the flexibility of having different types
of computation running on different processes. Specifically PETSc allows users to create their own MPI
communicators and designate computations for PETSc to perform on each of these communicators. A
typical application code written with PETSc requires very few MPI calls by the developer.

PETSc is written in C using the object-oriented programming techniques of data encapsulation, polymor-
phism, and inheritance. Opaque objects are defined that contain function tables (using C function pointers)
used to call the code appropriate for the underlying data structures. The six main abstract classes in PETSc
are the Vec vector class for managing the system solutions, the Mat matrix class for managing the sparse ma-
trices, the KSP Krylov solver class for managing the iterative accelerators, the PC preconditioner class, the
SNES nonlinear solver class, and the TS ordinary differential equations (ODE) integrator class. The DM
helper class manages transferring information about grids and discretizations into the Vec and Mat classes.
Virtually all of the parallel communication required by PETSc (the MPI message passing and collective
calls) takes place within these objects. The constructor for each PETSc object takes an MPI communicator,
which determines on what processes the object and its computations will reside. The most common are
MPI COMM WORLD, in which the object is distributed across all the user’s processes (and computations
involving the object will require communication with that communicator), and MPI COMM SELF, in which
the object lives on just that process and no communication is ever required for its computations.

2

A typical application that requires linear solvers has a structure as depicted in Figure 1. In this example,
the DA object, which is an implementation of the DM class for structured grids, is used to construct the
needed sparse matrix and vectors to contain the solution and right-hand side; it is said to be a factory for Vec
and Mat objects. Once the numerical values of the matrix are set, in this case by calls to MatSetValues(),
the matrix is provided to the linear solver via KSPSetOperators(). Since MatSetValues() may be called
with values that belong to any process, the calls to MatAssemblyBegin/End() are used to communicate
the values to the process where they belong. Values may be set into vectors by using either VecSetValues(),
with a concluding VecAssemblyBegin/End(), as with matrices or by access the array of values using
VecGetArray(), VecGetArrayF90(), or DAVecGetArray() and putting values directly into the array.
In this case no communication of off-process values is done by PETSc.

A typical application that requires nonlinear solvers has a structure as depicted in Figure 2. In addition to
serving as a factory for the Jacobian sparse matrix and solution vector (as in the linear case), the DA object
is used as a factory for the ghosted representation of the solution xlocal and perform the ghost point updates
with DAGlobalToLocal() in the routines ComputeFunction() and ComputeJacobian(). These call-
back routines are registered with the nonlinear solver object SNES with the routines SNESSetFunction()
and SNESSetJacobian(). They are called when needed by the solver class.

A typical application that requires ODE integration has a structure as depicted in Figure 3. This simple
example uses the Python interface to TS where the entire discretized ODE (in this case using the backward
Euler method) is provided directly as the function and Jacobian. It is also possible to provide the function
and Jacobian of the right-hand side of the ODE, that is, ut = F (u), and have the TS class manage the ODE
discretization, with either an explicit or implicit scheme.

Each PETSc object has a method XXXSetFromOptions() that allows runtime control of almost all
of the solver options through which is called the PETSc options database. Command-line arguments (as
keyword value pairs) are stored in a simple database. The XXXSetFromOptions() routines then search
the database and select any appropriate options and apply them. For example, the option -ksp type gmres
is used by KSPSetFromOptions() to call KSPSetType() to set the solver type to GMRES. This database
may also be used directly by user code.

Also common to all classes are the XXXView() methods. These provide a common interface to printing
and saving information about any object to a PetscView object, which is an abstract representation of a
binary file, a text file (like stdout), a graphical window for drawing, or a Unix socket. For example,
MatView(Mat A,PetscViewer v) will present the matrix in a wide variety of ways depending on the
viewer type and its state. Calling the viewer method on a solver class, such as SNES, displays the type of
solver and all its options; see Figure 4 for an example. Note that the figure displays both the nonlinear and
linear solver options.

For the Mat class, PETSc provides several realizations. The most important of these are the following:

• Compressed sparse row (CSR) format.

• Point-block version of the CSR where a single index is used for small dense blocks of the matrix.

• Symmetric version of the point-block CSR that requires roughly one-half the storage.

• User-provided format (via inheritance).

• “Matrix-free” representations, where the matrix entries are not explicitly stored, but instead matrix-
vector products are performed by using one of the following:

– Finite differencing of the function evaluations.

– Automatic differentiation of the function evaluations using either ADIC, for C language code or
ADIFOR, for Fortran 77 language code.

– User-provided function.

3

Since PETSc is focused on PDE problems, row-based storage of the sparse matrices (each process holds a
collection of contiguous rows of the matrix) is satisfactory for higher-performance parallel matrix operations.
Hence, all of PETSc’s built-in sparse matrix implementations use this approach. Custom formats can be
provided to handle parallelism for “arrow-head” matrices where row-based distribution does not scale.

PETSc has the point-block-based storage of sparse matrices for faster performance. The speed of sparse
matrix computations is essentially always strongly limited by the memory bandwidth of the system, not by
the CPU speed. The reason is that sparse matrix computations involve few operations per matrix entry. For
example, for matrix vector products there are two floating-point operations (a multiply and an add) for each
entry in the matrix. Memory bandwidth-limited computations are sometimes said to hit the memory wall.
In the CSR format there is a column index for every nonzero entry in the matrix, and the matrix-vector
product is coded as y[i] =

∑j<nzi

j=nzi−1
aa[j] ∗x[aj[j]]. For each multiply in the computation a double-precision

value of aa[] must be loaded as well as an integer value aj[]. Thus, 12 bytes are loaded per multiply. In
the point-block CSR format (with block size bs), there is one column index per block and the matrix-vector
product may be coded as y[bs ∗ i + k] =

∑j<nzi

j=nzi−1

∑l<bs
l=0 aa[bs ∗ (j + l) + k] ∗ x[aj[j] + l]. Here, for each

(bs ∗ bs) multiplies, (bs ∗ bs) loads of aa[] are needed, but only a single integer aj[]. For even moderate block
size, this approach reduces the loads per multiply from 12 to less than 8.5 bytes. In addition, the same x[]
values are used repeatedly for each k, and a smart unrolling can keep the reused values in registers. Using
the block CSR when appropriate, depending on the particular processor, can improve the performance of
the sparse matrix operators by a factor of 2 to 3.

The KSP Krylov accelerator class provides over a dozen Krylov methods; see Table 3. The data encap-
sulation and polymorphic design of the Vec, Mat, and PC classes in PETSc allow the immediate use of any
of their implementations with any of the Krylov solvers. When possible, these are implemented to allow left,
right, or symmetric preconditioning and the use of various norms of the residual in the convergence tests
including the “natural” (energy) norm. Custom convergence tests and monitoring routines can be provided
to any of the solvers.

The PC preconditioners class contains a variety of both classical and modern preconditioners includ-
ing incomplete factorizations, domain decomposition methods, and multigrid methods. See Table 2 for a
partial list. In addition, several preconditioner classes are designed to allow composition of solvers. These
include PCKSP, which allows using a Krylov method as a preconditioner; PCFieldSplit, which allows
constructing solvers by composing solvers for different fields of the solution; KSPCOMPOSITE which
allows combining arbitrary solvers; and PCGALERKIN which constructs preconditioners by the Galerkin
process. PCFieldSplit preconditioners are often called block preconditioners, for example, when one field
is velocity and another pressure, the resulting Stokes solver is often solved with one block for velocities and
one for pressure.

Applications

A wide variety of simulation applications have been written by using PETSc. These include fluid flow for
aircraft, ship, and automobile design; blood flow simulation for medical device design; porous media flow
for oil reservoir simulation for energy development and groundwater contamination modeling; modeling of
materials properties; economic modeling; structural mechanics for construction design; combustion modeling;
and nuclear fission and fusion for energy development.

PETSc-Fun3d was an early application based on Kyle Anderson’s NASA code, Fun3d, that solves the
Euler and Navier-Stokes equations including both compressible and incompressible on unstructured grids.
PETSc-Fun3d won a Gordon Bell special prize in 1999 running on over 6,000 of the ASCI Red processors.
This application, the dissertation work of Dinesh Kaushik, motivated many of the early optimizations of
PETSc.

The forward and inverse modeling of earthquakes using the PETSc algebraic solvers resulting in 2003
Gordon Bell special prize.

The algebraic multigrid solver Prometheus was written by Mark Adams using the PETSc Vec, Mat,
KSP, and PC classes. It takes advantage of the block CSR sparse format in PETSc to maximize per-

4

formance. It was used in the simulation of whole-bone micromechanics with over half a billion degrees of
freedom, resulting in a 2004 Gordon Bell special prize.

PETSc has been used by several research groups in the simulation of heart arrhythmias, which are the
cause of the majority of sudden cardiac deaths. This application involves solving the nonlinear bidomain
equations, which are two coupled partial differential equations that model the intracellular , and extracellular
potential of the heart. Numerical solutions to these equations (and more sophisticated models) explains much
of the electrical behavior of the heart, including defibrillation.

PFLOTRAN, led by Peter Lichtner of Los Alamos National Laboratory, is a subsurface flow and con-
taminant transport simulator that uses the PETSc DM class to manage the parallelism of its mesh, the
SNES nonlinear solver class for the solutions needed at each time step, the Mat class to contain the sparse
Jacobians, and the Vec class for its flow and contaminant’s solutions. It has been run on up to 64,000 cores
of the Cray XT5 and has been used to more accurately model uranium plumes at DOE’s Hanford site.

The UNIC neutronics package developed by Mike Smith and Dinesh Kaushik of Argonne National Lab-
oratory has run full reactor core simulations on 160,000 cores of the IBM Blue Gene/P. It supports both the
second-order Pn and Sn methods with dozens of energy groups. It parallelizes simultaneously over the ge-
ometry by means of domain decomposition and angles using a hierarchy of MPI communicators and PETSc
solver objects.

RELATED ENTRIES
MPI
Distributed Memory Computing
SPMD Programs
Domain Decomposition
BLAS
ScaLAPACK
LAPACK
UMFPACK
SPAI
PLAPACK
Super LU
Multigrid
METIS
CHACO
Scalability
Memory wall

BIBLIOGRAPHIC NOTES AND FURTHER READING

The PETSc website is the best location for up-to-date information on PETSc [8]. A complete list of external
packages that PETSc can use is given in [5]. More details of the applications developed by using PETSc can
be found at [7]. Further details on the design decisions made in PETSc may be found in [2].

Other related parallel solver packages include TRILINOS [9], hypre [10], and SUNDIALS [11]. TRILINOS
is a large, general-purpose solver package much in the spirit of PETSc and written largely in C++; it currently
has little support for use from Fortran. The hypre package specializes in high-performance preconditioners
and includes a scalable algebraic multigrid solver BoomerAMG. SUNDIALS specializes in nonlinear solvers
and adaptive ODE integrators; it expects the required linear solver to be provided by the user or another
package. Many of the solvers in these other packages can be called through PETSc.

5

Acknowledgments

This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National
Laboratory (”Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated
under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its
behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the
Government.

BIBLIOGRAPHY

1. S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,
B. F. Smith and H. Zhang. PETSc Users Manual, Argonne National Laboratory Technical Report
ANL0-95/11 - Revision 3.0.0, 2008.

2. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient Management of Parallelism in Object
Oriented Numerical Software Libraries in Modern Software Tools in Scientific Computing, E. Arge, A.
M. Bruaset and H. P. Langtangen, eds., Birkhauser Press, pp. 163–202, 1997.

3. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Software for the Scalable Solution of PDEs,
in CRPC Handbook of Parallel Computing, J. Dongarra, I. Foster, G. Fox, B. Gropp, K. Kennedy, L.
Torczon, A. White, eds., Morgan Kaufmann Publishers, 2002.

4. J. Dongarra’s freely available software for linear algebra,
http://www.netlib.org/utk/people/JackDongarra/la-sw.html.

5. List of external software packages available from PETSc,
http://www.mcs.anl.gov/petsc/petsc-as/miscellaneous/external.html.

6. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, 2003.

7. Partial list of applications written using PETSc,
http://www.mcs.anl.gov/petsc/petsc-as/publications/petscapps.html.

8. PETSc’s webpage, http://www.mcs.anl.gov/petsc.

9. TRILINOS’s webpage, http://trilinos.sandia.gov.

10. hypre’s webpage, https://computation.llnl.gov/casc/linear solvers/sls hypre.html.

11. SUNDIAL’s webpage, https://computation.llnl.gov/casc/sundials/main.html.

.

6

Table 1: Partial list of Direct Solvers Available in PETSc

Factorization Package Complex Numbers Parallel
Support Support

LU PETSc x
SuperLU x
SuperLU Dist x x
MUMPS x x
Spooles x x
PaStiX x x
IBM’s ESSL
UMFPACK
LUSOL

Cholesky PETSc x
Spooles x x
MUMPS x x
PaStiX x x
DSCPACK x

Table 2: Partial list of Preconditioners Available in PETSc

Preconditioner Package Complex Numbers Parallel
Support Support

ICC(k) PETSc x
ILU(k) PETSc x

Euclid/hypre x
ILUdt pilut/hypre x
Jacobi PETSc x x
SOR PETSc x
Block Jacobi PETSc x x
Additive Schwarz PETSc x x
Geometric multigrid PETSc x x
Algebraic multigrid BoomerAMG/hypre x

ML/TRILINOS x
Approximate inverse SPAI x

Parasails/hypre x

7

program main ! Solves the linear system J x = f

#include "finclude/petscalldef.h"

use petscksp; use petscda

Vec x,f; Mat J; DA da; KSP ksp; PetscErrorCode ierr

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)

call DACreate1d(MPI_COMM_WORLD,DA_NONPERIODIC,8,1,1,PETSC_NULL_INTEGER,da,ierr)

call DACreateGlobalVector(da,x,ierr); call VecDuplicate(x,f,ierr)

call DAGetMatrix(da,MATAIJ,J,ierr)

call ComputeRHS(da,f,ierr)

call ComputeMatrix(da,J,ierr)

call KSPCreate(MPI_COMM_WORLD,ksp,ierr)

call KSPSetOperators(ksp,J,J,SAME_NONZERO_PATTERN,ierr)

call KSPSetFromOptions(ksp,ierr)

call KSPSolve(ksp,f,x,ierr)

call MatDestroy(J,ierr); call VecDestroy(x,ierr); call VecDestroy(f,ierr)

call KSPDestroy(ksp,ierr); call DADestroy(da,ierr)

call PetscFinalize(ierr)

end

subroutine ComputeRHS(da,x,ierr)

#include "finclude/petscalldef.h"

use petscda

DA da; Vec x;PetscErrorCode ierr;PetscInt xs,xm,i,mx; PetscScalar hx;PetscScalar, pointer::xx(:)

call DAGetInfo(da,PETSC_NULL_INTEGER,mx,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,...

call DAGetCorners(da,xs,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,xm,PETSC_NULL_INTEGER,...

hx = 1.d0/(mx-1)

call VecGetArrayF90(x,xx,ierr)

do i=xs,xs+xm-1

xx(i) = i*hx

enddo

call VecRestoreArrayF90(x,xx,ierr)

return

end

subroutine ComputeMatrix(da,J,ierr)

#include "finclude/petscalldef.h"

use petscda

Mat J; DA da; PetscErrorCode ierr; PetscInt xs,xm,i,mx; PetscScalar hx

call DAGetInfo(da,PETSC_NULL_INTEGER,mx,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,...

call DAGetCorners(da,xs,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,xm,PETSC_NULL_INTEGER,...

hx = 1.d0/(mx-1)

do i=xs,xs+xm-1

if ((i .eq. 0) .or. (i .eq. mx-1)) then

call MatSetValue(J,i,i,1d0,INSERT_VALUES,ierr)

else

call MatSetValue(J,i,i-1,-hx,INSERT_VALUES,ierr)

call MatSetValue(J,i,i+1,-hx,INSERT_VALUES,ierr)

call MatSetValue(J,i,i,2*hx,INSERT_VALUES,ierr)

endif

enddo

call MatAssemblyBegin(J,MAT_FINAL_ASSEMBLY,ierr); call MatAssemblyEnd(J,MAT_FINAL_ASSEMBLY,ierr)

return

end

Figure 1: Example of Linear Solver Usage in PETSc in Fortran 90
8

static char help[] = "Solves -Laplacian u - exp(u) = 0, 0 < x < 1\n\n";

#include "petscda.h"

#include "petscsnes.h"

extern PetscErrorCode ComputeFunction(SNES,Vec,Vec,void*),ComputeJacobian(SNES,Vec,Mat*,Mat*,...

int main(int argc,char **argv) {

SNES snes; Vec x,f; Mat J; DA da;

PetscInitialize(&argc,&argv,(char *)0,help);

DACreate1d(PETSC_COMM_WORLD,DA_NONPERIODIC,8,1,1,PETSC_NULL,&da);

DACreateGlobalVector(da,&x); VecDuplicate(x,&f);

DAGetMatrix(da,MATAIJ,&J);

SNESCreate(PETSC_COMM_WORLD,&snes);

SNESSetFunction(snes,f,ComputeFunction,da);

SNESSetJacobian(snes,J,J,ComputeJacobian,da);

SNESSetFromOptions(snes);

SNESSolve(snes,PETSC_NULL,x);

MatDestroy(J); VecDestroy(x); VecDestroy(f); SNESDestroy(snes); DADestroy(da);

PetscFinalize();

return 0;}

PetscErrorCode ComputeFunction(SNES snes,Vec x,Vec f,void *ctx) {

PetscInt i,Mx,xs,xm; PetscScalar *xx,*ff,hx; DA da = (DA) ctx; Vec xlocal;

DAGetInfo(da,PETSC_IGNORE,&Mx,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,...

hx = 1.0/(PetscReal)(Mx-1);

DAGetLocalVector(da,&xlocal);DAGlobalToLocalBegin(da,x,INSERT_VALUES,xlocal);DAGlobalToLocalEnd(da,x,...

DAVecGetArray(da,xlocal,&xx); DAVecGetArray(da,f,&ff);

DAGetCorners(da,&xs,PETSC_NULL,PETSC_NULL,&xm,PETSC_NULL,PETSC_NULL);

for (i=xs; i<xs+xm; i++) {

if (i == 0 || i == Mx-1) ff[i] = xx[i]/hx;

else ff[i] = (2.0*xx[i] - xx[i-1] - xx[i+1])/hx - hx*PetscExpScalar(xx[i]);

}

DAVecRestoreArray(da,xlocal,&xx); DARestoreLocalVector(da,&xlocal);DAVecRestoreArray(da,f,&ff);

return 0;}

PetscErrorCode ComputeJacobian(SNES snes,Vec x,Mat *J,Mat *B,MatStructure *flag,void *ctx){

DA da = (DA) ctx; PetscInt i,Mx,xm,xs; PetscScalar hx,*xx; Vec xlocal;

DAGetInfo(da,PETSC_IGNORE,&Mx,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,...

hx = 1.0/(PetscReal)(Mx-1);

DAGetLocalVector(da,&xlocal);DAGlobalToLocalBegin(da,x,INSERT_VALUES,xlocal);DAGlobalToLocalEnd(da,x,...

DAVecGetArray(da,xlocal,&xx);

DAGetCorners(da,&xs,PETSC_NULL,PETSC_NULL,&xm,PETSC_NULL,PETSC_NULL);

for (i=xs; i<xs+xm; i++) {

if (i == 0 || i == Mx-1) { MatSetValue(*J,i,i,1.0/hx,INSERT_VALUES);}

else {

MatSetValue(*J,i,i-1,-1.0/hx,INSERT_VALUES);

MatSetValue(*J,i,i,2.0/hx - hx*PetscExpScalar(xx[i]),INSERT_VALUES);

MatSetValue(*J,i,i+1,-1.0/hx,INSERT_VALUES);

}

}

MatAssemblyBegin(*J,MAT_FINAL_ASSEMBLY);MatAssemblyEnd(*J,MAT_FINAL_ASSEMBLY);*flag = SAME_NONZERO_...

DAVecRestoreArray(da,xlocal,&xx);DARestoreLocalVector(da,&xlocal);

return 0;}

Figure 2: Example of Nonlinear Solver Usage in PETSc in C9

import sys, petsc4py

petsc4py.init(sys.argv)

from petsc4py import PETSc

import math

class MyODE:

def __init__(self,da):

self.da = da

def function(self, ts,t,x,f):

mx = da.getSizes(); mx = mx[0]; hx = 1.0/mx

(xs,xm) = da.getCorners(); xs = xs[0]; xm = xm[0]

xx = da.createLocalVector()

da.globalToLocal(x,xx)

dt = ts.getTimeStep()

x0 = ts.getSolution()

if xs == 0: f[0] = xx[0]/hx; xs = 1;

if xs+xm >= mx: f[mx-1] = xx[xm-(xs==1)]/hx; xm = xm-(xs==1);

for i in range(xs,xs+xm-1):

f[i] = (xx[i-xs+1]-x0[i])/dt + (2.0*xx[i-xs+1]-xx[i-xs]-xx[i-xs+2])/hx - hx*math.exp(xx[i-xs+1])

f.assemble()

def jacobian(self,ts,t,x,J,P):

mx = da.getSizes(); mx = mx[0]; hx = 1.0/mx

(xs,xm) = da.getCorners(); xs = xs[0]; xm = xm[0]

xx = da.createLocalVector()

da.globalToLocal(x,xx)

x0 = ts.getSolution()

dt = ts.getTimeStep()

P.zeroEntries()

if xs == 0: P.setValues([0],[0],1.0/hx); xs = 1;

if xs+xm >= mx: P.setValues([mx-1],[mx-1],1.0/hx); xm = xm-(xs==1);

for i in range(xs,xs+xm-1):

P.setValues([i],[i-1,i,i+1],[-1.0/hx,1.0/dt+2.0/hx-hx*math.exp(xx[i-xs+1]),-1.0/hx])

P.assemble()

return True # same_nz

da = PETSc.DA().create([9],comm=PETSc.COMM_WORLD)

f = da.createGlobalVector()

x = f.duplicate()

J = da.getMatrix(PETSc.MatType.AIJ);

ts = PETSc.TS().create(PETSc.COMM_WORLD)

ts.setProblemType(PETSc.TS.ProblemType.NONLINEAR)

ts.setType(’python’)

ode = MyODE(da)

ts.setFunction(ode.function, f)

ts.setJacobian(ode.jacobian, J, J)

ts.setTimeStep(0.1)

ts.setDuration(10, 1.0)

ts.setFromOptions()

x.set(1.0)

ts.solve(x)

Figure 3: Example of ODE Usage in PETSc in Python

10

SNES Object:

type: ls

line search variant: SNESLineSearchCubic

alpha=0.0001, maxstep=1e+08, minlambda=1e-12

maximum iterations=50, maximum function evaluations=10000

tolerances: relative=1e-08, absolute=1e-50, solution=1e-08

KSP Object:

type: fgmres

GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization

GMRES: happy breakdown tolerance 1e-30

maximum iterations=10000, initial guess is zero

tolerances: relative=1e-05, absolute=1e-50, divergence=10000

right preconditioning

using UNPRECONDITIONED norm type for convergence test

PC Object:

type: mg

MG: type is FULL, levels=2 cycles=v

Coarse grid solver -- level 0 presmooths=1 postsmooths=1 -----

KSP Object:(mg_coarse_)

type: preonly

PC Object:(mg_coarse_)

type: lu

LU: out-of-place factorization

matrix ordering: nd

LU: tolerance for zero pivot 1e-12

LU: factor fill ratio needed 1.875

Matrix Object:

type=seqaij, rows=64, cols=64

total: nonzeros=1024, allocated nonzeros=1024

using I-node routines: found 16 nodes, limit used is 5

Down solver (pre-smoother) on level 1 smooths=1 --------------------

KSP Object:(mg_levels_1_)

type: gmres

GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization

GMRES: happy breakdown tolerance 1e-30

maximum iterations=1

tolerances: relative=1e-05, absolute=1e-50, divergence=10000

left preconditioning

using nonzero initial guess

using PRECONDITIONED norm type for convergence test

PC Object:(mg_levels_1_)

type: ilu

ILU: 0 levels of fill

ILU: factor fill ratio allocated 1

ILU: tolerance for zero pivot 1e-12

Matrix Object:

type=seqaij, rows=196, cols=196

total: nonzeros=3472, allocated nonzeros=3472

using I-node routines: found 49 nodes, limit used is 5

Matrix Object:

type=seqaij, rows=196, cols=196

total: nonzeros=3472, allocated nonzeros=3472

using I-node routines: found 49 nodes, limit used is 5

Figure 4: Example of Output Using SNESView()

11

Table 3: Partial list of Krylov Methods Available in PETSc

Richardson (simple) iteration, xn+1 = xn + B(b−Axn)
Chebychev iteration
Conjugate gradient method
Bi-conjugate gradient
Bi-conjugate gradient stabilized (bi-CG-stab)
Conjugate residuals
Conjugate gradient squared
Minimum residuals (MINRES)
Generalized minimal residual (GMRES)
Flexible GMRES (fGMRES)
transpose free quasi minimal residuals (QMR)

12

